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ABSTRACT. We study a particular group law on formal power se-
ries in non-commuting variables induced by their interpretation
as linear forms on a suitable graded connected word Hopf algebra.
This group law is left-linear and is therefore associated to a pre-Lie
structure on formal power series. We study these structures and
show how they can be used to recast in a group theoretic form
various identities and transformations on formal power series that
have been central in the context of non-commutative probability
theory, in particular in Voiculescu’s theory of free probability.
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1. INTRODUCTION

This work aims at explicitly relating two approaches to key argu-
ments in Voiculescu’s theory of free probability and related areas [21],
22, 23]. On the one hand, the classical approach by formal power series,
on the other hand, a more recent one that relies on group-theoretical
and Hopf algebraic arguments. For that purpose, we introduce and
study various group, Lie and pre-Lie structures on formal power se-
ries in non-commutative indeterminates. We obtain as a by-product
a dictionary between the two approaches that allows to translate var-
ious Hopf algebraic constructions into (non-trivial and non-standard)
operations on formal power series.

Let us be more precise. In recent work (see [I5] and references
therein), a shuffle group theoretic approach to moment-cumulant and
cumulant-cumulant relations in non-commutative probability was pro-
posed. In this setting, various families of cumulants, namely monotone,
(conditionally) free, and Boolean, are understood as elements in the
Lie algebra g of infinitesimal characters over a particular combinato-
rial word Hopf algebra H. The family of moment maps is identified
instead with a particular element in the group GG of Hopf algebra char-
acters on H. Three exponential-type maps happen to relate bijectively
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the group G and its Lie algebra g; they therefore imply relations be-
tween the aforementioned families of cumulants and moments as well
as relations amid the different types of cumulants.

On the other hand, it is well-known that the relations between mo-
ments and cumulants as well as the relations between the different fam-
ilies of cumulants can be concisely described in terms of multivariate
generating functions, i.e., non-commuting formal power series [4], 22].
It is therefore natural to look for a precise understanding of the con-
nection between formal power series in non-commuting variables with
scalar-valued coefficients and the properties of linear forms on the afore-
mentioned Hopf algebra H.

The shuffle algebra approach was further developed in [16, 17] with
respect to Wick polynomials. In the later reference, it was shown that
free, Boolean, and conditionally free Wick polynomials, introduced and
studied in great detail by Anshelevich in a series of papers [1, 2] 3],
can be defined and related through the action of the group G on the
identity map in the space of endomorphisms on the tensor algebra T'(.A)
defined over the underlying non-commutative probability space (A, ¢).
The paper [17] extended to non-commutative probability the setting of
the previous work on Wick polynomials by the same authors [16].

In this work, we identify and study a particular group law (resp. pre-
Lie and Lie products as well as other operations and structures) on
formal power series in non-commuting variables. It is induced, as we
just alluded to, by the interpretation of the latter as linear forms on
the Hopf algebra H. This new group law is left-linear. It generalizes to
the multivariate case —up to an isomorphism— the group of tangent-to-
identity formal power series that gives rise to the classical Faa di Bruno
Hopf algebra. Being left-linear, the group law is therefore associated to
a novel pre-Lie structure defined on formal power series. Eventually, we
note that our approach resembles in various respects the link between
Butcher’s group of B-series in numerical analysis [6] and a Hopf algebra
of non-planar rooted trees described by Connes and Kreimer [5] [7, [11].
See Remark below. We study these phenomena and show how they
can be used to recast in a group theoretic form various identities and
transformations on formal power series that have shown to be central
in the context of non-commutative probability theory, in particular in
Voiculescu’s free probability [22].

The paper is organised as follows. In the second section we describe
the new group law on multivariate formal power series. The third sec-
tion is dedicated to the corresponding pre-Lie and Lie structures. Sec-
tions four and five make the connection with the Hopf algebraic point
of view and explain how key operations on linear forms on the Hopf al-
gebra H transport to formal power series. The last three sections make
explicit connections with free, Boolean and monotone probability.
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2. THE TWISTED COMPOSITION GROUP LAW

Let © = {1,292, x3,...} be a set of formal non-commutative vari-
ables and A a commutative unital algebra over a ground field K (of
characteristic zero). The unit of A is written 14, or simply 1 when no
confusion can arise. The set of (strictly) positive integers is denoted N.
We consider the ring

R = A{{x1, 29, 23,...))

of non-commutative formal power series in these variables with coeffi-
cients in A. A typical element f = f(z) € R has the form

