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SHIFTED SUBSTITUTION IN

NON-COMMUTATIVE MULTIVARIATE POWER SERIES

WITH A VIEW TOWARD FREE PROBABILITY

KURUSCH EBRAHIMI-FARD, FRÉDÉRIC PATRAS, NIKOLAS TAPIA,
AND LORENZO ZAMBOTTI

Abstract. We study a particular group law on formal power se-
ries in non-commuting variables induced by their interpretation
as linear forms on a suitable graded connected word Hopf algebra.
This group law is left-linear and is therefore associated to a pre-Lie
structure on formal power series. We study these structures and
show how they can be used to recast in a group theoretic form
various identities and transformations on formal power series that
have been central in the context of non-commutative probability
theory, in particular in Voiculescu’s theory of free probability.
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1. Introduction

This work aims at explicitly relating two approaches to key argu-
ments in Voiculescu’s theory of free probability and related areas [21,
22, 23]. On the one hand, the classical approach by formal power series,
on the other hand, a more recent one that relies on group-theoretical
and Hopf algebraic arguments. For that purpose, we introduce and
study various group, Lie and pre-Lie structures on formal power se-
ries in non-commutative indeterminates. We obtain as a by-product
a dictionary between the two approaches that allows to translate var-
ious Hopf algebraic constructions into (non-trivial and non-standard)
operations on formal power series.

Let us be more precise. In recent work (see [15] and references
therein), a shuffle group theoretic approach to moment-cumulant and
cumulant-cumulant relations in non-commutative probability was pro-
posed. In this setting, various families of cumulants, namely monotone,
(conditionally) free, and Boolean, are understood as elements in the
Lie algebra g of infinitesimal characters over a particular combinato-
rial word Hopf algebra H. The family of moment maps is identified
instead with a particular element in the group G of Hopf algebra char-
acters on H. Three exponential-type maps happen to relate bijectively
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the group G and its Lie algebra g; they therefore imply relations be-
tween the aforementioned families of cumulants and moments as well
as relations amid the different types of cumulants.

On the other hand, it is well-known that the relations between mo-
ments and cumulants as well as the relations between the different fam-
ilies of cumulants can be concisely described in terms of multivariate
generating functions, i.e., non-commuting formal power series [4, 22].
It is therefore natural to look for a precise understanding of the con-
nection between formal power series in non-commuting variables with
scalar-valued coefficients and the properties of linear forms on the afore-
mentioned Hopf algebra H.

The shuffle algebra approach was further developed in [16, 17] with
respect to Wick polynomials. In the later reference, it was shown that
free, Boolean, and conditionally free Wick polynomials, introduced and
studied in great detail by Anshelevich in a series of papers [1, 2, 3],
can be defined and related through the action of the group G on the
identity map in the space of endomorphisms on the tensor algebra T pAq
defined over the underlying non-commutative probability space pA, ϕq.
The paper [17] extended to non-commutative probability the setting of
the previous work on Wick polynomials by the same authors [16].

In this work, we identify and study a particular group law (resp. pre-
Lie and Lie products as well as other operations and structures) on
formal power series in non-commuting variables. It is induced, as we
just alluded to, by the interpretation of the latter as linear forms on
the Hopf algebra H. This new group law is left-linear. It generalizes to
the multivariate case –up to an isomorphism– the group of tangent-to-
identity formal power series that gives rise to the classical Faà di Bruno
Hopf algebra. Being left-linear, the group law is therefore associated to
a novel pre-Lie structure defined on formal power series. Eventually, we
note that our approach resembles in various respects the link between
Butcher’s group of B-series in numerical analysis [6] and a Hopf algebra
of non-planar rooted trees described by Connes and Kreimer [5, 7, 11].
See Remark 5.2 below. We study these phenomena and show how they
can be used to recast in a group theoretic form various identities and
transformations on formal power series that have shown to be central
in the context of non-commutative probability theory, in particular in
Voiculescu’s free probability [22].

The paper is organised as follows. In the second section we describe
the new group law on multivariate formal power series. The third sec-
tion is dedicated to the corresponding pre-Lie and Lie structures. Sec-
tions four and five make the connection with the Hopf algebraic point
of view and explain how key operations on linear forms on the Hopf al-
gebra H transport to formal power series. The last three sections make
explicit connections with free, Boolean and monotone probability.
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2. The twisted composition group law

Let x “ tx1, x2, x3, . . . u be a set of formal non-commutative vari-
ables and A a commutative unital algebra over a ground field K (of
characteristic zero). The unit of A is written 1A, or simply 1 when no
confusion can arise. The set of (strictly) positive integers is denoted N.
We consider the ring

R – Axxx1, x2, x3, . . . yy

of non-commutative formal power series in these variables with coeffi-
cients in A. A typical element f “ fpxq P R has the form

fpxq “ f0 `
8ÿ

k“1

ÿ

pi1,...,ikqPNk

fi1¨¨¨ik
xi1

¨ ¨ ¨xik

with coefficients f0, fi1¨¨¨ik
P A. The set of non-empty finite sequences

of positive integers is denoted N˚ and we will use the common word
notation for its elements. The empty word is denoted 1, by convention
it does not belong to N˚. The subset Nk Ă N˚ contains words w “
i1 ¨ ¨ ¨ ik of length |w| “ k, that is, with exactly k letters. We associate
to a word w “ i1 ¨ ¨ ¨ im P N

m the non-commutative monomial xw –

xi1
¨ ¨ ¨xim

. Multiplication in the ring R is known as Cauchy product,
which is denoted for elements f, g P R by

fgpxq – f0g0 `
ÿ

wPN˚

pfgqwxw. (2.1)

The coefficient pfgqw P A of xw “ xi1
¨ ¨ ¨xik

is defined to be

pfgqi1¨¨¨ik
:“ fi1¨¨¨ik

g0 ` f0gi1¨¨¨ik
`

k´1ÿ

j“1

fi1¨¨¨ij
gij`1¨¨¨jk

.

