Lazard Elimination on Arbitrary Alphabets, Lyndon

 Words and Iterated Smash-Products.From combinatorics of universal problems to usual applications.
G.H.E. Duchamp, (gheduchamp at gmail.com) Collaboration at various stages of the work and in the framework of the Project
Evolution Equations in Combinatorics and Physics : N. Behr, Karol A. Penson, N. Gargava, Vu Ngyuen Dinh, Darij Grinberg, C. Tollu, P. Simonnet, Hoang Ngoc Minh, J.-G. Luque.
Combinatorics and Arithmetic for Physics, CAP 23.
Jubillee, Tenth Anniversary Edition,
IHES, 16 Nov. 2023.

Overture

Let me thank the organisers (minus one) for letting me deliver the following talk about filtrations of alphabets and their combinatorial counterparts.
Special words of gratitude are due to Darij Grinberg, Jean-Gabriel Luque and Pierre Simonnet who carefully read parts of this work, made fruitful remarks and asked constructive questions.

- Last time (CAP'22) we spoke about Lazard Elimination (LE) and \mathbb{B}-gradings.
- And yesterday Pr. Nakamura wrote a word $w \in\{x, y\}^{*}$ under the normal form

$$
w=\underbrace{x^{k_{1}} y x^{k_{2}} y \cdots x^{k_{d}} y}_{\text {regular part }} \underbrace{x^{k_{\infty}}}_{\text {tail }}
$$

- We will interpret this as the elimination of $\{y\}$ among the alphabet $X=\{x, y\}$ and the Magnus basis as the image of the code $x^{*} y$ under the isomorphism of Lazard's elimination.

Overture (cont'd)

- Today, I would like to call your attention to the result of iterating such a dichotomic process leading to a filtration on the alphabet of generators.
- And on the combinatorial couterpart of this phenomenon (Hilbert series, Indexed computation, Normal forms).
- Examples will be taken from
(1) Free structures for simplicity.
(2) Free partially commutative structures for the visual and mnemotechnic representations with heaps.
(3) The Drinfeld-Kohno Lie algebras and their enveloping algebras.
- The process is however general and rather simple to implement.
- From time to time categories will be used as a way to understand similarities and unify the exposition.
- The process is however general and rather simple to implement. We will end with iterated crossed-products allowing for deformations and perturbations (see [7]).

Part one :

Preamble and generalities.

Which sort of elimination will we consider here ?

$\operatorname{STRUCT}\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle \cong \operatorname{NICE}\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle \diamond \operatorname{STRUCT}_{1}\left\langle x_{1}, \ldots, x_{n-1}\right\rangle$
where NICE et $S T R U C T_{1}$ stand for algebraic structures generated (sometimes freely) by generators x_{i}. The diamond symbol being, according to the situation, a tensor product, a semi-direct product or a plain (unique) factorisation. For example, with the symmetric group \mathfrak{S}_{n} and the pure braid group $P_{n}[1]$:

$$
\mathfrak{S}_{\mathfrak{n}} \cong \mathbb{Z} / n \mathbb{Z} \diamond \mathfrak{S}_{\mathfrak{n}-1} \quad \text { and } \quad P_{n} \cong F_{n-1} \diamond P_{n-1}
$$

Here, in the first case, \diamond is only a product and the iterated decomposition helps to construct a basis of $\mathbb{Q}\left[\mathfrak{S}_{\mathfrak{n}}\right]$ adapted to the calculation needs of Dynkin's projector [6]. In the second case we have a semi-direct product (where F_{n-1} is the Free Group with $n-1$ generators.

Rewriting the factors

We recall the pattern with colors

$$
\operatorname{STRUCT}\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle \cong \operatorname{NICE}\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle \diamond \operatorname{STRUCT}_{1}\left\langle x_{1}, \ldots, x_{n-1}\right\rangle
$$

(when STRUCT $_{1}=$ STRUCT the process can be iterated).
Let us firstly see the case of two permutable subgroups (where the \diamond is multiplicative), we have $G=G_{1} G_{2}=G_{2} G_{1}$ (and it is required that $G=G_{1} \cdot G_{2}$ be of unique factorisation). Then, at the level of the terms, the rewriting reads

$$
\begin{equation*}
g_{2} g_{1} \longrightarrow I\left(g_{1}, g_{2}\right) r\left(g_{1}, g_{2}\right) \tag{2}
\end{equation*}
$$

and, in the case when $r\left(g_{1}, g_{2}\right)=g_{2}$, we have a semidirect product i.e. for every $\left(g_{1}, g_{2}\right) \in G_{1} \times G_{2}, g_{2} g_{1} g_{2}^{-1} \in G_{1}$, so that we only need to know the factor $I\left(g_{1}, g_{2}\right)$.

Categories of this talk.

(1) These categories are as follows
(1) Set the category of sets.
(2) Mon, the category of monoids.
(3) \mathbf{k} - Lie, the category of \mathbf{k}-Lie algebras.
(1) Grp, the category of groups.
© \mathbf{k} - AAU, the category of \mathbf{k}-associative algebras with unit.
(2) Functors are as follows

Figure 1: Rq: Similar lower diagram with algebras and $\mathbf{k}-$ Mod replacing Set

Free Objects: Adjunction "A la Samuel".

(3) We recall here the mechanism of adjunction w.r.t. a functor. Let $\mathcal{C}_{1}, \mathcal{C}_{2}$ be two categories and $F_{12}: \mathcal{C}_{2} \rightarrow \mathcal{C}_{1}$ a (covariant) functor between them

Figure 2: In natural language, the universal problem reads:
Does it exist a pair (jX, $\hat{X})$ with the property that for any \mathcal{C}_{1}-theoretical morphism $f: X \rightarrow Y$, there exists a unique $\hat{f}: \hat{X} \rightarrow Y$ such that the diagram above commutes through F (when needed).
If it is the case for every object $X \in \mathcal{C}_{1}$, then the correspondence
$X \rightarrow \hat{X}, f \rightarrow \hat{f}$ between \mathcal{C}_{1} and \mathcal{C}_{2} turns out to be a (covariant) functor G_{21}.

Combinatorics of Free objects and their gradings (fine and coarse).

Category	Abbv.	Free Gen. by X
Monoids	Mon	X^{*}
Groups	Grp	$F(X)(\rightarrow F G(X))$
\mathbf{k} unital associative algebras	$\mathbf{k}-\mathbf{A A U}$	$\mathbf{k}\langle X\rangle\left(=\mathbf{k}\left[X^{*}\right]\right)$
\mathbf{k}-Lie algebras	$\mathbf{k}-$ Lie	$\mathcal{L} i_{\mathbf{k}}\langle X\rangle \subset \mathbf{k}\langle X\rangle$

- $X^{*}=\sqcup_{\alpha \in \mathbb{N}(X)} X^{\alpha}=\sqcup_{n \in \mathbb{N}} X^{n}$
- $\mathbf{k}\langle X\rangle=\oplus_{\alpha \in \mathbb{N}(X)} \mathbf{k}\langle X\rangle^{\alpha}=\oplus_{n \in \mathbb{N}} \mathbf{k}\langle X\rangle^{n}$
- $\mathcal{L i e}_{\mathbf{k}}\langle X\rangle=\oplus_{\alpha \in \mathbb{N}(X)} \mathcal{L i e}_{\mathbf{k}}\langle X\rangle^{\alpha}=\oplus_{n \in \mathbb{N}} \mathcal{L i e}_{\mathbf{k}}\langle X\rangle^{n}$

Words and their gradings

Example with $X=\{a, b\}$ and $Z=\{a\}, B=\{b\}$

Length	words
0	$1_{X^{*}}$
1	a, b
2	$a a, a b, b a, b b$
3	$a a a, a a b, a b a, a b b, b a a, b a b, b b a, b b b$
4	$a^{4}, a^{3} b, a^{2} b a, a^{2} b^{2}, a b a^{2}, a b a b, a b^{2} a, a b^{3}$
	$b a^{3}, b a^{2} b, b a b a, b a b b, b^{2} a^{2}, b^{2} a b, b^{3} a, b^{4}$

In red words of $\left(X^{*}\right)_{B Z}$ and in blue words of $\left(X^{*}\right)_{B}=B^{*}$.

Words and Lyndon words

Although words be strictly equivalent to lists (and in obvious one-to-one correspondence with them), coding by words gives access to a welter of structures, studies, relations and results (algebra, geometry, topology, probability, combinatorics on words, on polynomials and series). We will use in particular their complete factorisation by Lyndon words.