0
f(z) = fo+ Z Jiy iy @iy -+ Ty
k=1 (i1,...,i )eNF
with coefficients fy, fi,..;, € A. The set of non-empty finite sequences
of positive integers is denoted N* and we will use the common word
notation for its elements. The empty word is denoted 1, by convention
it does not belong to N*. The subset N* < N* contains words w =
i1 - -ig of length |w| = k, that is, with exactly k letters. We associate
to a word w = iy ---1,, € N the non-commutative monomial z,, =
Zi - x4, . Multiplication in the ring R is known as Cauchy product,
which is denoted for elements f, g € R by
f9(x) = fogo + D (f9)uw. (2.1)
weN*
The coefficient (fg), € A of x,, = 4, - - - 24, is defined to be
k—1
(f9)irin = firin 9o + f0Giyip + Z Jiri; Gijor e
j=1
This can be compactly formulated in terms of the deconcatenation
coproduct on words in N*

(f9)irin = ma(f ®§)0(ir - ix),
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where §(1) :=1® 1 and
Si i) =i i ®L+ 1@y i+ Y i iy @jr1 .
=1

The maps f and ¢ are defined to be linear on the linear span of elements
in N* with values in A, i.e., f(w) := fu, §(w) := gu, and extended to
the empty word, f(l) = fo and §(1) = go.

In the following, we consider two distinct subsets of the ring R, which
will be denoted G' and G°. The former consists of elements in R with
unit constant coefficient

—{f@) e R fy—1a}.
Elements h € G! are written h = 14 + A’. One verifies that G! forms a
group under the usual multiplication (2.1)). For f € G*, the coefficients
of its inverse f~! € G! can be explicitly computed starting from those
of f(x). On the other hand, the set G° contains elements in R with
zero constant coefficient

G"i={f(z) e R| fo =0}
We introduce also the set of so-called “tangent-to-identity” elements
(according to the terminology of dynamical systems)

={f(x)eR| fo=0, fi =14,i€ N}.

On the set G', we consider a new product. For f, g € G, the mono-
tone composition, denoted e, is defined by combining composition and
Cauchy product (2.1)):

(f 2 9)(@) = gfug() := g(x) [ (2g(x)), (2.2)

where the new set zg(xz) = {(zg(2)),, (xg(x)),, (xg(z)),, ...} of trans-
formed variables, defined by

(xg(x)); = xig(x) = x; + Z guwriw, €N, (2.3)
weN*
is substituted into f € R. Having (Z3) in place, we define for words
w =11 = N*

(@g(2))iyiy = iy () - - 23, 9(). (2.4)
Observe that, since g(x) € G', we have z,g(z) € G¢ = G° for all i > 0.
The composition f(xg(z)) = 14 + f'(zg(z)) is therefore again an el-
ement in G'. In the one dimensional case (corresponding to a single
variable = 1), the set G¢, whose elements are then called tangent-to-
identity formal diffeomorphisms (as they are formal diffeomorphisms
of the one-dimensional line), is equipped with a group law by the com-
position of univariate formal power series. One has furthermore the
linear isomorphism G' =~ G¢ given by p : f — xf. We therefore get

p(f e g)(x) = xg(x) f(rg(x)) = u(f)(u(g)(x)).
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Corollary 2.1. In the one-dimensional case, G* is isomorphic to the
group of tangent-to-identity formal diffeomorphisms.

We turn now back to the general case and explicitly compute the
product for f =14+ f',g=14+4¢ €G!
(f ®9)(x) = gfag(x)
= g(x) f(zg(x))
= Lo+ g'@) + flag@) + Y guforu(zg(x)),
u,veN* (2.5)
= Lla+g'(z) + f'(zg(x))
+ 2 JoGuGus “Gup Luliy Tuy * " Ly Ly, -
ueN* v=iy---i,eN*
u,...,u,€N* L{0}

Here we use the convention that zy := 14. The new product on G! is
associative. Indeed, an explicit computation shows that

(f o g) e h(x) =h(f eg)wm(r) = h(z)(f eg)(zh(z))
= h(z)(gfoq)(xh(z))
= hx)g(zh(x)) f(zg(xh(z))).
We note that h(z)g(zh(z)) = hgn(x) = g  h(x) and
fxg(wh(x))) =1a+ Y fulzg(zh(z)))u,

ueN*

where
(zg(zh(x)))i = (xh(x))ig(zh(z)) = z;h(z)g(xh(z)).
Compare this with
fe(geh)(x) =(geh)fagem(r)=(geh)(x)f(x(geh)(z))
= h(z)g(zh(z))f(z(g o h)(x)).
Here

f(x(geh)(@) = 1a+ ) fulz(g e h)())u
and
(z(g o h)(x)); = zi(g  h)(z) = zih(x)g(xh(z)),
which shows associativity of the monotone composition on G*, that is,
(feg)eh(x)=fe(geh)(z)
The unit for monotone composition (2.2)) is 14. Indeed
laeg(x) = g(x)la=g(x) = g o 1a = lag(x).