This can be compactly formulated in terms of the deconcatenation
coproduct on words in N˚

pfgqi1¨¨¨ik
“ mApf̂ b ĝqδpi1 ¨ ¨ ¨ ikq,
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where δp1q :“ 1 b 1 and

δpi1 ¨ ¨ ¨ ikq “ i1 ¨ ¨ ¨ ik b 1 ` 1 b i1 ¨ ¨ ¨ ik `
k´1ÿ

j“1

i1 ¨ ¨ ¨ ij b ij`1 ¨ ¨ ¨ jk.

The maps f̂ and ĝ are defined to be linear on the linear span of elements
in N˚ with values in A, i.e., f̂pwq :“ fw, ĝpwq :“ gw, and extended to

the empty word, f̂p1q “ f0 and ĝp1q “ g0.
In the following, we consider two distinct subsets of the ring R, which

will be denoted G1 and G0. The former consists of elements in R with
unit constant coefficient

G1 :“ tfpxq P R | f0 “ 1Au.

Elements h P G1 are written h “ 1A ` h1. One verifies that G1 forms a
group under the usual multiplication (2.1). For f P G1, the coefficients
of its inverse f´1 P G1 can be explicitly computed starting from those
of fpxq. On the other hand, the set G0 contains elements in R with
zero constant coefficient

G0 :“ tfpxq P R | f0 “ 0u.

We introduce also the set of so-called “tangent-to-identity” elements
(according to the terminology of dynamical systems)

Gc :“ tfpxq P R | f0 “ 0, fi “ 1A, i P Nu.

On the set G1, we consider a new product. For f, g P G1, the mono-
tone composition, denoted ‚, is defined by combining composition and
Cauchy product (2.1):

pf ‚ gqpxq – gfxgpxq :“ gpxqfpxgpxqq, (2.2)

where the new set xgpxq “ tpxgpxqq1, pxgpxqq2, pxgpxqq3, . . . u of trans-
formed variables, defined by

pxgpxqqi – xigpxq “ xi `
ÿ

wPN˚

gwxiw, i P N, (2.3)

is substituted into f P R. Having (2.3) in place, we define for words
w “ i1 ¨ ¨ ¨ il “ N˚

pxgpxqqi1¨¨¨il
– xi1

gpxq ¨ ¨ ¨xil
gpxq. (2.4)

Observe that, since gpxq P G1, we have xigpxq P Gc Ă G0 for all i ą 0.
The composition fpxgpxqq “ 1A ` f 1pxgpxqq is therefore again an el-
ement in G1. In the one dimensional case (corresponding to a single
variable x “ x1), the set Gc, whose elements are then called tangent-to-
identity formal diffeomorphisms (as they are formal diffeomorphisms
of the one-dimensional line), is equipped with a group law by the com-
position of univariate formal power series. One has furthermore the
linear isomorphism G1 – Gc given by µ : f ÞÝÑ xf . We therefore get

µpf ‚ gqpxq “ xgpxqfpxgpxqq “ µpfqpµpgqpxqq.
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Corollary 2.1. In the one-dimensional case, G1 is isomorphic to the
group of tangent-to-identity formal diffeomorphisms.

We turn now back to the general case and explicitly compute the
product for f “ 1A ` f 1, g “ 1A ` g1 P G1

pf ‚ gqpxq “ gfxgpxq

“ gpxqfpxgpxqq

“ 1A ` g1pxq ` f 1pxgpxqq `
ÿ

u,vPN˚

gufvxupxgpxqqv

“ 1A ` g1pxq ` f 1pxgpxqq

`
ÿ

uPN˚,v“i1¨¨¨ikPN˚

u1,...,ukPN˚Yt0u

fvgugu1
¨ ¨ ¨ guk

xuxi1
xu1

¨ ¨ ¨xik
xuk

.

(2.5)

Here we use the convention that x0 :“ 1A. The new product on G1 is
associative. Indeed, an explicit computation shows that

pf ‚ gq ‚ hpxq “ hpf ‚ gqxhpxq “ hpxqpf ‚ gqpxhpxqq

“ hpxqpgfxgqpxhpxqq

“ hpxqgpxhpxqqfpxgpxhpxqqq.

We note that hpxqgpxhpxqq “ hgxhpxq “ g ‚ hpxq and

fpxgpxhpxqqq “ 1A `
ÿ

uPN˚

fupxgpxhpxqqqu,

where

pxgpxhpxqqqi “ pxhpxqqigpxhpxqq “ xihpxqgpxhpxqq.

Compare this with

f ‚ pg ‚ hqpxq “ pg ‚ hqfxpg‚hqpxq “ pg ‚ hqpxqfpxpg ‚ hqpxqq

“ hpxqgpxhpxqqfpxpg ‚ hqpxqq.

Here
fpxpg ‚ hqpxqq “ 1A `

ÿ

u

fupxpg ‚ hqpxqqu

and
pxpg ‚ hqpxqqi “ xipg ‚ hqpxq “ xihpxqgpxhpxqq,

which shows associativity of the monotone composition on G1, that is,

pf ‚ gq ‚ hpxq “ f ‚ pg ‚ hqpxq.

The unit for monotone composition (2.2) is 1A. Indeed

1A ‚ gpxq “ gpxq1A “ gpxq “ g ‚ 1A “ 1Agpxq.

