Canonical Grothen check polynomials with
free fermions

Combinatorics and Arithmetic for Physics Nov. 29,2022
Joint work arxiv:2211,05002 with Shinsuke Iwo Kohei Mategí

Clifford algebras in physics come from creation $\psi_{i}$ and annihilation $\psi_{i}^{*}$ operators satisfying the Canonical Anticommatator Relations

$$
\psi_{i} \psi_{j}+\psi_{j} \psi_{i}=\psi_{i}^{*} \varphi_{j}^{*}+\psi_{j}^{*} \psi_{i}^{*}=0, \psi_{i} \psi_{j}^{*}+\psi_{j}^{*} \psi_{i}=\delta_{i j}
$$

For finite rank, they act on $1 \mathbb{C}^{n}$ as the spinor representation:
$\psi_{i}$ adds $v_{i} \wedge \vec{v} \psi_{\bar{v}}^{*}$ removes $\hat{v}_{\nu} \wedge \vec{v}$
We take $n \rightarrow \infty$, this becomes (fermionic) Fock space


Vacuum vector $|0\rangle=V_{-1} \wedge v_{-2} v_{-3} \wedge \ldots$
Shifted vacuum $|k\rangle= \begin{cases}\varphi_{k-1}-\Psi_{0}|0\rangle & \text { if } k \geqslant 0 \\ \Psi_{k}^{*}-\varphi_{-1}^{*}|0\rangle & \text { if } k<0\end{cases}$

$$
|\lambda\rangle=\psi_{\lambda_{l}-1} \cdots \psi_{\lambda_{l}-l}|-l\rangle
$$

This is well-defined, ie independent of $l$.
Dual space given by $*$ where $\psi_{i} \leftrightarrow \psi_{i}^{*}$
Natural bilinear form $\langle\mu| X|\lambda\rangle$ with

$$
\langle\mu \mid \lambda\rangle=\delta_{\lambda \mu}
$$

This also has U(gloo) action, in particular an infinite dimensional Heisenberg algebra action This is the Boson-Fermion Correspondence Current operators

$$
a_{k}=\sum_{\tau \in \mathbb{C}}: \psi_{\tau} \psi_{\tau-k}^{*} \quad\left[a_{m_{1}} a_{k}\right]=m \delta_{m i-k}
$$

Half vertex operators $e^{H(X)}$ powersum Hamill (Ionian: $H(X, Y)=\sum_{k=1}^{\infty} \frac{p_{k}(X \mid Y)}{n} a_{k} \quad \begin{gathered}p_{k}(X) Y y=x_{1}^{k} \cdots+x_{n}^{k} \\ -y_{1}^{k} \cdots y_{m_{k}}\end{gathered}$

Current operator ak tries to move a particle $k$ steps sight in all possible ways. $a_{0}$ is special, measures how "balanced" the \#holes and \# particles ace.

$$
\begin{aligned}
& a_{k}^{*}=a_{-k} \quad H^{*}(x, y)=\sum_{k=1}^{\infty} \frac{p_{k}(x / y)}{n} a_{k} \\
& a_{-k}|0\rangle=O(k>0) \quad e^{t^{*}(x)}|0\rangle=|0\rangle \\
& \langle 0| a_{k}=0 \quad(a>0) \quad\langle 0| e^{H(x-x)}=\langle 0| \\
& a_{0}|\ell\rangle=\ell|\ell\rangle \\
& e^{H(x / y)} e^{H^{*}(A / B)}=\prod_{\pi^{2} k_{2}} \frac{\left(1+y_{a} b_{c}\right)}{\left(1-x_{i} a_{j}\right)} e^{H^{*}(A / B)} e^{H(x / y)} \\
& e^{H(x, y)} \psi_{k} e^{-H(x) y)}=\sum_{i=0}^{\infty} a_{i}(x y) \varphi_{k-i}, \quad h_{i}(x, y)=\sum_{k=0}^{=}(-1)^{k} h_{i-k}(x) e_{k}(x) \\
& \left.\left.e^{H(x)}\right) \psi_{k}^{*} e^{H(x}\right)=\sum_{i=0}^{\infty} h_{i}(X \mid Y) \psi_{k+i}^{*} \text { Comiogeneaus elementary }
\end{aligned}
$$

We want to evaluate $\left.\langle\mu| e^{H(x / \gamma)} \mid \lambda\right)$.
We use Wick's Theorem

$$
\left\langle\mu l e^{H(x \mid y)} \mid \lambda\right\rangle=\operatorname{det}\left[\langle B| \psi_{\mu j-j}^{*} e^{H(x \mid y)} \varphi_{\lambda_{i}-i}=|0\rangle\right]_{j-1}^{n}
$$ and note each entry corresponds to

$$
\sum_{m=0}^{\infty}\left\langle 0 \psi_{\mu-j+m}^{*} h_{m}(X x) \psi_{\lambda-i} \mid 0\right\rangle=h_{\lambda_{i-\mu y}-\tau t j}(X / y)
$$

Jacabu-Trudó Formula says

$$
\langle\mu| e^{H(x, x)}|\lambda\rangle=S_{\lambda / \mu}(x \mid x)
$$

(super) symmetric Schur function.