In fact, we have

Proposition 2.2. G* := (G',e) is a non-commutative group with
unit 14.
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Proof. The identity
Ly = f"" e flz) = fx)f* 7 (xf(2))

allows to recursively (and uniquely) compute the coefficients of f*~!
from those of f. O

Remark 2.3. We note that the definition of the product (Z2) is moti-
vated by the shuffle convolution product defined in [12], as will become
clear in Section (). In fact, looking at Anshelevich’s free Wick poly-
nomials from a shuffle Hopf algebraic perspective, as was done in our
work [I7], one may extract the product (22) on the level of formal
power series. See reference [I, Thm. 3.10, Prop. 3.12, eq. (3.48)].

3. THE PRE-LIE AND LIE ALGEBRAIC STRUCTURES

We recall the notion of left-linear group and some of its properties —
for details, we refer the reader to the book [8] Sect. 6.4]. Consider local
coordinates x = (z!,...,2") on a Lie group G in the neighborhood of
the identity element e, with the property z‘(e) = 0, for 1 < i < n.
For notational convenience, we identify the system of local coordinates
with the element of the group. Using these coordinates, we assume
that the group law reads

z=F(xy) = ), Fpulxy), (3.1)
p=0
¢=0
if z=x-y and where F, ,(«',...,2";y',...,y") is a polynomial in 2n

variables, homogeneous of degrees p and ¢ in the variables x respec-
tively y. Then, the difference Fj;(x;y) — F11(y;x) defines the Lie
bracket in the Lie algebra g of G.

Definition 3.1. The group G is said to be left-linear if F,, = 0 for
p = 2, that is, if F(x;y) —y is linear in x.

Let us write x <y for F}1(x;y). Then, it holds in general that the
tangent space g to a left-linear Lie group is equipped with the binary
operation <= with the structure of a (right) pre-Lie algebra. In fact,
from the latter, the Lie algebra structure is inherited as x<y — y < x.
That is, for arbitrary x,y, z, we have the (right) pre-Lie identity

(x<y)<z—x<(y<z)=(x<z)<y—x<(z<Yy).

The definition extends to the infinite-dimensional case — keeping the
requirement that the components of F, , be polynomials in the coor-
dinates. In particular, the group (G',e) is an (infinite-dimensional)
left-linear group. Indeed, from eq. (2H) we see that

(feg—g)(x)=g(z)f(xg(z))
= f’(a:g(:l:)) + Z fvgugul © Gup TuLiy Luy * Ligy Ly s (32)

ueN* v=iy...ipeN*
u,...,u,€N*U{0}
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and this expression is linear in the coordinates (f,)yen+ of f.

Proposition 3.2. The tangent space g = G° at 1 to the left-linear
group (G, e) is a right pre-Lie algebra.

Proof. Let us check the property explicitly. We consider the coordi-
nates in the basis of words z;, - - - z;,. Using the notation of the previous
section and eq. ([3.2)), we obtain for F ; and <:

n
Ty * " Tjy, D Tjy - Ty, = Z Tiy * TiyTjy T Tigeyy Ty (3.3)
k=0

Denoting the insertion of y := x;, ---x;, in position k inside x :=

‘/L"]:l .. .:L‘in by

m

xll PRI xf[/ky xlk+1 .. xf[/n :: xll .« .. xlkle PRI x]mx2k+1 .. xf[/nj
we get, with a self-explaining notation,

(x<y)<z—x<(y<z) =

= Z xil ...xikyxik+1...xilzxil+1...xin—i_
O<k<k+1<iI<n
+ Z FTiy T LTy Ty Y Tyt Ty,
0<k<k+1<i<n

As this expression is symmetric in y and z, we deduce that < is a
(right) pre-Lie product with associated Lie bracket

(@i, i, gy g, ] =
il...xin<xj1...xj
1

Liy i Ly L Lige g """ T4
1

I
8

m_le...xjm<xi1...xin

3
I

n

bl
Il

m—1
J— Z x]l PR x]leI PR xznle+1 o .. L‘L"]m.
=1

Remark 3.3. In the single variable case we deduce from (3.3]) that
"<z = (n+ 1)z, (3.4)

so that [z, 2™] = (n —m)a™ ™. The corresponding pre-Lie algebra is
isomorphic to the pre-Lie algebra associated to the group of tangent-
to-identity formal diffeomorphisms of the line. The Lie algebra is, up
to isomorphism, the Lie algebra of primitive elements in the cocommu-
tative Hopf algebra dual of the Faa di Bruno Hopf algebra.



SHIFTED SUBSTITUTION IN NON-COMMUTATIVE POWER SERIES 8

4. COORDINATE HOPF ALGEBRA

From now on, we will use freely general and standard results on
bialgebras and Hopf algebras such as convolution products, characters,
infinitesimal characters, and the Baker—Campbell-Hausdorff formula.
The reader is referred to [8] for details.