In fact, we have

Proposition 2.2. G‚ :“ pG1, ‚q is a non-commutative group with
unit 1A.
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Proof. The identity

1A “ f ‚´1 ‚ fpxq “ fpxqf ‚´1pxfpxqq

allows to recursively (and uniquely) compute the coefficients of f ‚´1

from those of f . �

Remark 2.3. We note that the definition of the product (2.2) is moti-
vated by the shuffle convolution product defined in [12], as will become
clear in Section (4). In fact, looking at Anshelevich’s free Wick poly-
nomials from a shuffle Hopf algebraic perspective, as was done in our
work [17], one may extract the product (2.2) on the level of formal
power series. See reference [1, Thm. 3.10, Prop. 3.12, eq. (3.48)].

3. The pre-Lie and Lie algebraic structures

We recall the notion of left-linear group and some of its properties –
for details, we refer the reader to the book [8, Sect. 6.4]. Consider local
coordinates x “ px1, . . . , xnq on a Lie group G in the neighborhood of
the identity element e, with the property xipeq “ 0, for 1 ď i ď n.
For notational convenience, we identify the system of local coordinates
with the element of the group. Using these coordinates, we assume
that the group law reads

z “ F px; yq “
ÿ

pě0
qě0

Fp,qpx; yq, (3.1)

if z “ x ¨ y and where Fp,qpx1, . . . , xn; y1, . . . , ynq is a polynomial in 2n
variables, homogeneous of degrees p and q in the variables x respec-
tively y. Then, the difference F1,1px; yq ´ F1,1py; xq defines the Lie
bracket in the Lie algebra g of G.

Definition 3.1. The group G is said to be left-linear if Fp,q “ 0 for
p ě 2, that is, if F px; yq ´ y is linear in x.

Let us write x Ÿ y for F1,1px; yq. Then, it holds in general that the
tangent space g to a left-linear Lie group is equipped with the binary
operation Ÿ with the structure of a (right) pre-Lie algebra. In fact,
from the latter, the Lie algebra structure is inherited as x Ÿ y ´ y Ÿ x.
That is, for arbitrary x,y, z, we have the (right) pre-Lie identity

px Ÿ yq Ÿ z ´ x Ÿ py Ÿ zq “ px Ÿ zq Ÿ y ´ x Ÿ pz Ÿ yq.

The definition extends to the infinite-dimensional case – keeping the
requirement that the components of Fp,q be polynomials in the coor-
dinates. In particular, the group pG1, ‚q is an (infinite-dimensional)
left-linear group. Indeed, from eq. (2.5) we see that

pf ‚ g ´ gqpxq “ gpxqf 1pxgpxqq

“ f 1pxgpxqq `
ÿ

uPN˚,v“i1¨¨¨ikPN˚

u1,...,ukPN˚Yt0u

fvgugu1
¨ ¨ ¨ guk

xuxi1
xu1

¨ ¨ ¨xik
xuk

, (3.2)



SHIFTED SUBSTITUTION IN NON-COMMUTATIVE POWER SERIES 7

and this expression is linear in the coordinates pfvqvPN˚ of f .

Proposition 3.2. The tangent space g “ G0 at 1 to the left-linear
group pG1, ‚q is a right pre-Lie algebra.

Proof. Let us check the property explicitly. We consider the coordi-
nates in the basis of words xi1

¨ ¨ ¨xin
. Using the notation of the previous

section and eq. (3.2), we obtain for F1,1 and Ÿ:

xi1
¨ ¨ ¨xin

Ÿ xj1
¨ ¨ ¨ xjm

“
nÿ

k“0

xi1
¨ ¨ ¨xik

xj1
¨ ¨ ¨xjm

xik`1
¨ ¨ ¨xin

. (3.3)

Denoting the insertion of y :“ xj1
¨ ¨ ¨xjm

in position k inside x :“
xi1

¨ ¨ ¨xin
by

xi1
¨ ¨ ¨xik

y xik`1
¨ ¨ ¨xin

:“ xi1
¨ ¨ ¨xik

xj1
¨ ¨ ¨xjm

xik`1
¨ ¨ ¨ xin

,

we get, with a self-explaining notation,

px Ÿ yq Ÿ z ´ x Ÿ py Ÿ zq “

“
ÿ

0ďkăk`1ălďn

xi1
¨ ¨ ¨xik

y xik`1
¨ ¨ ¨xil

z xil`1
¨ ¨ ¨xin

`

`
ÿ

0ďkăk`1ălďn

`xi1
¨ ¨ ¨xik

z xik`1
¨ ¨ ¨xil

y xil`1
¨ ¨ ¨xin

.

As this expression is symmetric in y and z, we deduce that Ÿ is a
(right) pre-Lie product with associated Lie bracket

rxi1
¨ ¨ ¨xin

, xj1
¨ ¨ ¨xjm

s “

“ xi1
¨ ¨ ¨xin

Ÿ xj1
¨ ¨ ¨xjm

´ xj1
¨ ¨ ¨xjm

Ÿ xi1
¨ ¨ ¨xin

“
n´1ÿ

k“1

xi1
¨ ¨ ¨xik

xj1
¨ ¨ ¨xjm

xik`1
¨ ¨ ¨xin

´
m´1ÿ

l“1

xj1
¨ ¨ ¨xjl

xi1
¨ ¨ ¨xin

xjl`1
¨ ¨ ¨xjm

.

�

Remark 3.3. In the single variable case we deduce from (3.3) that

xn Ÿ xm “ pn ` 1qxn`m, (3.4)

so that rxn, xms “ pn´mqxn`m. The corresponding pre-Lie algebra is
isomorphic to the pre-Lie algebra associated to the group of tangent-
to-identity formal diffeomorphisms of the line. The Lie algebra is, up
to isomorphism, the Lie algebra of primitive elements in the cocommu-
tative Hopf algebra dual of the Faà di Bruno Hopf algebra.
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4. Coordinate Hopf algebra

From now on, we will use freely general and standard results on
bialgebras and Hopf algebras such as convolution products, characters,
infinitesimal characters, and the Baker–Campbell–Hausdorff formula.
The reader is referred to [8] for details.