The data structure

Finite lists of symbols taken within a set (called alphabet) including the void one.

Algebraic structure

- Concatenation: Words concatenate by shifting and union of domains, this law is noted conc
- With the empty word as neutral, the set of words is the free monoid (X^{*}, conc, $1_{X^{*}}$)

Words and Lyndon words/2

Words and classes

Example with $X=\{a, b\}$

Length	words
0	$1_{X^{*}}$
1	a, b
2	$a a, a b, b a, b b$
3	$a a a, a a b, a b a, a b b, b a a, b a b, b b a, b b b$
4	$a^{4}, a^{3} b, a^{2} b a, a^{2} b^{2}, a b a^{2}, a b a b, a b^{2} a, a b^{3}$
	$b a^{3}, b a^{2} b, b a b a, b a b b, b^{2} a^{2}, b^{2} a b, b^{3} a, b^{4}$

In red Lyndon words (for the ordering $a<b$), in blue and (brown+underlined) two conjugacy classes (that of $a b a b$ and $a a b b$).

Words and Lyndon words/3

Conjugacy \& Lyndon words

Words and Lyndon words/4

The word $w,|w| \geq 1$ is Lyndon iff, for each (non trivial) decomposition $w=u v, u, v \neq 1_{X^{*}}$, one has $u \prec_{\text {lex }} v$.

Factorisation properties and series

Free monoid

Each word w factorizes uniquely as $w=I_{1}^{\alpha_{1}} \ldots I_{n}^{\alpha_{n}}$ with $I_{i} \in \mathcal{L} y n(X)$ and $I_{1} \succ \cdots \succ I_{n}$ (strict). We have (Schützenberger, MPS) $X^{*}=\prod_{\in \in \mathcal{L} y n(X)}^{\searrow} I^{*}$.

$$
\chi=\prod_{I \in \mathcal{L} y n(X)}^{\searrow} e^{\chi\left(S_{l}\right) P_{l}} \quad(M R S)
$$

Towards series

Series are functions $X^{*} \rightarrow R$ where R is a semiring (i.e. a ring without the "minus" operation). We have different ways to consider a series, namely:
Math: Functions, elements of a dual (total, restricted, Sweedler's \&c.)
Computer Science: Behaviour of a system (automaton, transducer, grammar \&c.)
Physics: Non commutative differential equations, evaluation of paths, normal orderings \&c.

Classical Lazard elimination theorem

Theorem (Lazard elimination theorem)

Let $X=B \sqcup Z$ be a set partitioned in two blocks. We have an isomorphism of split short exact sequences (see [5] Ch II §2.9 Props 9 and 10])

This non-trivial result is proved by "semi-direct recomposition" (of Lie algebras). Semi-direct products of groups have been evoked in slide "Rewriting the factors". The mechanism for Lie algebras is analogue replacing "action by automorphisms" by "action by derivations".

Classical Lazard elimination theorem/2

Theorem (Lazard elimination theorem)

Let $X=B \sqcup Z$ be a set partitioned in two blocks. We have an isomorphism of split short exact sequences

Remark

The bottom row is trivial, it is nevertheless the prototype of all semi-direct product of Lie algebras in the following sense : every semi-direct product is the homomorphic image of a Lazard elimination scheme.

Classical Lazard elimination theorem/3

Theorem (Lazard elimination theorem)

Let $X=B \sqcup Z$ be a set partitioned in two blocks. We have an isomorphism of split short exact sequences

Remark

Every semi-direct product is the homomorphic image of a Lazard elimination scheme. Here $\mathfrak{g}=\mathfrak{h} \rtimes \mathfrak{b}$.

The Drinfeld-Kohno Lie algebra $\mathrm{DK}_{\mathrm{k}, n}$.

$$
\mathcal{T}_{n}=\begin{array}{llllll}
T_{2} & T_{3} & T_{4} & \ldots & \ldots & T_{n} \\
\hline t_{1,2} & t_{1,3} & t_{1,4} & \ldots & \ldots & t_{1, n} \\
& t_{2,3} & t_{2,4} & \ldots & \ldots & \ldots \\
& & t_{3,4} & \ldots & \ldots & \ldots \\
& & & \ldots & \ldots & \ldots \\
& & & & \ldots & \ldots \\
& & & & & t_{n-1, n}
\end{array}
$$

$$
\begin{equation*}
\mathrm{DK}_{\mathbf{k}, n}=\left\langle\mathcal{T}_{n} \mid \mathbf{R}[\mathbf{n}]\right\rangle_{\mathbf{k}-\mathbf{L i e}}=\mathcal{L i e}_{\mathbf{k}}\left\langle\mathcal{T}_{n}\right\rangle / \mathcal{J}_{\mathbf{R}[\mathbf{n}]} \cong \mathcal{L}^{2} \mathrm{e}_{\mathbf{k}}\left\langle T_{n}\right\rangle \rtimes \mathrm{DK}_{\mathbf{k}, n-1} \tag{6}
\end{equation*}
$$

Free objects, partition of alphabets and eliminations.

Category	Abbv.	Free Gen. by X
Monoids	Mon	X^{*}
Groups	Grp	$F(X)(\rightarrow F G(X))$
\mathbf{k} unital associative algebras	$\mathbf{k}-\mathbf{A A U}$	$\mathbf{k}\langle X\rangle\left(=\mathbf{k}\left[X^{*}\right]\right)$
\mathbf{k}-Lie algebras	$\mathbf{k}-$ Lie	$\mathcal{L} i_{\mathbf{k}}\langle X\rangle \subset \mathbf{k}\langle X\rangle$

Category	Abbv.	Elimination formula (free case)
Monoids	Mon	$X^{*}=\left(B^{*} Z\right)^{*} B^{*}$
Groups	Grp	$F(X)=F\left(C_{B}(Z)\right) \rtimes F(B)$
\mathbf{k} AAU	$\mathbf{k}-\mathbf{A A U}$	$\mathbf{k}\langle X\rangle=\mathbf{k}\left\langle B^{*} Z\right\rangle \otimes \mathbf{k}\langle B\rangle$
k-Lie algebras	$\mathbf{k}-$ Lie	$\mathcal{L i e}_{\mathbf{k}}\langle X\rangle \cong \mathcal{L i e}_{\mathbf{k}}\left\langle B^{*} Z\right\rangle \rtimes \mathcal{L} \mathrm{ie}_{\mathbf{k}}\langle B\rangle$

Part two :

Partially commutative structures.

Partially Commutative structures: between commutative and non commutative worlds as first example.

(9) As, today, we consider four categories:

Mon, Grp, k-Lie, k-AAU

In each of these categories, there is a notion of "What are two commuting elements"

- in Mon, Grp, k-AAU, it is $x y=y x$
- in \mathbf{k}-Lie it is $[x, y]=0$
but, for all of them, this relation is reflexive and symmetric.
This leads us to the following questions
(5) What is elimination in these categories ?
(0) What is the best system or category of formal generators ? i.e. the category \mathcal{C}_{1} (if possible) in order to consider these objects as freely generated over \mathcal{C}_{1}.
(3) We will begin by the "partially commutative monoid" so called "Cartier-Foata monoid".

Partially Commutative monoids

(8) This monoid was introduced by P. Cartier and D. Foata in (1969) for combinatorial problems of commutations and rerrangements [4]. It ignited a considerable literature in combinatorics and computer science.
(0) A partially commutative alphabet (X, θ) is a set endowed with a commutation relation $\theta \subset X \times X$, reflexive and symmetric. As follows (loops are on every vertex and not represented).

Figure 3:

Partially Commutative monoids

(10) A partially commutative alphabet (X, θ) is a set endowed with a commutation relation $\theta \subset X \times X$, reflexive and symmetric.
(1) The partially commutative monoid $M(X, \theta)$ is

$$
\begin{equation*}
M(X, \theta):=\left\langle X ;(x y, y x)_{(x, y) \in \theta}\right\rangle_{\text {Mon }} \tag{8}
\end{equation*}
$$

(12) For example, with the graph above we have

$$
\begin{equation*}
M(X, \theta):=\{a, c\}^{*} \times\{b\}^{*} \times\{d\}^{*}=\left\{w b^{p} d^{q}\right\}_{\substack{w \in\{a, c\}^{*} \\ p, q \in \mathbb{N}}} \tag{9}
\end{equation*}
$$

and the first words of this monoid (i.e. traces, elements) are

$$
1, \underbrace{a, b, c, d}_{\text {length } 1}, \underbrace{a^{2}, c^{2}, a c, c a, a b, a d, c b, c d, b^{2}, d^{2}, b d}_{l=2,11 \text { words }}, \cdots
$$

(3) For length 2 , if it were free, we would have 16 words and 10 if it were completely commutative.