Schur functions have geometric meaning $\beta=$ upper triangular matrices $\subseteq G L_{n}(\mathbb{C})$

$$
P_{k}=\frac{\left(\left.\frac{*}{Q}\right|^{*}\right)_{k-k}^{n}}{\xi_{n-k}^{2 k}} \xi^{2 n k} \leq G L_{n}(\mathbb{C})
$$

Grassmannian $G_{r}\left(k_{n}\right) \equiv G L_{n} / p_{k}=\left\{V \subseteq \mathbb{C}^{n} \mid \operatorname{din} V=k\right\}$ Schubert variety $X_{\lambda}=$ closure $B$ orbit in $G_{T}\left(k_{n}\right)$

They are indexed by partitions $\lambda \leq \bigsqcup_{n-k}^{\square} 3^{k}$
Give rise to basis of $H^{*}\left(\operatorname{Gr}\left(k_{i}\right)\right)$.
Polynomial representatives are $S_{\lambda}(X)$
We want a richer cohomology theory.
Move to $K$-theory, where polynomial representatives are (symmetric)
Grothendieck polynomials $G_{x}(X ; \beta)$
There is a "weak" basis $J_{\lambda}\left(x_{;} \alpha\right)=\omega G_{\lambda}\left(x_{i} ; \alpha\right)$ and dual versions $g_{\lambda}\left(x_{i} ; \beta\right)$ jo $(x ; \infty)$ Yeliussizov' $D$ combined regular and weak versions as canonical Grothendieck. func's.
Galushin-Grinbery-Lin 16 refined the parameter $\beta$ for $g_{\lambda}(X ; \beta)$.

Hwang et al ' 21 combined these with combinatorial and Tacobi-Trude formulas.

$$
\begin{aligned}
& C=\prod_{i, 1}^{n}\left(1-\beta_{i} x_{F}\right), Y_{I}=\left(Y_{I_{1}}, \ldots, Y_{I_{m}}\right), h_{n}(X / Y)=\sum_{a===n} h_{a}(X) h_{b}(X)
\end{aligned}
$$

The [Iwao,Moteguy S., 22]
There exists a free fermion realization

$$
\begin{aligned}
& \left.G_{\lambda \mu}\left(x_{i}, \alpha, \beta\right)=[\alpha \alpha, \beta]\right\rangle\langle\mu| e^{H(x)}|\lambda\rangle^{[\alpha \beta]} \\
& g \lambda_{\mu}(x ; \alpha, \beta)={ }_{[\alpha, \beta]}\langle\mu]^{H(X)}|\lambda\rangle_{[\alpha, \beta]}
\end{aligned}
$$

$$
\begin{aligned}
& X_{i}=X_{[, \tau]}
\end{aligned}
$$

PA/ Wick's theorem and the Jacabi-Trude formulas.

Thm [Iwao, Motegí, S, 22] Well-defined and

$$
[\alpha, \beta\rangle\langle\mu \mid \lambda\rangle^{[\alpha, \beta]}{ }_{[\alpha, \beta]}\langle\mu \mid \lambda\rangle_{[\alpha, \beta]}=\delta_{\lambda \mu} .
$$

Cor[Iwao, motegé, S., 223 / Branching rules

$$
\begin{aligned}
& G_{\lambda / \mu}(x, y ; \alpha, \beta)=\sum_{\nu z \mu} G_{\lambda / 2}(x ; \alpha, \beta) G_{\nu / / \mu}\left(x_{;} \alpha, \beta\right) \\
& g_{\lambda / \mu}(x, y ; \alpha, \beta)=\sum_{\lambda z \Sigma \mu \mu} g_{\lambda / 2}(x ; \alpha, \beta) g_{\nu / \mu}(y ; \alpha, \beta)
\end{aligned}
$$

where $G_{\nu / \mu}(y ; \alpha, \beta)={ }^{[\alpha, \beta]}\left\langle\mu \mid e^{H(x)} / \nu\right\rangle^{[\alpha, \beta]}$ and has a Jacobo-Trudé Formula