The group pG1, ‚q is pro-unipotent (that is, an inverse limit of unipo-
tent groups). This can be deduced for example from the observation
that the ring R of formal power series is the inverse limit of the quo-
tients A ă x1, . . . , xk, . . . ą {Ipnq, where I is the ideal of the alge-
bra of non-commutative polynomials spanned by degree n monomials
xi1

¨ ¨ ¨xin
. As such, pG1, ‚q is the group of characters of a commutative

Hopf algebra (see [8, Section 3.6]). Technically, this Hopf algebra is,
as an algebra, the direct limit of the polynomial algebras over finite
subsets of the set of coordinate functions pfvqvPN˚ on G1. The algebra
structure is the product of polynomials. The coproduct is obtained
automatically by dualizing the group law.

However, it is convenient to identify pG1, ‚q with the group of charac-
ters of a larger and, more importantly, non-commutative Hopf algebra.
This will put at our disposal the tools and techniques available for
studying shuffle groups in the sense of [15].

Consider now the free semigroup N˚ over the alphabet of positive
integers, N “ t1, 2, 3, . . .u, and let V be the vector space spanned by it.
Elements in V are linear combinations of non-empty words in the letters
of the alphabet and it naturally possesses the structure of a non-unital
associative algebra, the product being the unique bilinear extension of
the concatenation of words. We write V ` for the augmentation of the
algebra V by a unit (that we identify with the empty word denoted
here H).

There is a natural bijection Λ: LinpV `, Aq Ñ R given by

Λpφq – φpHq `
ÿ

wPN˚

φpwqxw, (4.1)

where Λpφq can be understood as a generating series for the functional
φ. Let

T pV q –
à
ně0

V bn

be the tensor algebra over V , where V b0 – K1 is one-dimensional.
Elements w1 b ¨ ¨ ¨ bwk of T pV q, where wi P V , are denoted w1| ¨ ¨ ¨ |wk,
that is by inserting vertical bars instead of the usual tensor product
symbol. In particular, m|pw1 b w2q :“ w1|w2, for words w1, w2 P V ,
where we denote m| the concatenation product in T pV q and, more
generally, m|pw1| ¨ ¨ ¨ |wk b wk`1| ¨ ¨ ¨ |wnq “ w1| ¨ ¨ ¨ |wk|wk`1| . . . |wn. We
denote T`pV q –

À
ně1 V

bn the augmentation ideal. The bijection
Λ in (4.1) extends to a linear map, still written abusively Λ, from
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LinpT pV q, Aq to R, defined by

Λpφq – φp1q `
ÿ

wPN˚

φpwqxw. (4.2)

It is important to notice that the value of φ on the spaces V bn are not
taken into account for n ě 2.

Let us denote
GpAq – HomalgpT pV q, Aq

the set of algebra morphisms, i.e., multiplicative unital maps (or char-
acters) in LinpT pV q, Aq, and

LpAq :“ tinfinitesimal characters in LinpT pV q, Aqu,

that is, linear maps that vanish on 1 and non-trivial products of words,
that is, on

À
ně2 V

bn. By their very definition, elements in GpAq
and LpAq are entirely characterized by their values on the elements
of the semigroup N˚ that form a basis of V . By restricting Λ to GpAq,
resp. LpAq, the existence of two bijections of sets follows:

Λgr : GpAq Ñ G1, ΛLie : LpAq Ñ G0. (4.3)

We also get set bijections between infinitesimal and usual characters:

Λ´1
gr ˝ p1 ` ΛLieq : LpAq Ñ GpAq, Λ´1

Lie ˝ pΛgr ´ 1q : GpAq Ñ LpAq.

Given a word w “ a1 ¨ ¨ ¨ an P V and a subset S “ ti1 ă ¨ ¨ ¨ ă
iku Ď rns we set wS :“ ai1

¨ ¨ ¨ aik
P V . The complement Sc

– rnszS
can be written as the disjoint union of m “ mpSq maximal intervals
JS

1 , . . . , J
S
m defined through the set S.

We introduce a coproduct ∆: V Ñ V b T pV q by setting ∆1 “ 1 b 1

and for w “ a1 ¨ ¨ ¨ an P V

∆pa1 ¨ ¨ ¨ anq –

ÿ

SĎrns

wS b wJS
1

| ¨ ¨ ¨ |wJS
m
, (4.4)

which is multiplicatively extended to T pV q:

∆pw1| ¨ ¨ ¨ |wnq :“ ∆pw1q ¨ ¨ ¨ ∆pwnq P T pV q b T pV q.

Theorem 4.1 ([12]). The space T pV q with product m| and coproduct ∆
(4.4) is a graded connected non-commutative non-cocommutative bial-
gebra, denoted H :“ pT pV q,∆, m|, ǫ, ηq.

Here, the counit map ǫ : T pV q Ñ K, resp. the unit map η : K Ñ
T pV q, are the obvious inclusion of (resp. projection to) the scalar com-
ponent K “ V b0 in T pV q.

Let now LinpT pV q, Aq denote the space of linear maps taking values
in the unital commutative algebra A. Recall that this space has a
natural unital algebra structure given by convolution, that is, for φ, ψ P
LinpT pV q, Aq we set

φ ˚ ψ – mApφb ψq∆,



SHIFTED SUBSTITUTION IN NON-COMMUTATIVE POWER SERIES 10

where mA denotes the product in A. The unit for the convolution
product is given by εA :“ ηA ˝ ǫ, where ǫ is the counit of T pV q and
ηA : K Ñ A is the unit-map of A (ηAp1q :“ 1A).