The group (G', ) is pro-unipotent (that is, an inverse limit of unipo-
tent groups). This can be deduced for example from the observation
that the ring R of formal power series is the inverse limit of the quo-
tients A < wy,...,2k,... > /I(n), where I is the ideal of the alge-
bra of non-commutative polynomials spanned by degree n monomials
z; - x;,. Assuch, (G, e) is the group of characters of a commutative
Hopf algebra (see [8, Section 3.6]). Technically, this Hopf algebra is,
as an algebra, the direct limit of the polynomial algebras over finite
subsets of the set of coordinate functions (f,)yen+ on G. The algebra
structure is the product of polynomials. The coproduct is obtained
automatically by dualizing the group law.

However, it is convenient to identify (G*, ) with the group of charac-
ters of a larger and, more importantly, non-commutative Hopf algebra.
This will put at our disposal the tools and techniques available for
studying shuffle groups in the sense of [15].

Consider now the free semigroup N* over the alphabet of positive
integers, N = {1,2,3,...}, and let V' be the vector space spanned by it.
Elements in V' are linear combinations of non-empty words in the letters
of the alphabet and it naturally possesses the structure of a non-unital
associative algebra, the product being the unique bilinear extension of
the concatenation of words. We write VT for the augmentation of the
algebra V by a unit (that we identify with the empty word denoted

here ).
There is a natural bijection A: Lin(V*, A) — R given by
A(9) = 0(@) + ), d(w)zu, (4.1)
weN*

where A(¢) can be understood as a generating series for the functional

¢. Let
TV)=@Vve"

n=0
be the tensor algebra over V, where V& =~ K1 is one-dimensional.
Elements wy ® - - - Q@ wy, of T(V'), where w; € V', are denoted w| - - - |wy,
that is by inserting vertical bars instead of the usual tensor product
symbol. In particular, m|(w1 ® wy) = wi|ws, for words wy,wy € V,
where we denote m; the concatenation product in 7'(V) and, more
generally, mj(wi| -+ [wy @ Wi -+ - [wy) = w1l -+ |wg|wpsa] - . [wn. We
denote T (V) = @,-, V®" the augmentation ideal. The bijection
A in ([@J) extends to a linear map, still written abusively A, from
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Lin(T'(V), A) to R, defined by
M) = (1) + ), ¢(w)za. (42)

weN*
It is important to notice that the value of ¢ on the spaces V®" are not
taken into account for n > 2.
Let us denote
G(A) = Hom,,(T(V), A)
the set of algebra morphisms, i.e., multiplicative unital maps (or char-
acters) in Lin(T'(V), A), and
L(A) := {infinitesimal characters in Lin(7(V'), A)},
that is, linear maps that vanish on 1 and non-trivial products of words,
that is, on @, V®". By their very definition, elements in G(A)
and L(A) are entirely characterized by their values on the elements

of the semigroup N* that form a basis of V. By restricting A to G(A),
resp. L(A), the existence of two bijections of sets follows:

Ay G(A) > G, Ape: L(A) - G (4.3)
We also get set bijections between infinitesimal and usual characters:

A;rl o(1+ Apie) : L(A) — G(A), Aplo(Ag —1):G(A) — L(A).

Given a word w = aj---a, € V and a subset S = {i; < -+ <
ir} < [n] we set wg := a;, ---a;, € V. The complement 5S¢ := [n]\S
can be written as the disjoint union of m = m(S) maximal intervals
J?, ..., J5 defined through the set S.

We introduce a coproduct A: V — VT (V) by setting A1l =1®1
and forw=a;---a,€V

Alay -+ - ay) = Z ws @wys| - fwys, (4.4)
Sc(n]
which is multiplicatively extended to T'(V'):
Awy| - wy) == Alwy) - A(wy,) e T(V) QT (V).

Theorem 4.1 ([12]). The space T'(V') with product m| and coproduct /A
E4) is a graded connected non-commutative non-cocommutative bial-

gebra, denoted H := (T'(V), A, m,€,1).

Here, the counit map € : T(V) — K, resp. the unit map n : K —
T(V), are the obvious inclusion of (resp. projection to) the scalar com-
ponent K = V& in T(V).

Let now Lin(7T'(V'), A) denote the space of linear maps taking values
in the unital commutative algebra A. Recall that this space has a
natural unital algebra structure given by convolution, that is, for ¢,y €
Lin(T'(V), A) we set

¢ =ma(p@Y)A,
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where m, denotes the product in A. The unit for the convolution
product is given by €4 := 14 o €, where € is the counit of 7'(V) and
Na : K — A is the unit-map of A (n4(1) := 14).