This is a refined version of Yeliussizav and canonical version of Buch related to the coproduct
Pf $/ U_{\text {se }} \tau d=\sum_{\lambda}|\lambda\rangle_{[\alpha, \beta][\alpha \beta]}\langle\lambda|=\sum_{\lambda}|\lambda\rangle^{[\alpha, \beta],[\alpha \beta]}\langle\lambda|$
$\operatorname{Cor}[$ Iwao, Motegè, S.,22]/

$$
G_{\lambda / \mu}\left(x^{\prime} \alpha, \beta\right)=\sum_{\lambda \in \mu} \prod_{(i,) \in \mu}\left(\alpha_{i}+\beta_{j}\right) G_{x / L}(x \propto \alpha, \beta)
$$

Th m [Icao, Motege, S. 22 ]/New proct

$$
\begin{aligned}
& w G_{\lambda / \mu}(x ; \alpha, \beta)=G_{\lambda / \mu}(X ; \beta, \alpha) \\
& \omega g_{\lambda / \mu}(X ; \alpha, \beta)=g_{\lambda / \mu}(X ; \beta, \alpha)
\end{aligned}
$$

Cor [Iwao, Mateys, S. 22 ]/
We can express $G_{\lambda / \mu}, G_{\lambda / / \mu}, g_{\lambda / \mu \mu}$ as
Schur functions w/ certain determinants
Cor[Twad, Motegi, S. 22]/ Skew Cauchy

$$
\begin{aligned}
& \sum_{\lambda} G_{r / / \mu}(x ; \alpha, \beta) g_{\lambda / \nu}\left(y_{i \alpha}, \beta\right)=\prod_{i, \gamma}\left(1-x_{i} y_{j}\right)^{-1} \sum_{\eta} G_{v / \eta}\left(x_{\eta}, \beta\right) g_{1} / n\left(y_{i \alpha}, \beta\right)
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{\lambda} G_{i / y_{\mu}}\left(X_{i} ; \alpha, \beta\right) g_{i / j}\left(Y_{i \alpha}, \beta\right)=\prod_{i, \gamma}\left(1-x_{i} y_{j}\right)^{-1} \sum_{\eta} G_{v / \eta_{i}}\left(x_{i \alpha}, \beta\right) g_{i j}\left(y_{i \alpha}, \beta\right)
\end{aligned}
$$

Pf/ Evaluate $\left.{ }^{[\alpha, \alpha]}\langle\mu| e^{H(x)} e^{H^{*}(x)} \mid \gamma\right)^{[\alpha, \beta)}$ in two different ways. One inserts the identity, the other commutes $e^{H(x)} e^{t^{*}(x)}$

Cor [Iwao, Motegú, S: 22]/
Gambell-type Formulas
$=$ det formula involving single row $G_{(k)}(X ; O, B)$
The [Iwad, Motegi, S, 22]/ Skew Peri formulas

$$
\begin{aligned}
& \sum_{\lambda, \eta} G_{/ / n}\left(X ; \alpha, \beta G_{\nu / / \eta^{\prime}}(-X ; \beta, \alpha) g_{\lambda / \eta}\left(y ; \alpha_{1} \beta\right)=\prod_{i, \eta}\left(1-x_{i} y_{\nu}\right)^{-1} g_{\mu}(y ; \alpha, \beta)\right. \\
& \sum_{\lambda, \eta} G_{\Sigma / m^{\prime}}(X ; \beta \alpha) G_{v / \eta}(-X ; \alpha, \beta) g_{\lambda / n}(y ; \alpha, \beta)=\prod_{i, \eta}\left(1+x_{i} y_{\nu}\right) g_{\mu}\left(y ; \alpha_{2} \beta\right)
\end{aligned}
$$

and similar interchanging $g_{x / \mu} \longleftrightarrow G_{X} / / \mu$
Cor [Twa, Mctegi, S., 22]/ We can write $G_{\lambda}(X, \alpha, \beta)\left(\right.$ resp. $\left.g_{\lambda}(X i \alpha, B)\right)$ in combinatorial terms of $G_{\mu}(X ; O, B)\left(r e s p . g_{\mu}(X ; O, B)\right)$. We answer problems of Yeliussizov about $g_{\lambda}(X ; O, B)$ expansions negatively.

These expansions use certain flagged tableau given by twang et al.

Subsequent papers:

- Establish Schur operators for $G_{\lambda}\left(x_{i \alpha}, B\right)$ and $g_{\lambda}(X ; O, \beta)$ and $\begin{gathered}\text { discrete } \\ j_{\lambda}\end{gathered}(X ; \alpha, 0)$.
- Connection with TASEP explored by [Dieker-Warren' O8]
- Direct proof of combinatorial formula of twang et al by branching rule.