Partially Commutative monoids: Hilbert series

(44. In general, let us denote $M(X, \theta)^{(n)}$ the set of words of $M(X, \theta)$ of length n.
(15) If the alphabet is finite, we have

$$
\begin{equation*}
\operatorname{Hilb}(M(X, \theta), t)=\sum_{n \in \mathbb{N}}\left|M(X, \theta)^{(n)}\right| t^{n}=\frac{1}{\sum_{n \geq 0}(-1)^{n} c_{n} t^{n}} \tag{10}
\end{equation*}
$$

where c_{n} is the number of n-cliques of θ. This is a consequence of a more general theorem of Cartier and Foata [4] about the Möbius function of the Cartier-Foata monoid.
(0) With the the graph above, we have

$$
\begin{equation*}
\operatorname{Hilb}(M(X, \theta), t)=\frac{1}{1-4 t+5 t^{2}-2 t^{3}}=\frac{1}{(1-2 t)} \frac{1}{(1-t)^{2}} \tag{11}
\end{equation*}
$$

Another commutation graph.

Figure 4: Commutation graph G1. The Hilbert series as in Eq. (10) is

$$
\sum_{n \in \mathbb{N}}\left|M(X, \theta)^{(n)}\right| t^{n}=\frac{1}{1-6 t+6 t^{2}-t^{3}}
$$

The model of heaps (of pieces)

Figure 5: A heap of pieces H_{t} corresponding to the word $t=b_{1} b_{2} b_{3} b_{4} b_{5} b_{6} b_{1} b_{7} \in M(X, \theta)$ here TAlph $(t)=\left\{b_{1}, b_{2}\right\}$ even if b_{1} and b_{6} commute.

From Krattenthaler [15], order of the letters has been reversed.

Figure 6: Dimers for the commutation graph G1.
(1) We recall our research here

$$
\operatorname{STRUCT}\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle \cong \operatorname{NICE}\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle \diamond \operatorname{STRUCT}_{1}\left\langle x_{1}, \ldots, x_{n-1}\right\rangle
$$

(B8) It turns out that, for partially commutative structures, eliminating totally noncommutative alphabets (i.e. Z is a set of vertices such that for all distinct $x, y \in Z$, we have $(x, y) \notin \theta)$) liberates a free structure.

Category	Abbv.	Elim. formula (part. comm.)
Monoids	Mon	$M(X, \theta)=C_{B}(Z)^{*} M\left(B, \theta_{B}\right)$
Groups	Grp	$F(X, \theta)=F\left(C_{B}^{G r p}(Z)\right) \rtimes F\left(B, \theta_{B}\right)$
\mathbf{k} AAU	$\mathbf{k}-\mathbf{A A U}$	$\mathbf{k}\langle X, \theta\rangle=\mathbf{k}\left\langle C_{B}^{A A U}(Z)\right\rangle \otimes \mathbf{k}\left\langle B, \theta_{B}\right\rangle$
k-Lie algebras	$\mathbf{k}-$ Lie	$\mathcal{L} i e_{\mathbf{k}}\langle X, \theta\rangle \cong \mathcal{L} i_{\mathbf{k}}\left\langle C_{B}(Z)\right\rangle \rtimes \mathcal{L} e_{\mathbf{k}}\left\langle B, \theta_{B}\right\rangle$

Free and partially commutative eliminations: comparison.

Category	Abbv.	Elimination formula (free)
Monoids	Mon	$X^{*}=\left(B^{*} Z\right)^{*} B^{*}$
Groups	Grp	$F(X)=F\left(C_{B}^{\text {Grp }}(Z)\right) \rtimes F(B)$
\mathbf{k} AAU	$\mathbf{k}-\mathbf{A A U}$	$\mathbf{k}\langle X\rangle=\mathbf{k}\left\langle B^{*} Z\right\rangle \otimes \mathbf{k}\langle B\rangle$
k-Lie algebras	$\mathbf{k}-$ Lie	$\mathcal{L i e}_{\mathbf{k}}\langle X\rangle \cong \mathcal{L i e}_{\mathbf{k}}\left\langle B^{*} Z\right\rangle \rtimes \mathcal{L} \mathrm{ie}_{\mathbf{k}}\langle B\rangle$

With free partially commutative structures (Z totally non-commutative and $X=B+Z$).

Category	Abbv.	Elim. formula (part. comm.)
Monoids	Mon	$M(X, \theta)=C_{B}(Z)^{*} M\left(B, \theta_{B}\right)$
Groups	Grp	$F(X, \theta)=F\left(C_{B}^{G r p}(Z)\right) \rtimes F\left(B, \theta_{B}\right)$
$\mathbf{k} A A U$	$\mathbf{k}-\mathbf{A A U}$	$\mathbf{k}\langle X, \theta\rangle=\mathbf{k}\left\langle C_{B}^{A A U}(Z)\right\rangle \otimes \mathbf{k}\left\langle B, \theta_{B}\right\rangle$
k-Lie algebras	$\mathbf{k}-$ Lie	$\mathcal{L} i e_{\mathbf{k}}\langle X, \theta\rangle \cong \mathcal{L} i_{\mathbf{k}}\left\langle C_{B}(Z)\right\rangle \rtimes \mathcal{L} \mathrm{ei}_{\mathbf{k}}\left\langle B, \theta_{B}\right\rangle$

free partially commutative structures Lie algebra: Ladder

Theorem (Lazard elimination theorem)

Let $X=B \sqcup Z$ be a set partitioned in two blocks. We have an isomorphism of split short exact sequences

Figure 7: Example with the dimers of the commutation graph G1. Here $Z=\left\{a_{1}, b_{1}\right\}, B=\left\{a_{2}, b_{2}, a_{3}\right\}$ and

$$
C_{B}(Z)=a_{1}+C_{B}\left(b_{1}\right)
$$

Where the (forgetful) functor comes: Monoids.

(1) Def CAlph be the category of alphabets with commutation i.e. reflexive and symmetric graphs (X, θ) with $f:\left(X_{1}, \theta_{1}\right) \rightarrow\left(X_{2}, \theta_{2}\right)$ such that $f: X_{1} \rightarrow X_{2}$, set-theoretical such that $(u, v) \in \theta_{1} \Longrightarrow(f(u), f(v)) \in \theta_{2}$ and Mon the category of monoids. Now a monoid M being given $\theta_{M}=F(M)=\{(u, v) \in M \mid u v=v u\}$ can be checked to be a functor $F:$ Mon \rightarrow CAlph

Figure 8: $M(X, \theta)$ is the monoid freely generated by (X, θ) w.r.t. F. Then

$$
M(X, \theta):=\left\langle X ;(x y, y x)_{(x, y) \in \theta}\right\rangle_{\text {Mon }}
$$

Functor/2: \mathbf{k}-Lie algebras.

(20) Let \mathbf{k}-Lie be the category of \mathbf{k}-Lie algebras (\mathbf{k} is a ring). Now $L \in \mathbf{k}$-Lie being given $\theta_{L}=F(L)=\{(u, v) \in L \mid[u, v]=0\}$ can be checked to be a functor $F:$ k-Lie \rightarrow CAlph

Figure 9: $\mathcal{L} \mathrm{Le}_{k}(X, \theta)$ is the \mathbf{k}-Lie algebra freely generated by (X, θ) w.r.t. F. Then

$$
\mathcal{L}^{\operatorname{Le}}{ }_{k}\left(X, \theta:=\left\langle X ;[x, y]=0_{(x, y) \in \theta}\right\rangle_{\mathbf{k}-\mathbf{L i e}}\right.
$$

Part three :
General case.

Main result: Elimination for presented Lie algebras/1.

(21) Let \mathbf{k} be a ring. Let $X=B+Z$ be a set partitioned in two blocks. We suppose given a relator $\mathbf{r}=\left\{r_{j}\right\}_{j \in J} \subset \mathcal{L} i_{\mathbf{k}}\langle X\rangle$ (cf. [5] Ch II $\S 2.3^{a}$) which is compatible with the alphabet partition i.e. there exists a partition of the set of indices $J=J_{Z} \sqcup J_{B}$ such that

- $\mathbf{r}_{B}=\left\{r_{j}\right\}_{j \in J_{B}}=\mathbf{r} \cap \mathcal{L} i_{\mathbf{k}}\langle X\rangle_{B}$ and $\mathbf{r}_{Z}=\left\{r_{j}\right\}_{j \in J_{Z}}=\mathbf{r} \cap \mathcal{L} i_{\mathbf{k}}\langle X\rangle_{B Z}$.