Recall also that H is automatically a Hopf algebra. It is well known
that the set G(A) forms a group under convolution; the inverse of an
element is given by composition with the antipode of T'(V'). Similarly,
L(A) is a Lie algebra for the Lie bracket obtained by anti-symmetrizing
the convolution product. We also have the existence of inverse bijec-
tions

exp s £(4) > G(A), log® : G(A) — L(A),
with exp* olog™ = idg(a), log™ o exp* = id (4.

Remark 4.2. In the context of non-commutative probability, it has been
shown elsewhere that if the linear unital map ¢ : A — K on a non-
commutative probability space (A, ) is extended to a character ® on
the double tensor algebra over A, suitably equipped with a Hopf algebra
structure very similar to the one we defined on T'(V), then log™(®)
computes the associated multivariate monotone cumulants. We refer
to [I4] for details. The reader should keep in mind that these results
are in the background of the developments in the present article.

Theorem 4.3. The map Ay defines a group isomorphism between

(G(A),*) and (G',e).

Proof. We already know that the map is a bijection. We would like to
show that for characters ¢, € G(A)

Age(p = 9)(x) = f o g(x) (4.5)
where f(z) = Ag(0)(2), 9(x) = Ag(¥)(2).

We first recall that for a word v = i, - - -4 and element g € G, we
have

(xg(x))o = (xg(2))i; - - (2g(x))i, = T, 9(¥)Ti9(2) - - - 23,9(2)
=Ty + 2 Guy " GupLig Ty~ Ly Doy, -
Uty up€{1}UNF

upup#l

Therefore we have

feg(x)=g(x)f(zg(x))

u,ve{1}UN*

= g(ZL‘) + Z fvgugm e gukxuxilxul e xikxuk-
U up€{LFUNF
v=iq-ipeN*
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Then, writing f, = ¢(w) and g, = 1(u), the above sum collapses to

g(x)_+ z fbgugul"'gukxua%lxul"'ahkxuk
UyUT 5o up €E{L}UNF
v=i7 i, EN*

=1+ Y (¢ =v)(w)zy, (4.7)
weN*
= Nge(¢ = ) ().
The proof is complete. O

A similar calculation shows that the analog statement holds at the
level of Lie algebras:

Theorem 4.4. The map Ay defines a Lie algebra isomorphism be-
tween L(A) and (G°,[—, —]).

5. THE BCH GROUP LAW

Recall now the Baker-Campbell-Hausdorff (BCH) formula in the
free associative algebra over two variables X, Y:

exp(X) exp(Y) = exp(BCH(X,Y)),

where BCH(X,Y) is an element in the free Lie algebra over X and
Y, that is, a linear combination of iterated Lie brackets of X and Y
([X,Y] := XY —YX) such as [X,Y], [X,[X,Y]], [[X,Y],[X,Y]],
and so on. Setting f#zcy g := BCH(f, ¢), this formula defines the BCH
group law on the Lie algebra (G°,[—, —]) of the infinite dimensional
group (G',e). A BCH group law is defined on £(A) similarly. Equiv-
alently, it is defined by transportation of the group law on G(A) along
exp*: for ¢, p in G(A), we have

BCH(¢, p) := log*(exp®(¢) » exp™(p)).
Corollary 5.1. The BCH group law on L(A) is transported by Ape to
the BCH group law on G°.

Notice that it follows from our arguments that there exists a bijection
(in fact, an isomorphism) exp® between G° and G*' (recall that the
former is the Lie algebra of the latter) given by:

exp” := Ay o exp* oA}
with inverse
log® := Ape o log* oAg*rl.

These bijections are given by complex formulas (the same that relate
monotone cumulants to moments in free probability, see our Remark
above).
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Remark 5.2. An example of similar nature to the construction of the
map A, resp. Ag, Apie, is provided by Butcher’s group of B-series in
numerical analysis [6, 18] and its link to a certain combinatorial Hopf
algebra on rooted trees. We recall that a B-series may be charac-
terised as the Taylor expansion of numerical integration schemes such
as Runge-Kutta methods:

Bla; hf,y) == ). a(t)Fu(t),
teT

where the sum on the righthand side runs over the set 7 of non-
planar rooted trees, including the empty tree, and « is a function
on 7 determined by the numerical method. The other objects in-
volved are a smooth vector field f on R? the step size parameter
h € R and the map F; which associates a so-called elementary dif-
ferential to a trees ¢ € 7 and the aforementioned vector field f (it
was first described by Cayley in context of differential equations [9]).
See [I8] for details. It turns out that composition of two B-series,
B(a;hf, B(B;hf,y)) = B(B+=a; hf,y), is tightly linked to a combinato-
rial Hopf algebra defined on non-planar rooted trees. The coefficients
of B(8*a;hf,y) are computed in terms of the convolution product of
the group of Hopf algebra characters over the Butcher—-Connes—Kreimer
Hopf algebra, [5, [10] [11].