Recall also that H is automatically a Hopf algebra. It is well known
that the set GpAq forms a group under convolution; the inverse of an
element is given by composition with the antipode of T pV q. Similarly,
LpAq is a Lie algebra for the Lie bracket obtained by anti-symmetrizing
the convolution product. We also have the existence of inverse bijec-
tions

exp˚ : LpAq Ñ GpAq, log˚ : GpAq Ñ LpAq,

with exp˚ ˝ log˚ “ idGpAq, log˚ ˝ exp˚ “ idLpAq.

Remark 4.2. In the context of non-commutative probability, it has been
shown elsewhere that if the linear unital map ϕ : A Ñ K on a non-
commutative probability space pA, ϕq is extended to a character Φ on
the double tensor algebra over A, suitably equipped with a Hopf algebra
structure very similar to the one we defined on T pV q, then log˚pΦq
computes the associated multivariate monotone cumulants. We refer
to [14] for details. The reader should keep in mind that these results
are in the background of the developments in the present article.

Theorem 4.3. The map Λgr defines a group isomorphism between
pGpAq, ˚q and pG1, ‚q.

Proof. We already know that the map is a bijection. We would like to
show that for characters φ, ψ P GpAq

Λgrpφ ˚ ψqpxq “ f ‚ gpxq (4.5)

where fpxq – Λgrpφqpxq, gpxq – Λgrpψqpxq.
We first recall that for a word v “ i1 ¨ ¨ ¨ ik and element g P G1, we

have

pxgpxqqv “ pxgpxqqi1
¨ ¨ ¨ pxgpxqqik

“ xi1
gpxqxi2

gpxq ¨ ¨ ¨xik
gpxq

“ xv `
ÿ

u1,...,ukPt1uYN˚

u1¨¨¨uk‰1

gu1
¨ ¨ ¨ guk

xi1
xu1

¨ ¨ ¨xik
xuk

.

Therefore we have

f ‚ gpxq “ gpxqfpxgpxqq

“
ÿ

u,vPt1uYN˚

gufvxupxgpxqqv (4.6)

“ gpxq `
ÿ

u,u1,...,ukPt1uYN˚

v“i1¨¨¨ikPN˚

fvgugu1
¨ ¨ ¨ guk

xuxi1
xu1

¨ ¨ ¨xik
xuk

.
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Then, writing fw “ φpwq and gu “ ψpuq, the above sum collapses to

gpxq `
ÿ

u,u1,...,ukPt1uYN˚

v“i1¨¨¨ikPN˚

fvgugu1
¨ ¨ ¨ guk

xuxi1
xu1

¨ ¨ ¨xik
xuk

“ 1 `
ÿ

wPN˚

pφ ˚ ψqpwqxw (4.7)

“ Λgrpφ ˚ ψqpxq.

The proof is complete. �

A similar calculation shows that the analog statement holds at the
level of Lie algebras:

Theorem 4.4. The map ΛLie defines a Lie algebra isomorphism be-
tween LpAq and pG0, r´,´sq.

5. The BCH group law

Recall now the Baker–Campbell–Hausdorff (BCH) formula in the
free associative algebra over two variables X, Y :

exppXq exppY q “ exppBCHpX, Y qq,

where BCHpX, Y q is an element in the free Lie algebra over X and
Y , that is, a linear combination of iterated Lie brackets of X and Y

(rX, Y s :“ XY ´ Y X) such as rX, Y s, rX, rX, Y ss, rrX, Y s, rX, Y ss,
and so on. Setting f ˚BCH g :“ BCHpf, gq, this formula defines the BCH
group law on the Lie algebra pG0, r´,´sq of the infinite dimensional
group pG1, ‚q. A BCH group law is defined on LpAq similarly. Equiv-
alently, it is defined by transportation of the group law on GpAq along
exp˚: for φ, ρ in GpAq, we have

BCHpφ, ρq :“ log˚pexp˚pφq ˚ exp˚pρqq.

Corollary 5.1. The BCH group law on LpAq is transported by ΛLie to
the BCH group law on G0.

Notice that it follows from our arguments that there exists a bijection
(in fact, an isomorphism) expG between G0 and G1 (recall that the
former is the Lie algebra of the latter) given by:

expG :“ Λgr ˝ exp˚ ˝Λ´1
Lie

with inverse

logG :“ ΛLie ˝ log˚ ˝Λ´1
gr .

These bijections are given by complex formulas (the same that relate
monotone cumulants to moments in free probability, see our Remark
4.2 above).
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Remark 5.2. An example of similar nature to the construction of the
map Λ, resp. Λgr, ΛLie, is provided by Butcher’s group of B-series in
numerical analysis [6, 18] and its link to a certain combinatorial Hopf
algebra on rooted trees. We recall that a B-series may be charac-
terised as the Taylor expansion of numerical integration schemes such
as Runge–Kutta methods:

Bpα; hf, yq :“
ÿ

tPT

αptqFhf ptq,

where the sum on the righthand side runs over the set T of non-
planar rooted trees, including the empty tree, and α is a function
on T determined by the numerical method. The other objects in-
volved are a smooth vector field f on Rd, the step size parameter
h P R and the map Ff which associates a so-called elementary dif-
ferential to a trees t P T and the aforementioned vector field f (it
was first described by Cayley in context of differential equations [9]).
See [18] for details. It turns out that composition of two B-series,
Bpα; hf,Bpβ; hf, yqq “ Bpβ ˚α; hf, yq, is tightly linked to a combinato-
rial Hopf algebra defined on non-planar rooted trees. The coefficients
of Bpβ ˚ α; hf, yq are computed in terms of the convolution product of
the group of Hopf algebra characters over the Butcher–Connes–Kreimer
Hopf algebra, [5, 10, 11].