The notations being as above, we construct the ideals

- \mathcal{J}_{B} is the Lie ideal of $\mathcal{L i e} e_{k}\langle X\rangle_{B}$ generated by $\left\{r_{j}\right\}_{j \in J_{B}}$
- $\mathcal{J}, \mathcal{J}_{Z}$ and $\mathcal{J}_{B Z}$ are the Lie ideals of $\mathcal{L i e}_{\mathbf{k}}\langle X\rangle$ generated respectively by $\mathbf{r}, \mathbf{r}_{Z}$ and $\mathbf{r}_{B Z}:=\left\{\operatorname{ad}_{Q} z\right\}_{Q \in \mathcal{J}_{B}, z \in Z}$.

[^0]
Elimination for presented Lie algebras/2

When we have such a type of relator, we can state the following theorem.

Theorem (Th 2)

With our constructions above, we get the following properties:
i) we have $\left(\mathcal{J}_{Z}+\mathcal{J}_{B Z}\right) \subset \mathcal{L i e}_{k}\langle X\rangle_{B Z}$ (and then $\left(\mathcal{J}_{Z}+\mathcal{J}_{B Z}\right) \cap \mathcal{J}_{B}=\{0\}$). Moreover, $\left(\mathcal{J}_{Z}+\mathcal{J}_{B Z}\right)$ is a Lie ideal of $\mathcal{L i e}_{k}\langle X\rangle_{B Z}$ (and even, by definition, of $\left.\mathcal{L i e}_{\mathbf{k}}(X\rangle\right)$.
ii) the action of $\mathcal{L i e}_{\mathbf{k}}\langle X\rangle_{B}$ on $\mathfrak{D e r}\left(\mathcal{L i e}_{\mathbf{k}}\langle X\rangle_{B Z}\right.$ (by internal ad) passes to quotients as an action
such that $\mathbf{r}_{B} \subset \operatorname{ker}(\alpha)$ and then, we get an action

$$
\begin{equation*}
\bar{\alpha}: \mathcal{L} e_{\mathbf{k}}\langle X\rangle_{B} / \mathcal{J}_{B} \rightarrow \mathfrak{D e r}\left(\mathcal{L} e_{\mathbf{k}}\langle X\rangle_{B Z} /\left(\mathcal{J}_{Z}+\mathcal{J}_{B Z}\right)\right) \tag{14}
\end{equation*}
$$

Elimination for presented Lie algebras/3

Th 2 cont'd

iii) We can construct an isomorphism (and its inverse) from presented Lie algebra $\mathcal{L} e_{\mathbf{k}}\langle X\rangle / \mathcal{J}$ by the set $\mathbf{r}=\left\{r_{j}\right\}_{j \in J}$ of relators onto the semidirect product of Lie algebras
$\mathcal{L} i e_{\mathbf{k}}\langle X\rangle_{B Z} /\left(\mathcal{J}_{Z}+\mathcal{J}_{B Z}\right) \rtimes \mathcal{L} i e_{\mathbf{k}}\langle X\rangle_{B} / \mathcal{J}_{B}$ which will be denoted by

$$
\begin{equation*}
\beta_{25}: \mathcal{L i e} e_{\mathbf{k}}\langle X\rangle / \mathcal{J} \xrightarrow{\simeq} \mathcal{L i e}_{\mathbf{k}}\langle X\rangle_{B Z} /\left(\mathcal{J}_{Z}+\mathcal{J}_{B Z}\right) \rtimes \mathcal{L} i e_{\mathbf{k}}\langle X\rangle_{B} / \mathcal{J}_{B} \tag{15}
\end{equation*}
$$

iv) In fact, one has a commutative diagram of Lie algebras with split short exact rows

Example 1

Infinitesimal Pure Braids Relations (n strands).

(22) We consider the alphabet $\mathcal{T}_{n}=\left\{t_{i j}\right\}_{1 \leq i<j \leq n}$ and the infinitesimal pure braid relator $\mathbf{R}[\mathbf{n}]$ in the free Lie algebra

$$
\mathbf{R}[\mathbf{n}]=\left\{\begin{array}{rrr}
\mathbf{R}_{1}[\mathbf{n}] & {\left[t_{i, j}, t_{i, k}+t_{j, k}\right]} & \text { for } 1 \leq i<j<k \leq n, \\
\mathbf{R}_{2}[\mathbf{n}] & {\left[t_{i, j}+t_{i, k}, t_{j, k}\right]} & \text { for } 1 \leq i<j<k \leq n, \\
\mathbf{R}_{3}[\mathbf{n}] & {\left[t_{i, j}, t_{k, l}\right]} & \text { for } \begin{array}{c}
1 \leq i<j \leq n, \\
1 \leq k<l \leq n,
\end{array} \\
\text { and }|\{i, j, k, l\}|=4
\end{array}\right.
$$

(33 This is a typical example of relator compatible with the partition

$$
X:=\mathcal{T}_{n}=\mathcal{T}_{n-1} \sqcup T_{n}:=B \sqcup Z
$$

where $T_{n}=\left\{t_{i, n}\right\}_{1 \leq i \leq n-1}$ and the infinitesimal pure braid relator $\mathbf{r}:=\mathbf{R}[\mathbf{n}] \subset \mathcal{L} e_{\mathbf{k}}\left\langle\mathcal{T}_{n}\right\rangle=\mathrm{DK}_{\mathbf{k}, n}$ the Drinfel'd-Kohno Lie algebra.
(24) Applying the theorem, we get a semi-direct decomposition. One can prove that the first (i.e. "acted") factor is free.

$$
\mathcal{T}_{n}=\begin{array}{llllll}
T_{2} & T_{3} & T_{4} & \ldots & \ldots & T_{n} \\
\hline t_{1,2} & t_{1,3} & t_{1,4} & \ldots & \ldots & t_{1, n} \\
& t_{2,3} & t_{2,4} & \ldots & \ldots & \ldots \\
& & t_{3,4} & \ldots & \ldots & \ldots \\
& & & \ldots & \ldots & \ldots \\
& & & & \ldots & \ldots \\
& & & & & t_{n-1, n}
\end{array}
$$

$$
\mathrm{DK}_{\mathbf{k}, n}=\left\langle\mathcal{T}_{n} \mid \mathbf{R}[\mathbf{n}]\right\rangle_{\mathbf{k}-\mathbf{L i e}}=\mathcal{L} e_{\mathbf{k}}\left\langle\mathcal{T}_{n}\right\rangle / \mathcal{J}_{\mathbf{R}[\mathbf{n}]} \cong \mathcal{L} i e_{\mathbf{k}}\left\langle T_{n}\right\rangle \rtimes \mathrm{DK}_{\mathbf{k}, n-1}
$$

Example 2

Infinitesimal Pure Braids Relations (infinitely many strands).

(36) For $\mathrm{DK}_{\mathbf{k}, \infty}$, we consider the alphabet $\mathcal{T}_{\infty}=\left\{t_{i j}\right\}_{1 \leq i<j}$ and the infinitesimal pure braid relator $\mathbf{R}[\infty]$ in the free Lie algebra $\mathcal{L i e} e_{\mathbf{k}}\left\langle\mathcal{T}_{\infty}\right\rangle$

$$
\mathbf{R}[\infty]=\left\{\begin{array}{rrc}
\mathbf{R}_{1}[\infty] & {\left[t_{i, j}, t_{i, k}+t_{j, k}\right]} & \text { for } 1 \leq i<j<k, \\
\mathbf{R}_{2}[\infty] & {\left[t_{i, j}+t_{i, k}, t_{j, k}\right]} & \text { for } 1 \leq i<j<k, \\
\mathbf{R}_{3}[\infty] & {\left[t_{i, j}, t_{k, l}\right]} & \text { for } \left.\begin{array}{c}
1 \leq i<j, \\
1 \leq k<l,
\end{array}\right) \text { and }|\{i, j, k, \mid\}|=4
\end{array}\right.
$$

(20) With the embeddings $\mathrm{DK}_{\mathbf{k}, n} \hookrightarrow \mathrm{DK}_{\mathrm{k}, n+1}$, the Lie algebra $\mathrm{DK}_{\mathbf{k}, \infty}$ can be proved to be the inductive (direct) limit of all $\mathrm{DK}_{\mathrm{k}, n}$.