6. HALF-SHUFFLE PRODUCTS

The coproduct A on V, given in (44]), can be split into the sum of
two so-called left and right half-coproducts

A(ay-ay) =ar - a, @1+ 2 ws @ wys| - wys (6.1)

leSc(n]

and

Ac(ay-ay) =1®a; - -a, + 2 ws @wys| - wys. (6.2)
1¢S¢(n]
S#J

Both these half-coproducts are extended to T (V') by defining
A (wrfws] - - [wn) = A(w)Awe| - - wy)

and similarly for A., so that the coproduct (@) on T'(V) can be
written as a sum, A = A_. + A.. It turns out that this defines an
unshuffle bialgebra structure on T'(V') [12].

This induces a splitting of the convolution product on the dual side
into a sum of a “left half-shuffle product” and a “right half-shuffle
product” for A-valued linear forms on 77, (V') (identified with A-valued
linear forms on 7'(V') that vanish on K)

¢ <Y =ma(d@V)AL, ¢ > =mu(d@V)A,
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such that the associative convolution product of such linear forms de-
composes

b= 0>+ d< Y.

The left and right half-shuffle products are then extended partially by
setting

¢<8A2=¢, 8A>¢:=¢, ¢>5A3:07 €A<¢:=O.

The products e4 < €4, €4 > €4 are left undefined.

The associativity of the convolution product can be deduced from the
fact that (Lin(7':(V), A), <,>) is a (non-commutative) shuffle algebra
[12] as the left half-shuffle product and a right half-shuffle product
satisfy the shuffle identities:

(p<v)<p = ¢=<(Y=p) (6.3)
(p>2)<p = o> <p) (6.4)
o> (>p) = (¢=9)>p. (6.5)

Note that these are the identities satisfied by shuffle products in alge-
braic topology and products of iterated integrals of time-dependent ma-
trices in classical calculus and stochastic integration a la Stratonovich.

Proposition 6.1. Let ¢ € Lin(7,(V), A) and v € G(A). We set f :=
A(g) e G and g := A, (v) € G*. Then, we have:

A(¢ < 7) = Z fvgul C 0 Qup Uiy Ty 7 Ly, Ly,
UL yerey uke{l}uN* (66)

v=iyiEN*

flzg(z)),

respectively

ul,...,up€{1}UN*

ueN*
v=iy g eNF

= (9(z) = 1) f(zg(2)).

Proof. The statement follows by dualizing the formulas (6.1])-(6.2]), us-
ing that v is a character. O

Observe that when €4 + ¢ € G(A), the decomposition of A(¢p * ) =
A(p < v+ ¢ > ) reflects the splitting of the series in (6] at the level
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of the sum over u as

g(!L‘) + Z fvgugul C Qup Ty Ly Loy w0 Ly Ly,
UL, up€{1}UN*
v=11--i EN¥

=1 + Z fvgm e gukxilxul e :Ezkl‘uk—}—
ul,...,u,€{1}UN¥*
v=i7---i,EN¥

+ 2 JoGuGus “Gup Luliy Tuy * " Lig Ly, -
U yeeny uke{l}uN*
ueN*
v=iq--ipe{1}UN¥*
This splitting corresponds to the left and right half-shuffles in the shuffle
algebra (Lin(7'(V'), A), <,>). It motivates the next

Definition 6.2. For two power series f(x),g(z) € G', we define two
binary operations mapping G* into G°:

(9= (f=1D)(x) = flxg(z)) — 1= Z fuw(zg(x))y € G°
and
(9=~ (f = D) (@) = (g — 1)(fuy — 1)(x)
= (g9(x) = 1)(f(zg(x)) — 1)
= Y fugura(zg(z))w € G°

weN*
ueN*

so that the product (Z2) can be written
feg=g@)+ (g~ (f-D)@) + (9= (f D).

Proposition 6.3. Let ¢ € Lin(T.(V), A) and v € L(A). We set [ :=
A(9) e G° and g := ALie( ) € G°. Then we have

gb < ’y Z Z ngul"il e x’ijxuxij+1 e x’%)

ueN*
v=i7---iEN¥*

respectively
Mo>7)= D) fogurury = g(x)f (). (6.7)
u,veN*

In particular, going back to (33]), we find:
Mo <y+d>7)=Moxv)=f=y.

Proof. The statement follows again by dualizing the formulas (6.1]) and
(62), using that v is now an infinitesimal character. O

Remark 6.4. There is a general difficulty with series: the space is too
small to build consistently all shuffle operations on it. This is why we
always have to carefully distinguish what happens in the group G* and
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the Lie algebra G°. Defining operations that would make sense simul-
taneously on the two and would fit with what happens in Lin(7'(V'), A)
is impossible. The conclusion is precisely that the shuffle approach is
nicer than the one with series!