6. Half-shuffle products

The coproduct ∆ on V , given in (4.4), can be split into the sum of
two so-called left and right half-coproducts

∆ăpa1 ¨ ¨ ¨ anq – a1 ¨ ¨ ¨ an b 1 `
ÿ

1PSĹrns

wS b wJS
1

| ¨ ¨ ¨ |wJS
m

(6.1)

and

∆ąpa1 ¨ ¨ ¨ anq – 1 b a1 ¨ ¨ ¨ an `
ÿ

1RSĹrns
S‰H

wS b wJS
1

| ¨ ¨ ¨ |wJS
m
. (6.2)

Both these half-coproducts are extended to T`pV q by defining

∆ăpw1|w2| ¨ ¨ ¨ |wnq “ ∆ăpw1q∆pw2| ¨ ¨ ¨ |wnq

and similarly for ∆ą, so that the coproduct (4.4) on T pV q can be
written as a sum, ∆ “ ∆ă ` ∆ą. It turns out that this defines an
unshuffle bialgebra structure on T pV q [12].

This induces a splitting of the convolution product on the dual side
into a sum of a “left half-shuffle product” and a “right half-shuffle
product” for A-valued linear forms on T`pV q (identified with A-valued
linear forms on T pV q that vanish on K)

φ ă ψ – mApφ b ψq∆ă, φ ą ψ – mApφ b ψq∆ą



SHIFTED SUBSTITUTION IN NON-COMMUTATIVE POWER SERIES 13

such that the associative convolution product of such linear forms de-
composes

φ ˚ ψ “ φ ą ψ ` φ ă ψ.

The left and right half-shuffle products are then extended partially by
setting

φ ă εA :“ φ, εA ą φ :“ φ, φ ą εA :“ 0, εA ă φ :“ 0.

The products εA ă εA, εA ą εA are left undefined.
The associativity of the convolution product can be deduced from the

fact that pLinpT`pV q, Aq,ă,ąq is a (non-commutative) shuffle algebra
[12] as the left half-shuffle product and a right half-shuffle product
satisfy the shuffle identities:

pφ ă ψq ă ρ “ φ ă pψ ˚ ρq (6.3)

pφ ą ψq ă ρ “ φ ą pψ ă ρq (6.4)

φ ą pψ ą ρq “ pφ ˚ ψq ą ρ. (6.5)

Note that these are the identities satisfied by shuffle products in alge-
braic topology and products of iterated integrals of time-dependent ma-
trices in classical calculus and stochastic integration à la Stratonovich.

Proposition 6.1. Let φ P LinpT`pV q, Aq and γ P GpAq. We set f :“
Λpφq P G0 and g :“ Λgrpγq P G1. Then, we have:

Λpφ ă γq “
ÿ

u1,...,ukPt1uYN˚

v“i1¨¨¨ikPN˚

fvgu1
¨ ¨ ¨ guk

xi1
xu1

¨ ¨ ¨xik
xuk

“ fpxgpxqq,

(6.6)

respectively

Λpφ ą γq “
ÿ

u1,...,ukPt1uYN˚

uPN˚

v“i1¨¨¨ikPN˚

fvgugu1
¨ ¨ ¨ guk

xuxi1
xu1

¨ ¨ ¨xik
xuk

“ pgpxq ´ 1qfpxgpxqq.

Proof. The statement follows by dualizing the formulas (6.1)-(6.2), us-
ing that γ is a character. �

Observe that when εA ` φ P GpAq, the decomposition of Λpφ ˚ γq “
Λpφ ă γ `φ ą γq reflects the splitting of the series in (4.6) at the level
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of the sum over u as

gpxq `
ÿ

u,u1,...,ukPt1uYN˚

v“i1¨¨¨ikPN˚

fvgugu1
¨ ¨ ¨ guk

xuxi1
xu1

¨ ¨ ¨xik
xuk

“ 1 `
ÿ

u1,...,ukPt1uYN˚

v“i1¨¨¨ikPN˚

fvgu1
¨ ¨ ¨ guk

xi1
xu1

¨ ¨ ¨xik
xuk

`

`
ÿ

u1,...,ukPt1uYN˚

uPN˚

v“i1¨¨¨ikPt1uYN˚

fvgugu1
¨ ¨ ¨ guk

xuxi1
xu1

¨ ¨ ¨xik
xuk

.

This splitting corresponds to the left and right half-shuffles in the shuffle
algebra pLinpT pV q, Aq,ă,ąq. It motivates the next

Definition 6.2. For two power series fpxq, gpxq P G1, we define two
binary operations mapping G1 into G0:

`
g ñ pf ´ 1q

˘
pxq – fpxgpxqq ´ 1 “

ÿ

wPN˚

fwpxgpxqqw P G0

and `
g ð pf ´ 1q

˘
pxq – pg ´ 1qpfxg ´ 1qpxq

“ pgpxq ´ 1qpfpxgpxqq ´ 1q

“
ÿ

wPN˚

uPN˚

fwguxupxgpxqqw P G0

so that the product (2.2) can be written

f ‚ g “ gpxq `
`
g ñ pf ´ 1q

˘
pxq `

`
g ð pf ´ 1q

˘
pxq.

Proposition 6.3. Let φ P LinpT`pV q, Aq and γ P LpAq. We set f :“
Λpφq P G0 and g :“ ΛLiepγq P G0. Then we have

Λpφ ă γq “
kÿ

j“1

ÿ

uPN˚

v“i1¨¨¨ikPN˚

fvguxi1
¨ ¨ ¨xij

xuxij`1
¨ ¨ ¨xik

,

respectively

Λpφ ą γq “
ÿ

u,vPN˚

fvguxuxv “ gpxqfpxq. (6.7)

In particular, going back to (3.3), we find:

Λpφ ă γ ` φ ą γq “ Λpφ ˚ γq “ f Ÿ g.