Part four :

Sup gradings and tensor indexed computations.

Generalized gradings

(27) We will take the families $\left(\mathrm{DK}_{\mathbf{k}, n}\right)_{n \in \mathbb{N} \cup\{\infty\}}, \mathcal{L i} e_{\mathbf{k}}\langle X, \theta\rangle$ as guiding examples.
(88) Remark that $\mathrm{DK}_{\mathbf{k}, n}\left(\right.$ resp. $\left.\mathrm{DK}_{\mathbf{k}, \infty}\right)$ is $([2, \cdots, n], \mathrm{V}) \times \mathbb{N}_{\geq 1}$-graded (resp. $\left(\mathbb{N}_{\geq 2}, \vee\right) \times \mathbb{N}_{\geq 1}$-graded.
(2) On the other hand when a Lie algebra is a semi-direct product $\mathfrak{g}=\mathfrak{h} \rtimes \mathfrak{b}$ we can endow it with a $(\mathbb{B},+)$-grading where $(\mathbb{B},+)$ is the additive part of the boolean semiring whose law reads

$$
\begin{array}{c|c|c}
+ & 0 & 1 \tag{17}\\
\hline 0 & 0 & 1 \\
\hline 1 & 1 & 1
\end{array}
$$

with $\mathfrak{g}_{0}=\mathfrak{b}$ and $\mathfrak{g}_{1}=\mathfrak{h}$.
(30) Therefore iterated semi-direct products can be seen and (I, \vee)-graded (where "the low" acts on "the high").

Example of the Drinfeld-Kohno Lie algebras

(31) As an example we see that $\mathrm{DK}_{\mathbf{k}, n+1}$ is an iterated semi-direct product of free Lie algebras as follows

$$
\begin{aligned}
\mathrm{DK}_{\mathbf{k}, n+1} & =\operatorname{DK}_{\mathbf{k}, n+1}^{(n+1)} \rtimes\left(\operatorname{DK}_{\mathbf{k}, n+1}^{(n)} \rtimes\left(\cdots \rtimes \mathrm{DK}_{\mathbf{k}, n+1}^{(2)}\right) \cdots\right) \\
& \cong \mathcal{L i}_{\mathbf{k}}\left\langle X_{n}\right\rangle \rtimes\left(\mathcal{L i e}_{\mathbf{k}}\left\langle X_{n-1}\right\rangle \rtimes\left(\cdots \rtimes \mathcal{L} i e_{\mathbf{k}}\left\langle X_{1}\right\rangle\right) \cdots\right)(18)
\end{aligned}
$$

(32) Now when $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{b}$, we have a canonical morphism (of modules)

$$
\mathcal{U}(\mathfrak{h}) \otimes \mathcal{U}(\mathfrak{b}) \rightarrow \mathcal{U}(\mathfrak{g})
$$

which is one-to-one when $\mathfrak{g}=\mathfrak{h} \rtimes \mathfrak{b}$.
(33) Therefore, formula 18 entails

$$
\begin{equation*}
\mathcal{U}\left(\mathrm{DK}_{\mathbf{k}, n+1}\right) \cong \mathbf{k}\left\langle X_{n}\right\rangle \otimes \mathbf{k}\left\langle X_{n-1}\right\rangle \otimes \cdots \otimes \mathbf{k}\left\langle X_{1}\right\rangle \tag{19}
\end{equation*}
$$

A rewriting result (setting).

(30) In order to formulate a theorem about iterated smash products, we start with $(A,<)$ a totally ordered alphabet. Let $S_{A}:=\{A, \vee\}$ be the corresponding max-semigroup (i.e. $a \vee b=\max \{a, b\}$ for all $a, b \in A$) and $\mathfrak{g}=\bigoplus_{a \in A} \mathfrak{g}_{a}$ a S_{A}-graded Lie algebra. Let us consider
(1) the formal direct sum $M=\bigoplus_{a \in A} \mathcal{U}_{+}\left(\mathfrak{g}_{a}\right)$ (where $\mathcal{U}_{+}\left(\mathfrak{g}_{a}\right)$ is the augmentation ideal of the universal enveloping algebra $\mathcal{U}\left(\mathfrak{g}_{a}\right)$)
(2) the language of strictly increasing words $S I(A) \subset A^{*}$, formally

$$
S I(A):=\left\{w \in A^{*} \mid \text { for all } j<|w|, w[j]<w[j+1]\right\}
$$

(3) the decomposition $T(M)=\bigoplus_{w \in A^{*}} T_{w}(M)$
(1) the space $T_{S I(A)}:=\bigoplus_{w \in S I(A)} T_{w}(M)$ where $S I(A) \subset A^{*}$ is the language of strictly increasing words
© the language of (weakly) increasing words $W I(A) \subset A^{*}$, formally

$$
W I(A):=\left\{w \in A^{*} \mid \text { for all } 1 \leq j<|w|, w[j] \leq w[j+1]\right\} .
$$

A rewriting result (Theorem).

The following theorem states that $T_{S I(A)}$ is a section of the natural morphism $T(M) \rightarrow \mathcal{U}(\mathfrak{g})$.

Theorem (A)
We consider the canonical morphism defined by multiplication of factors

$$
\begin{align*}
& \text { can : } T(M) \rightarrow \mathcal{U}(\mathfrak{g}) \text { i.e... } \\
& x_{a_{1}} \otimes \cdots \otimes x_{a_{k}} \mapsto x_{a_{1}} \cdots x_{a_{k}} . \tag{20}
\end{align*}
$$

Then

$$
\begin{equation*}
T(M)=T_{S I(A)} \oplus \operatorname{ker}(\operatorname{can}) \tag{21}
\end{equation*}
$$

Computation scheme/0

(1) In order to prove Thm (A) we must construct a "word driven" way of rearranging the tensors in increasing form which converges towards the projector on $T_{S I(A)}$ parallel to the kernel of the natural morphism.
(2) To this end, we must define what is "rearranging the tensors" and will use the structure of paths of computations through appropriate labeled graphs in the spirit of Hopcroft and Ullmann [13]. For a modern version (with R. Motwani), see [14]).

Computation scheme/1

We define
The graph of transitions $\Gamma_{\text {trans }}$
(a) Vertices: All finite sets of words $2^{\left(A^{*}\right)}$.
(b) Elementary Steps: Their set will be noted ES. These steps are of three types:
First type (Reduction of inversions) $\alpha=\left(\{u b a v\}, \varphi_{\alpha},\{u a b v, u b v\}\right)$ with $a<b$ and

$$
\begin{equation*}
\varphi_{\alpha}: \quad x_{u} \otimes x_{b} \otimes x_{a} \otimes x_{v} \rightarrow x_{u} \otimes \tau\left(x_{b} \otimes x_{a}\right) \otimes x_{v} \tag{22}
\end{equation*}
$$

where τ_{0} is the "twist" of the smash product (see Remark ??). It can be shown that

$$
\begin{equation*}
\tau_{0}\left(\mathcal{U}_{+}\left(\mathfrak{g}_{b}\right) \otimes \mathcal{U}_{+}\left(\mathfrak{g}_{a}\right)\right) \subset \mathcal{U}_{+}\left(\mathfrak{g}_{a}\right) \otimes \mathcal{U}_{+}\left(\mathfrak{g}_{b}\right)+1_{\mathbf{k}} \otimes \mathcal{U}_{+}\left(\mathfrak{g}_{b}\right) \tag{23}
\end{equation*}
$$

Computation scheme/2

(1) therefore the result of the preceding reduction process belongs to $T_{u a b v}(M) \oplus T_{u b v}(M)$.
Second type (Reduction of powers) $\alpha=\left(\left\{u a^{p} v\right\}, \varphi_{\alpha},\{u a v\}\right)$ with $p \geq 2$, by

$$
\varphi_{\alpha}: x_{u} \otimes \overbrace{x_{a}^{(1)} \otimes \cdots \otimes x_{a}^{(p)}}^{p \text { factors in } \mathcal{U}_{+}\left(\mathfrak{g}_{a}\right)} \otimes x_{v} \rightarrow x_{u} \otimes \underbrace{x_{a}^{(1)} \cdots x_{a}^{(p)}}_{\text {multiplication }} \otimes x_{k}(24)
$$

the result of this reduction process is in $T_{\text {uav }}(M)$.
Third type (Loops) $\alpha=\left(\{w\}, \varphi_{\alpha},\{w\}\right)$ for $w \in S I(A)$ with $\varphi_{\alpha}=\mathrm{Id}_{T_{w}}$.
All the preceding (linear) maps φ_{α} (of first, second and third types) are extended by 0 outside of their definition domains $\left(T_{\text {ubav }}(M)\right.$ for the first type $T_{u a^{\rho} v}(M)$ for the second and $T_{w}(M), w \in S I(A)$ for the third).