7. LINK WITH FREE PROBABILITY

Let us consider now (B, ) a non-commutative probability space over
the complex numbers. That is, B is an associative unital algebra over
A := C and ¢ a C-valued unital linear form on B. Let (b,)nen be a
countable family of non-commutative random variables in B (that is,
of elements of B).

In the setting of Section [d], we associate to these data the linear form
¢ : V — C defined for w = iy - - - i), € N*

¢(w) == o(bi, 5 5 i),
where -5 stands for the product in B. This linear form is further ex-
tended to a linear form ® : T'(V) — C by

O(wr] - - |wp) := d(wr) - - Pwp).
Notice that ® € G(C).
Remark 7.1. All our results would of course hold for R = C{(xy,...,z,))

and a finite family b1, . .., b, of elements of B. However, as handling the
countable case does not present any extra difficulty, we state our results
in that case and specialize them to the finite case when appropriate.

Recalling (£3), the series Ay (P) € G* < C{xy, 29, 23,...)) is by
definition the (multivariate) generating series of moments associated
to (by)nen. For example, the coefficient of 27 in Ay (®) is ¢(b7), the
moment of order n of the random variable b € B in the sense of
non-commutative probability. We will write M (x;) for the series in
C{{x1)) whose coefficients are the same on the 27 as those of Ay (P).
This amounts to looking at the univariate case.

It was shown in [13] [14] (to which we refer for details) that the fixed
point equation

=4 +r=<? (7.1)

defines an infinitesimal character k € £(C) that corresponds to multi-
variate free cumulants. That is, in the language of the present article,
Arie(k) € G is the multivariate generating series of free cumulants
associated to (b, )nen; again, recall ([3]).

Let us set from now on f := A(u) € C{xy,z9,23,...)) for pu :
T (V) — C an arbitrary linear form, recall (£2).

Proposition 7.2. We have the functional multivariate free moment-
cumulant relation

Bx) =1+ g(xcﬁ(x)). (7.2)
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Proof. This follows from (7)) and (€.6)). O

Now

O(x) =1+ > m(w)z,, Rla) = ) k(w),,

weN* weN*
where m(w) = (b, -5 -+ 5 b;,) and k(w) is the multivariate free
cumulant, k(b;,,...,b; ), for the word w = 4y ---i,. The functional

multivariate free moment-cumulant relation then becomes

@(:c) =1+ Z rv)m(uy) - m(ug) @i Ty -+ - Tip Ty -

ul,...,upN¥
v=7/17/k;

This statement implies the well-known free multivariate moment-cumu-
lant relations expressed in terms of non-crossing partitions [22]

m(w) = 2 1_[ k<bn77bln|7rz)
meNC(Jw|) Ti€E™
Here k(bi,, ..., b, |m) :== k(b , ..., b;; ) for the block m; = {ji < -+ <
Jp} < [n] of the non-crossing partition 7 € NC(|w).

8. LINK WITH BOOLEAN PROBABILITY

The notation used in this section is as in the previous one. It was
shown in [I3] 14] (to which we refer for details) that the fixed point
equation

b =c,+P> g, (81)

defines an infinitesimal character § € £(C) that corresponds to mul-
tivariate Boolean cumulants. That is, in the language of the present
article, Api(f) is the multivariate generating series of Boolean cumu-
lants associated to (by,)nen-

Applying A, to the identity (8] yields by (6.7) the multivariate
functional Boolean moment-cumulant relation

O(z) = 1+ B(z)®(x). (8.2)
Note that the summation on the righthand side of (6.7]) simplifies dras-
tically because 5 € £(C) linearizes the right half-coproduct (6.2]). More
explicitly, the Boolean moment-cumulant relation reads

O(z) =1+ Z Z m(uw)B(v)xy,.

w W=Uv
UFW

Identity (8.2]) rewrites
. 1
1—06(x) = =—.
(z) 50

Let us exemplify how to relate such identities with computations in
the group G(C) of Hopf algebra characters. Theorem has rather
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interesting implications. Indeed, let ® € G(C) and consider the image
of P! = Ec

A (@ 07)(2) = Age(®) 0 A (@7)(2) = 7 (@) (2071 (a) ).
This yields

q?—\l(x)a(xq?—\l(x)) - 1. (8.3)
From Ag, (@'« ®)(z) = 1, on the other hand, we obtain instead
@(x)c?l@cﬁ(x)) —1 (8.4)
which implies that
o1 <x(/13(x)> = ,\1 (8.5)
®(x)

in the sense of generating series. In particular,

Proposition 8.1. i) For the multivariate generating series of free cu-
mulants, k(x), we have

— 1

O l(x) = ——.