Proof. The statement follows again by dualizing the formulas (6.1) and
(6.2), using that γ is now an infinitesimal character. �

Remark 6.4. There is a general difficulty with series: the space is too
small to build consistently all shuffle operations on it. This is why we
always have to carefully distinguish what happens in the group G1 and
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the Lie algebra G0. Defining operations that would make sense simul-
taneously on the two and would fit with what happens in LinpT pV q, Aq
is impossible. The conclusion is precisely that the shuffle approach is
nicer than the one with series!

7. Link with free probability

Let us consider now pB,ϕq a non-commutative probability space over
the complex numbers. That is, B is an associative unital algebra over
A :“ C and ϕ a C-valued unital linear form on B. Let pbnqnPN be a
countable family of non-commutative random variables in B (that is,
of elements of B).

In the setting of Section 4, we associate to these data the linear form
φ : V Ñ C defined for w “ i1 ¨ ¨ ¨ ik P N˚

φpwq :“ ϕpbi1
¨B ¨ ¨ ¨ ¨B bik

q,

where ¨B stands for the product in B. This linear form is further ex-
tended to a linear form Φ : T pV q ÞÑ C by

Φpw1| ¨ ¨ ¨ |wpq :“ φpw1q ¨ ¨ ¨φpwpq.

Notice that Φ P GpCq.

Remark 7.1. All our results would of course hold forR “ Cxxx1, . . . , xnyy
and a finite family b1, . . . , bn of elements of B. However, as handling the
countable case does not present any extra difficulty, we state our results
in that case and specialize them to the finite case when appropriate.

Recalling (4.3), the series ΛgrpΦq P G1 Ă Cxxx1, x2, x3, . . . yy is by
definition the (multivariate) generating series of moments associated
to pbnqnPN. For example, the coefficient of xn

1 in ΛgrpΦq is φpbn
1 q, the

moment of order n of the random variable b1 P B in the sense of
non-commutative probability. We will write Mpx1q for the series in
Cxxx1yy whose coefficients are the same on the xn

1 as those of ΛgrpΦq.
This amounts to looking at the univariate case.

It was shown in [13, 14] (to which we refer for details) that the fixed
point equation

Φ “ εA ` κ ă Φ (7.1)

defines an infinitesimal character κ P LpCq that corresponds to multi-
variate free cumulants. That is, in the language of the present article,
ΛLiepκq P G0 is the multivariate generating series of free cumulants
associated to pbnqnPN; again, recall (4.3).

Let us set from now on µ̂ :“ Λpµq P Cxxx1, x2, x3, . . . yy for µ :
T pV q Ñ C an arbitrary linear form, recall (4.2).

Proposition 7.2. We have the functional multivariate free moment-
cumulant relation

pΦpxq “ 1 ` pκ
´
x pΦpxq

¯
. (7.2)
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Proof. This follows from (7.1) and (6.6). �

Now

pΦpxq “ 1 `
ÿ

wPN˚

mpwqxw, pκpxq “
ÿ

wPN˚

κpwqxw,

where mpwq “ ϕpbi1
¨B ¨ ¨ ¨ ¨B bik

q and κpwq is the multivariate free
cumulant, kpbi1

, . . . , bik
q, for the word w “ i1 ¨ ¨ ¨ ik. The functional

multivariate free moment-cumulant relation then becomes

pΦpxq “ 1 `
ÿ

u1,...,ukPN˚

v“i1¨¨¨ik

κpvqmpu1q ¨ ¨ ¨mpukqxi1
xu1

¨ ¨ ¨xik
xuk

.

This statement implies the well-known free multivariate moment-cumu-
lant relations expressed in terms of non-crossing partitions [22]

mpwq “
ÿ

πPNCp|w|q

ź

πiPπ

kpbi1
, . . . , bin

|πiq.

Here kpbi1
, . . . , bin

|πiq :“ kpbij1
, . . . , bijp

q for the block πi “ tj1 ă ¨ ¨ ¨ ă

jpu Ă rns of the non-crossing partition π P NCp|w|q.

8. Link with Boolean probability

The notation used in this section is as in the previous one. It was
shown in [13, 14] (to which we refer for details) that the fixed point
equation

Φ “ εA ` Φ ą β, (8.1)

defines an infinitesimal character β P LpCq that corresponds to mul-
tivariate Boolean cumulants. That is, in the language of the present
article, ΛLiepβq is the multivariate generating series of Boolean cumu-
lants associated to pbnqnPN.

Applying Λgr to the identity (8.1) yields by (6.7) the multivariate
functional Boolean moment-cumulant relation

pΦpxq “ 1 ` pβpxqpΦpxq. (8.2)

Note that the summation on the righthand side of (6.7) simplifies dras-
tically because β P LpCq linearizes the right half-coproduct (6.2). More
explicitly, the Boolean moment-cumulant relation reads

pΦpxq “ 1 `
ÿ

w

ÿ
w“uv
u‰w

mpuqβpvqxw.

Identity (8.2) rewrites

1 ´ pβpxq “
1

pΦpxq
.

Let us exemplify how to relate such identities with computations in
the group GpCq of Hopf algebra characters. Theorem 4.3 has rather
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interesting implications. Indeed, let Φ P GpCq and consider the image
of Φ ˚ Φ´1 “ εC

ΛgrpΦ ˚ Φ´1qpxq “ ΛgrpΦq ‚ ΛgrpΦ
´1qpxq “ yΦ´1pxqpΦ

´
xyΦ´1pxq

¯
.