Computation scheme/3

(2) Summarizing, all φ_{α} belong to $\operatorname{End}(T(M))$.
(c) General arrows i.e. all arrows of $\Gamma_{\text {trans }}$. Their set is denoted GA. It is the set of triplets $\left(F_{1}, \Phi, F_{2}\right)$, with $F_{i} \in 2^{\left(A^{*}\right)}, \Phi \in 2^{(E S)}$ (finite sets of elementary steps) such that
(1) for all $w \in F_{1}$ exists one and only one elementary step in $\alpha \in \Phi$ with $t(\alpha)=\{w\}$ (its tail).
(2) $F_{2}=\cup_{\alpha \in \Phi} h(\alpha)$ (union of their heads).
(d) Tail and Head: For every general arrow $\alpha=\left(F_{1}, \Phi, F_{2}\right)$, we set $t(\alpha)=F_{1}$ and $h(\alpha)=F_{2}$. This definition is extended for elementary arrows by (for $\alpha=\left(F_{1}, \varphi, F_{2}\right)$) the same projections (i.e. $t(\alpha)=F_{1}$ and $\left.h(\alpha)=F_{2}\right)$.

Computation scheme/4

(e) Composition of Arrows: Composition of $\left(F_{1}, \Phi_{1}, F_{2}\right)$ and $\left(F_{2}, \Phi_{2}, F_{3}\right)$ is $\left(F_{1}, \Phi_{2} \circ \Phi_{1}, F_{3}\right)$ where

$$
\Phi_{2} \circ \Phi_{1}=\left\{p r_{2}(\beta) \circ p r_{2}(\alpha) \mid \beta \in \Phi_{2}, \alpha \in \Phi_{1}, t(\beta) \subseteq h(\alpha)\right\} .
$$

(f) Paths: A path in $\Gamma_{\text {trans }}$ is a word $P=\alpha_{1} \cdots \alpha_{n} \in G A^{*}$ such that, for all $j<|P|(=n), h\left(\alpha_{j}\right)=t\left(\alpha_{j+1}\right)$, we classically have $t(P)=t\left(\alpha_{1}\right)$ and $h(P)=h\left(\alpha_{n}\right)$. The evaluation of $P, \operatorname{Ev}(P)$ is the composition of all the linear maps of its arrows i.e. with $P=\alpha_{1} \cdots \alpha_{n}$,

$$
\begin{equation*}
E v(P)=p r_{2}\left(\alpha_{n}\right) \circ \cdots \circ p r_{2}\left(\alpha_{1}\right) \tag{25}
\end{equation*}
$$

Computation scheme/5

(3) Norm: For all $w \in A^{*}$, we set $\operatorname{norm}(w)=|w|+\operatorname{Inv}(w)$) (where $\operatorname{lnv}(w)=\sharp\{(i, j)|1 \leq i<j \leq|w|$ and $w[i]>w[j]\})$. This definition is at once extended to finite subsets of $F \subset A^{*}$ by $\operatorname{norm}(F)=\max _{w \in F \backslash S I(A)} \operatorname{norm}(w)$. We remark that, for all elementary arrow α of the two first types, norm $(t(\alpha))>\operatorname{norm}(h(\alpha))$ and equality is got for the third type. Hence, for any general arrow $\alpha=\left(F_{1}, \Phi, F_{2}\right), \operatorname{norm}(t(\alpha))>\operatorname{norm}(h(\alpha))$ unless $F_{1}=F_{2} \subset S I(A)$ in which case we have equality and all arrows of Φ are of third type.
(g) Aperiodic paths: An aperiodic path is a path whose last arrow has identical head and tail i.e. $\alpha_{n}=(F, \Phi, F)$, this entails that $F \subset S I(A)$ and that all arrows of Φ are of third type.
(h) Remark. - Conditions (b.i) and (b.ii) above say respectively that there is no outgoing computation fork (i.e. two different elementary steps) from one $w \in F_{1}$ and that F_{2} is the image of F_{1} through the arrows of Φ.

Alternative with an algebra cross: Crossed products

See [3]

We consider augmented algebras $\left(\mathcal{A}, \epsilon_{\mathcal{A}}\right)$ (resp. $\left.\left(\mathcal{B}, \epsilon_{\mathcal{B}}\right)\right)$ with $\mathcal{A}^{+}:=\operatorname{ker}\left(\epsilon_{\mathcal{A}}\right)\left(\right.$ resp. $\left.\mathcal{B}^{+}:=\operatorname{ker}\left(\epsilon_{\mathcal{B}}\right)\right)$ and an algebra cross (see below)

$$
\tau_{\mathcal{B}, \mathcal{A}}: \mathcal{B} \otimes \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{B}
$$

Definition

Suppose given two objects \mathcal{A} and \mathcal{B} in $\mathbf{k}-\mathbf{A A U}$. A morphism $\tau: \mathcal{B} \otimes \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{B}$ in $\mathbf{k}-\operatorname{Mod}$ is called an algebra cross if it satisfies the following conditions

```
c1)}\tau(\mp@subsup{1}{\mathcal{B}}{}\otimesa)=a\otimes\mp@subsup{1}{\mathcal{B}}{}\mathrm{ ,
c2)}\tau\circ(\mp@subsup{m}{\mathcal{B}}{\otimes}\otimes\mp@subsup{|}{\mathcal{A}}{~})=(\mp@subsup{|}{\mathcal{A}}{\mathcal{A}}\otimes\mp@subsup{m}{\mathcal{B}}{})\circ(\tau\otimes\mp@subsup{|}{\mathcal{B}}{})\circ(\mp@subsup{\operatorname{ld}}{\mathcal{B}}{}\otimes\tau)\mathrm{ ,
d1)}\tau(b\otimes\mp@subsup{1}{\mathcal{A}}{})=\mp@subsup{1}{\mathcal{A}}{}\otimesb\mathrm{ ,
d2)}\tau\circ(\mp@subsup{\operatorname{Id}}{\mathcal{B}}{}\otimes\mp@subsup{m}{\mathcal{A}}{})=(\mp@subsup{m}{\mathcal{A}}{}\otimes\mp@subsup{|}{\mathcal{B}}{\mathcal{B}})\circ(\mp@subsup{\operatorname{ld}}{\mathcal{A}}{}\otimes\tau)\circ(\tau\otimes\mp@subsup{|}{\mathcal{A}}{\mathcal{A}})\mathrm{ .
```


Alternative with an algebra cross: Link with the smash

 product of enveloping algebras and iterated versions(1) When a Lie algebra is decomposed as a semi-direct product $\mathfrak{g}=\mathfrak{h} \rtimes \mathfrak{b}$, one has an algebra cross

$$
\tau: \mathcal{U}(\mathfrak{b}) \otimes \mathcal{U}(\mathfrak{h}) \rightarrow \mathcal{U}(\mathfrak{h}) \otimes \mathcal{U}(\mathfrak{b})
$$

given by the action of \mathfrak{b} on \mathfrak{h} by derivations.
(5) Let us call $\alpha: \mathfrak{b} \rightarrow \operatorname{Der}(\mathfrak{h})$ the action by ad ${ }^{\mathfrak{g}}$ on \mathfrak{h}. It is a morphism in \mathbf{k} - Lie. We first extend (classically) α from \mathfrak{b} to $\mathfrak{D e r}(\mathcal{U}(\mathfrak{h})) \subset \operatorname{End}(\mathcal{U}(\mathfrak{h}))$. Moreover, we can also extend α as a morphism $\alpha_{\mathcal{U}}: \mathcal{U}(\mathfrak{b}) \rightarrow \operatorname{End}(\mathcal{U}(\mathfrak{h}))$ in $\mathbf{k}-\mathbf{A A U}$ by the universal property. Together with a bialgebra structure $\left(\mathcal{U}(\mathfrak{b}), \mu_{\mathcal{U}}, 1_{\mathbf{k}}, \Delta_{\mathcal{U}}, \epsilon_{\mathcal{U}}\right)$, we then obtain a left $\mathcal{U}(\mathfrak{b})$-module algebra action $\triangleright: \mathcal{U}(\mathfrak{b}) \otimes \mathcal{U}\left(\mathfrak{g}_{1}\right) \rightarrow \mathcal{U}\left(\mathfrak{g}_{1}\right), b \otimes a \mapsto b \triangleright a=\alpha_{\mathcal{U}}(b)(a)$.. Now, the k-module $\mathcal{U}\left(\mathfrak{g}_{1}\right) \otimes \mathcal{U}(\mathfrak{b})$ can be endowed with a smash (cross) product structure $\mathcal{U}(\mathfrak{h}) \sharp \mathcal{U}(\mathfrak{b})=\left(\mathcal{U}(\mathfrak{h}) \otimes \mathcal{U}(\mathfrak{b}), 1_{\mathbf{k}} \otimes 1_{\mathbf{k}}\right)$. The multiplication being