@) = 17m
it) For the multivariate generating series of Boolean cumulants, we have
Bla) =107 (2d(x)). (8.7)

Proof. Identity (86]) follows from (1) and (7.Z) upon composition
with the compositional inverse, (x®(x))<"!'>. We underline that (8.8

expresses the inverse of the Hopf algebra character ® € G(C) in the
group G'. Identity (87) is a consequence of (8H). O

(8.6)

9. LINK WITH MONOTONE PROBABILITY

It was shown in [I4] (to which we refer for details) that

@ — exp*(p) (9.1)

defines an infinitesimal character p € £(C) that corresponds to multi-
variate monotone cumulants. That is, in the language of the present
article, Api(p) is the multivariate generating series of monotone cumu-
lants associated to (b, )nen-

Now, introduce a formal parameter ¢. Define ®; = exp*(tp). Ob-
serve that it defines a 1-parameter semigroup, since ®; « d, = ®,,, and
®) = . Formally taking a derivative we arrive at the equation

‘iDtZP*(I)t:‘Pt*P-

Using Ay, and defining M; = Ay, (®,) € G, h = Apie(p) € G°, we arrive
by using Propositions [6.1] and at the equations

My(w) = My(z)h(zMy(x)) = h(z) + (M; — 1) < h)(x).
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The first equation is present in [I9, Theorem 6.3] and [4, eq. (4.10)].
The second equation leads to the expansion:

2

M, = 1+th+(h<1h) ((h<1h)<1h = 1+2 ROV (h)=. (9.2)

Here, R (h) := (R" " (h)) < h with R (h) := h. Consider now for
simplicity the univariate case and expand M, as a power series in z,

ie.,
0
M, =1+ Z my,(t)x
n=1

We can perform some explicit computations using eq. [34): if p(x) =
h(xz) = 51 hno™ is the generating series of the monotone cumulants,
then

R 1(h)=2< Z (iy + 1)(iy + g+ 1) -

(it i+ 1), - h)ﬁ

Therefore, by matching terms in eq. (0.2), we see that

tk
2 Z (il+1)"'(i1+"'+ik71+1)hi1"'hiky-

=141+ +ig=n

In low degrees:
mi (t) = hlt

mg(t) = hgt + h%tQ
t2
mg(t) = hgt + 5h1h2§ + hflitB

3 13
my(t) = hyt + (3h1h3 + hQ)tQ + ghzhzt?’ + hit.
For ¢ = 1 the above formula coincides with [20, eq (6.9)], see also [14]
Theorem 2.

Remark 9.1. As " R(j,;l)(h)i is, by definition, the image of h under
the Agrachev—Gamkrelidze operator or “pre-Lie exponential” of h (see
[8, Section 6.6] for details), one can formally lift its computation to the
free pre-Lie algebra over a generator e. Using the Chapoton-Livernet
basis of non-planar rooted trees for the latter, the coefficient of a tree
7 in the expansion of the pre-Lie exponential of e is known to be the
corresponding Connes—Moscovici coefficient ¢m(7). See [5] for details
and also for an explanation of the terminology and notation. We obtain

M, = exp~(th)
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7l
7!

=1+ Z cm(7) Py ()

TeT

1
=1 + Ph(T)tM,
TZE,; Tlo(T)

where P,: T — GY is the unique pre-Lie morphism such that P (e) = h.
For example

Pu(l)=h<h, P(A,)=(h<h)<sh—h<(h<h).

Recall that h = h(x) = >} _, h,2". Here, 7! and o(7) are respectively
the so-called tree factorial and the symmetry factor of the tree 7€ T,
both are defined inductively [5].

Conclusion. In this paper, we have established a dictionary between
the shuffle Hopf algebra formulation of moment-cumulant relations in
non-commutative probability and the classical approach based on non-
commutative formal power series (Theorem [£L3]). It is based on identi-
fying a new left-linear group law on the set of non-commutative formal
power series with unit constant term (Theorem 2.2). We also identify a
(right) pre-Lie law on the latter, which follows from right-linearization
of the aforementioned group law. For example, the dictionary identifies
the shuffle convolution inverse with the reciprocal of the unit-shifted R-
transform (Proposition 81]). This is particularly interesting as we used
the group-inverse of the moment character to construct Wick polyno-
mials (see [16, [17] for details). The dictionary also permits to describe
the monotone moment-cumulant relations as a pre-Lie exponential in
non-commutative formal power series (Remark @.I)). The dictionary
shows that both the shuffle Hopf algebra and the formal power series
approaches are tightly related. The former, however, seems to add new
perspectives in the understanding of computational and conceptional
aspects in the combinatorial approach to non-commutative probability
theory.
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