This yields
yΦ´1pxqpΦ

´
xyΦ´1pxq

¯
“ 1. (8.3)

From ΛgrpΦ
´1 ˚ Φqpxq “ 1, on the other hand, we obtain instead

pΦpxqyΦ´1

´
xpΦpxq

¯
“ 1 (8.4)

which implies that

yΦ´1

´
xpΦpxq

¯
“

1

pΦpxq
(8.5)

in the sense of generating series. In particular,

Proposition 8.1. i) For the multivariate generating series of free cu-
mulants, pκpxq, we have

yΦ´1pxq “
1

1 ` pκpxq
. (8.6)

ii) For the multivariate generating series of Boolean cumulants, we have

pβpxq “ 1 ´ yΦ´1

´
xpΦpxq

¯
. (8.7)

Proof. Identity (8.6) follows from (8.5) and (7.2) upon composition

with the compositional inverse, pxpΦpxqqă´1ą. We underline that (8.6)
expresses the inverse of the Hopf algebra character Φ P GpCq in the
group G1. Identity (8.7) is a consequence of (8.5). �

9. Link with monotone probability

It was shown in [14] (to which we refer for details) that

Φ “ exp˚pρq (9.1)

defines an infinitesimal character ρ P LpCq that corresponds to multi-
variate monotone cumulants. That is, in the language of the present
article, ΛLiepρq is the multivariate generating series of monotone cumu-
lants associated to pbnqnPN.

Now, introduce a formal parameter t. Define Φt – exp˚ptρq. Ob-
serve that it defines a 1-parameter semigroup, since Φt ˚ Φs “ Φt`s and
Φ0 “ ε. Formally taking a derivative we arrive at the equation

9Φt “ ρ ˚ Φt “ Φt ˚ ρ.

Using Λgr and defining Mt – ΛgrpΦtq P G1, h “ ΛLiepρq P G0, we arrive
by using Propositions 6.1 and 6.3 at the equations

9Mtpxq “ MtpxqhpxMtpxqq “ hpxq ` ppMt ´ 1q Ÿ hqpxq.
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The first equation is present in [19, Theorem 6.3] and [4, eq. (4.10)].
The second equation leads to the expansion:

Mt “ 1`th`phŸhq
t2

2
`pphŸhqŸhq

t3

6
`¨ ¨ ¨ “ 1`

8ÿ

n“1

R
pn´1q
Ÿh phq

tn

n!
. (9.2)

Here, R
pnq
Ÿhphq :“ pR

pn´1q
Ÿh phqq Ÿ h with R

p0q
Ÿhphq :“ h. Consider now for

simplicity the univariate case and expand Mt as a power series in x,
i.e.,

Mt “ 1 `
8ÿ

n“1

mnptqxn.

We can perform some explicit computations using eq. (3.4): if pρpxq “:
hpxq “

ř
ně1 hnx

n is the generating series of the monotone cumulants,
then

R
pn´1q
Ÿh phq “

8ÿ

k“n

´ ÿ

i1`¨¨¨`in“k

pi1 ` 1qpi1 ` i2 ` 1q ¨ ¨ ¨

¨ ¨ ¨ pi1 ` ¨ ¨ ¨ ` in´1 ` 1qhi1
¨ ¨ ¨hin

¯
xk.

Therefore, by matching terms in eq. (9.2), we see that

mnptq “
nÿ

k“1

ÿ

i1`¨¨¨`ik“n

pi1 ` 1q ¨ ¨ ¨ pi1 ` ¨ ¨ ¨ ` ik´1 ` 1qhi1
¨ ¨ ¨hik

tk

k!
.

In low degrees:

m1ptq “ h1t

m2ptq “ h2t` h2
1t

2

m3ptq “ h3t` 5h1h2

t2

2
` h3

1t
3

m4ptq “ h4t`

ˆ
3h1h3 `

3

2
h2

2

˙
t2 `

13

3
h2

1h2t
3 ` h4

1t
4.

For t “ 1 the above formula coincides with [20, eq (6.9)], see also [14,
Theorem 2].

Remark 9.1. As
ř8

n“1 R
pn´1q
Ÿh phq 1

n!
is, by definition, the image of h under

the Agrachev–Gamkrelidze operator or “pre-Lie exponential” of h (see
[8, Section 6.6] for details), one can formally lift its computation to the
free pre-Lie algebra over a generator . Using the Chapoton–Livernet
basis of non-planar rooted trees for the latter, the coefficient of a tree
τ in the expansion of the pre-Lie exponential of ‚ is known to be the
corresponding Connes–Moscovici coefficient cmpτq. See [5] for details
and also for an explanation of the terminology and notation. We obtain

Mt “ expŸpthq
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“ 1 `
ÿ

τPT

cmpτqPhpτq
t|τ |

|τ |!

“ 1 `
ÿ

τPT

1

τ !σpτq
Phpτqt|τ |,

where Ph : T Ñ G0 is the unique pre-Lie morphism such that Php q “ h.
For example

Php q “ hŸ h, Php q “ phŸ hq Ÿ h´ h Ÿ phŸ hq.

Recall that h “ hpxq “
ř

ně1 hnx
n. Here, τ ! and σpτq are respectively

the so-called tree factorial and the symmetry factor of the tree τ P T ,
both are defined inductively [5].

Conclusion. In this paper, we have established a dictionary between
the shuffle Hopf algebra formulation of moment-cumulant relations in
non-commutative probability and the classical approach based on non-
commutative formal power series (Theorem 4.3). It is based on identi-
fying a new left-linear group law on the set of non-commutative formal
power series with unit constant term (Theorem 2.2). We also identify a
(right) pre-Lie law on the latter, which follows from right-linearization
of the aforementioned group law. For example, the dictionary identifies
the shuffle convolution inverse with the reciprocal of the unit-shifted R-
transform (Proposition 8.1). This is particularly interesting as we used
the group-inverse of the moment character to construct Wick polyno-
mials (see [16, 17] for details). The dictionary also permits to describe
the monotone moment-cumulant relations as a pre-Lie exponential in
non-commutative formal power series (Remark 9.1). The dictionary
shows that both the shuffle Hopf algebra and the formal power series
approaches are tightly related. The former, however, seems to add new
perspectives in the understanding of computational and conceptional
aspects in the combinatorial approach to non-commutative probability
theory.
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