$$
\begin{equation*}
m_{\sharp}\left[\left(u_{1} \otimes u_{2}\right) \otimes\left(v_{1} \otimes v_{2}\right)\right]=\sum_{(1)(2)} u_{1} \alpha_{\mathcal{U}}\left(u_{2}^{(1)}\right)\left(v_{1}\right) \otimes u_{2}^{(2)} v_{2} . \tag{26}
\end{equation*}
$$

Alternative with an algebra cross/2.

(0) We start with $(A,<)$ a totally ordered alphabet. Let $\left(\mathcal{A}_{a}\right)_{a \in A}$ be a family of augmented algebras and, for $b>a$, an algebra cross

$$
\tau_{b, a}: \mathcal{A}_{b} \otimes \mathcal{A}_{a} \rightarrow \mathcal{A}_{a} \otimes \mathcal{A}_{b}
$$

The limit of the finite iterated cross-products can be realized by the quotient $T(M) / \mathcal{J}$ where M is the formal direct sum $M=\bigoplus_{a \in A} \mathcal{A}_{a}^{+}$ and \mathcal{J} be the two-sided ideal generated by the elements $m_{b} \otimes m_{a}-\tau_{b, a}\left(m_{b} \otimes m_{a}\right)$. Let us consider:
(1) the language of strictly increasing words $S I(A) \subset A^{*}$, formally

$$
S I(A):=\left\{w \in A^{*} \mid \text { for all } j<|w|, w[j]<w[j+1]\right\}
$$

(2) the decomposition $T(M)=\bigoplus_{w \in A^{*}} T_{w}(M)$
(3) the space $T_{S I(A)}:=\bigoplus_{w \in S I(A)} T_{w}(M)$ where $S I(A) \subset A^{*}$ is the language of strictly increasing words
(0) the language of (weakly) increasing words $W I(A) \subset A^{*}$, formally

$$
W I(A):=\left\{w \in A^{*} \mid \text { for all } 1 \leq j<|w|, w[j] \leq w[j+1]\right\} .
$$

Alternative with an algebra cross/3.

We define
The graph of transitions $\Gamma_{\text {trans }}$
(a) Vertices: All finite sets of words $2^{\left(A^{*}\right)}$.
(b) Elementary Steps: Their set will be noted ES. These steps are of three types:
First type (Reduction of inversions) $\alpha=\left(\{u b a v\}, \varphi_{\alpha},\{u a b v, u b v\}\right)$ with $a<b$ and

$$
\begin{equation*}
\varphi_{\alpha}: x_{u} \otimes x_{b} \otimes x_{a} \otimes x_{v} \rightarrow x_{u} \otimes \tau\left(x_{b} \otimes x_{a}\right) \otimes x_{v} \tag{27}
\end{equation*}
$$

where τ is the "twist" of the an algebra cross. We have

$$
\begin{equation*}
\tau\left(\mathcal{A}_{b}^{+} \otimes \mathcal{A}_{a}^{+}\right) \subset \mathcal{A}_{a}^{+} \otimes \mathcal{A}_{b}^{+}+1_{\mathbf{k}} \otimes \mathcal{A}_{b}^{+}+\mathcal{A}_{a}^{+} \otimes 1_{\mathbf{k}}+1_{\mathbf{k}} \otimes 1_{\mathbf{k}} \tag{28}
\end{equation*}
$$

Alternative with an algebra cross/4.

(1) therefore the result of the preceding reduction process belongs to $T_{u a b v}(M) \oplus T_{u b v}(M) \oplus T_{\text {uav }}(M) \oplus T_{u v}(M)$.
Second type (Reduction of powers) $\alpha=\left(\left\{u a^{p} v\right\}, \varphi_{\alpha},\{u a v\}\right)$ with $p \geq 2$, by

$$
\begin{equation*}
\varphi_{\alpha}: x_{u} \otimes \overbrace{x_{a}^{(1)} \otimes \cdots \otimes x_{a}^{(p)}}^{p \text { factors in } \mathcal{U}_{+}\left(\mathfrak{g}_{a}\right)} \otimes x_{v} \rightarrow x_{u} \otimes \underbrace{x_{a}^{(1)} \cdots x_{a}^{(p)}}_{\text {multiplication }} \tag{29}
\end{equation*}
$$

the result of this reduction process is in $T_{\text {uav }}(M)$.
Third type (Loops) $\alpha=\left(\{w\}, \varphi_{\alpha},\{w\}\right)$ for $w \in S I(A)$ with $\varphi_{\alpha}=\operatorname{ld}_{T_{w}}$.
All the preceding (linear) maps φ_{α} (of first, second and third types) are extended by 0 outside of their definition domains ($T_{\text {ubav }}(M)$ for the first type $T_{u a^{p} v}(M)$ for the second and $T_{w}(M), w \in S I(A)$ for the third).

Alternative with an algebra cross $/ 5$.

(2) Summarizing, all φ_{α} belong to $\operatorname{End}(T(M))$.
(c) General arrows i.e. all arrows of $\Gamma_{\text {trans. }}$. Their set is denoted $G A$. It is the set of triplets $\left(F_{1}, \Phi, F_{2}\right)$, with $F_{i} \in 2^{\left(A^{*}\right)}, \Phi \in 2^{(E S)}$ (finite sets of elementary steps) such that
(1) for all $w \in F_{1}$ exists one and only one elementary step in $\alpha \in \Phi$ with $t(\alpha)=\{w\}$ (its tail).
(2) $F_{2}=\cup_{\alpha \in \Phi} h(\alpha)$ (union of their heads).
(d) Tail and Head: For every general arrow $\alpha=\left(F_{1}, \Phi, F_{2}\right)$, we set $t(\alpha)=F_{1}$ and $h(\alpha)=F_{2}$. This definition is extended for elementary arrows by (for $\alpha=\left(F_{1}, \varphi, F_{2}\right)$) the same projections (i.e. $t(\alpha)=F_{1}$ and $\left.h(\alpha)=F_{2}\right)$.

Alternative with an algebra cross/ 6 .

(e) Composition of Arrows: Composition of $\left(F_{1}, \Phi_{1}, F_{2}\right)$ and $\left(F_{2}, \Phi_{2}, F_{3}\right)$ is $\left(F_{1}, \Phi_{2} \circ \Phi_{1}, F_{3}\right)$ where

$$
\Phi_{2} \circ \Phi_{1}=\left\{p r_{2}(\beta) \circ p r_{2}(\alpha) \mid \beta \in \Phi_{2}, \alpha \in \Phi_{1}, t(\beta) \subseteq h(\alpha)\right\} .
$$

(f) Paths: A path in $\Gamma_{\text {trans }}$ is a word $P=\alpha_{1} \cdots \alpha_{n} \in G A^{*}$ such that, for all $j<|P|(=n), h\left(\alpha_{j}\right)=t\left(\alpha_{j+1}\right)$, we classically have $t(P)=t\left(\alpha_{1}\right)$ and $h(P)=h\left(\alpha_{n}\right)$. The evaluation of $P, \operatorname{Ev}(P)$ is the composition of all the linear maps of its arrows i.e. with $P=\alpha_{1} \cdots \alpha_{n}$,

$$
\begin{equation*}
E v(P)=p r_{2}\left(\alpha_{n}\right) \circ \cdots \circ p r_{2}\left(\alpha_{1}\right) \tag{30}
\end{equation*}
$$

Alternative with an algebra cross/7.

(3) Norm: For all $w \in A^{*}$, we set $\operatorname{norm}(w)=|w|+\operatorname{Inv}(w)$) (where $\operatorname{Inv}(w)=\sharp\{(i, j)|1 \leq i<j \leq|w|$ and $w[i]>w[j]\})$. This definition is at once extended to finite subsets of $F \subset A^{*}$ by $\operatorname{norm}(F)=\max _{w \in F \backslash S I(A)} \operatorname{norm}(w)$. We remark that, for all elementary arrow α of the two first types, norm $(t(\alpha))>\operatorname{norm}(h(\alpha))$ and equality is got for the third type. Hence, for any general arrow $\alpha=\left(F_{1}, \Phi, F_{2}\right)$, norm $(t(\alpha))>\operatorname{norm}(h(\alpha))$ unless $F_{1}=F_{2} \subset S I(A)$ in which case we have equality and all arrows of Φ are of third type.
(g) Aperiodic paths: An aperiodic path is a path whose last arrow has identical head and tail i.e. $\alpha_{n}=(F, \Phi, F)$, this entails that $F \subset S I(A)$ and that all arrows of Φ are of third type.
(h) Remark. - Conditions (b.i) and (b.ii) above say respectively that there is no outgoing computation fork (i.e. two different elementary steps) from one $w \in F_{1}$ and that F_{2} is the image of F_{1} through the arrows of Φ.

Convergence result

(9) The preceding computation scheme converges to proj. Indeed,
(1) every sufficiently long path is aperiodic, more precisely
(2) A path of $\Gamma_{\text {calc }}$ originating from F_{1}

$$
F_{1} \rightarrow F_{2} \rightarrow \cdots \cdots \rightarrow F_{n} \rightarrow F_{n+1}
$$

(with arrows $\left(F_{i}, \Phi_{i}, F_{i+1}\right)$) with $n \geq \operatorname{norm}\left(t\left(F_{1}\right)\right)$ is aperiodic
(3) If $t \in T(M)$ and $\operatorname{supp}(t) \subset F_{1}$, then the evaluation of the path applied to t has value $\mathbf{p r o j}(t)$.

Concluding remarks and perspectives

(1) Starting with a dichotomy of the alphabet of generators $X=B+Z$, we constructed an adapted semi-direct product in the free Lie algebra $\mathcal{L i e}_{\mathrm{k}}\langle X\rangle$ (classical LE).
(c) This semi-direct product is the prototype of all other semi-direct products in the sense that any semi-direct product is the homomorphic image of a (LE)

- Iterated (LE) lead to a filtration of the alphabet which accounts for repeated semi-direct products
- When the ideal factors are free Lie algebras, we can get normal forms in terms of words with conditions.
- It will be interesting to extend the work done with Drinfeld-Kohno Lie algebras to other configuration spaces taking into account that (a) central filtrations provide \mathbb{Z}-Lie algebras (b) our procedures preserve torsion phenomena and hence cyclic direct sums with no bases.

Concluding remarks and perspectives/2

(0) Remains to carefully pave the way(s) of contact points with the schools who developed noncommutative Gröbner bases [2, 12], especially in the light of Lie algebras like

$$
\begin{align*}
& \left(\mathcal{L i e}_{\mathbf{k}}\left\langle B^{*} Z\right\rangle / n . \mathcal{L} i e_{\mathfrak{k}}\left\langle B^{*} Z\right\rangle\right) \rtimes \mathcal{L i e}_{\mathbf{k}}\langle B\rangle \text { having images like } \\
& \mathfrak{g} / n . \mathfrak{h}=\mathfrak{h} / n . \mathfrak{h} \rtimes \mathfrak{b} \tag{31}
\end{align*}
$$

(1) This can be applied to p-adic approximation, for example, with

$$
\begin{equation*}
\mathrm{DK}_{\mathbf{k}, n} / p^{r} \cdot \mathcal{L} \dot{e_{\mathbf{k}}}\left\langle T_{n}\right\rangle=\mathcal{L} e_{\mathbf{k}}\left\langle T_{n}\right\rangle / p^{r} \cdot \mathcal{L i e}_{\mathbf{k}}\left\langle T_{n}\right\rangle \rtimes \mathrm{DK}_{\mathbf{k}, n-1} \tag{32}
\end{equation*}
$$

$\mathrm{DK}_{\mathrm{k}, n+1}$ can be seen as a projective limit, but none of the factors have a basis (although they have implementable normal forms).
(8) Passing to enveloping algebras and then their iterated smash products helps us understand what can be iterated crossed products a model that can be deformed.

Thank you for your presence (close or remote) ... and your attention.

Links

(1) Categorical framework(s)
https://ncatlab.org/nlab/show/category
https://en.wikipedia.org/wiki/Category_(mathematics)
(2) Universal problems
https://ncatlab.org/nlab/show/universal+construction https://en.wikipedia.org/wiki/Universal_property
(3) Paolo Perrone, Notes on Category Theory with examples from basic mathematics, 181p (2020) arXiv:1912.10642 [math.CT]
https://en.wikipedia.org/wiki/Abstract_nonsense
(9) Heteromorphism
https://ncatlab.org/nlab/show/heteromorphism
(5) D. Ellerman, MacLane, Bourbaki, and Adjoints: A Heteromorphic Retrospective, David EllermanPhilosophy Department, University of California at Riverside

Links/2

(0) https://en.wikipedia.org/wiki/Category_of_modules
(O) https://ncatlab.org/nlab/show/Grothendieck+group
(8) Traces and hilbertian operators
https://hal.archives-ouvertes.fr/hal-01015295/document
(9) State on a star-algebra
https://ncatlab.org/nlab/show/state+on+a+star-algebra
(1) Hilbert module
https://ncatlab.org/nlab/show/Hilbert+module

(Short) bibliography. I

[1] J. S. Birman, Braid groups and their relationship to mapping class groups Ph.D. thesis, New York University, 1968. Advised by W. Magnus. MR 2617171
[2] L. A. Bokut and Y. Chen, Gröbner-Shirshov bases and their calculation, Bull. Math. Sci. (2014) 4:325-395.
[3] A. Borowiec and W. Marcinek, On crossed product of algebras, J. Math. Phys. 41 (2000) 6959-6975.
[4] P. Cartier and D. Foata, Problèmes combinatoires de commutation et réarrangements Lecture Notes in Mathematics, 85, Berlin, Springer-Verlag, (1969)
Electronic version
https://www.mat.univie.ac.at/~slc/books/cartfoa.html

(Short) bibliography. II

[5] N. Bourbaki, Lie groups and Lie algebras, Chapters 1-3, Springer-Verlag; (1989).
[6] G. Duchamp, Orthogonal projection onto the free Lie Algebra, Theorerical Computer Science, 79, 227-239 (1991)
[7] Gérard H. E. Duchamp, Christophe Tollu, Karol A. Penson and Gleb A. Koshevoy, Deformations of Algebras: Twisting and Perturbations, Séminaire Lotharingien de Combinatoire, B62e (2010).
[8] G. Duchamp, D.Krob, Free partially commutative structures, Journal of Algebra, 156, 318-359 (1993)
[9] Gérard Duchamp, Jean-Gabriel Luque, Lazard's Elimination (in traces) is finite-state recognizable, International Journal of Algebra and Computation, 17, No. 01, pp. 53-60 (2007).
https://arxiv.org/abs/math/0607280

(Short) bibliography. III

[10] S. Eilenberg, Automata, languages and machines, vol A. Acad. Press, New-York, 1974.
[11] B. Enriquez and V. V. Vershinin, On the lie algebras of surface pure braid groups.
arXiv:0902.1963v1
[12] Gareth Alun Evans, Noncommutative Involutive Bases, Ph. Thesis, University of Wales (Sept. 2005) https://arxiv.org/abs/math/0602140v1
[13] J. E. Hopcroft and J. D. Ullmann, Introduction to Automata Theory, Languages and Computation, Addison-Wesley (1979).
[14] J.E. Hopcroft, R. Motwani, J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, 2007, 3e éd (ISBN 978-0-32146225-1).

(Short) bibliography. IV

[15] C. Krattenthaler, The Theory of Heaps and the Cartier-Foata Monoid. In Commutation and Rearrangements by Pierre Cartier and Dominique Foata [4].
[16] M.P. Schützenberger, On the definition of a family of automata, Inf. and Contr., 4 (1961), 245-270.
[17] Kernels in nlab
https://ncatlab.org/nlab/show/kernel

[^0]: ${ }^{\text {a }}$ The set I there being replaced by X.

