
Lazard Elimination on Arbitrary Alphabets, Lyndon
Words and Iterated Smash-Products.

From combinatorics of universal problems
to usual applications.

G.H.E. Duchamp, (gheduchamp at gmail.com)
Collaboration at various stages of the work

and in the framework of the Project
Evolution Equations in Combinatorics and Physics :

N. Behr, Karol A. Penson, N. Gargava, Vu Ngyuen Dinh,
Darij Grinberg, C. Tollu, P. Simonnet,

Hoang Ngoc Minh, J.-G. Luque.

Combinatorics and Arithmetic for Physics, CAP 23.
Jubillee, Tenth Anniversary Edition,

IHES, 16 Nov. 2023.
1 / 70

Overture

Let me thank the organisers (minus one) for letting me deliver the following talk
about filtrations of alphabets and their combinatorial counterparts.

Special words of gratitude are due to Darij Grinberg, Jean-Gabriel Luque and
Pierre Simonnet who carefully read parts of this work, made fruitful remarks and
asked constructive questions.

Last time (CAP’22) we spoke about Lazard Elimination (LE) and
B-gradings.

And yesterday Pr. Nakamura wrote a word w ∈ {x , y}∗ under the normal
form

w = xk1yxk2y · · · xkd y︸ ︷︷ ︸
regular part

xk∞︸︷︷︸
tail

We will interpret this as the elimination of {y} among the alphabet
X = {x , y} and the Magnus basis as the image of the code x∗y under the
isomorphism of Lazard’s elimination.

2 / 70

Overture (cont’d)

Today, I would like to call your attention to the result of iterating such a
dichotomic process leading to a filtration on the alphabet of generators.

And on the combinatorial couterpart of this phenomenon (Hilbert series,
Indexed computation, Normal forms).

Examples will be taken from

1 Free structures for simplicity.
2 Free partially commutative structures for the visual and mnemotechnic

representations with heaps.
3 The Drinfeld-Kohno Lie algebras and their enveloping algebras.

The process is however general and rather simple to implement.

From time to time categories will be used as a way to understand similarities
and unify the exposition.

The process is however general and rather simple to implement. We will end
with iterated crossed-products allowing for deformations and perturbations
(see [7]).

3 / 70

Part one :

Preamble and generalities.

4 / 70

Which sort of elimination will we consider here ?

STRUCT ⟨x1, x2, . . . , xn⟩ ∼= NICE ⟨x1, x2, . . . , xn⟩ ⋄ STRUCT1⟨x1, . . . , xn−1⟩
(1)

where NICE et STRUCT1 stand for algebraic structures generated
(sometimes freely) by generators xi . The diamond symbol being, according
to the situation, a tensor product, a semi-direct product or a plain
(unique) factorisation. For example, with the symmetric group Sn and the
pure braid group Pn [1] :

Sn
∼= Z /nZ ⋄Sn−1 and Pn

∼= Fn−1 ⋄ Pn−1.

Here, in the first case, ⋄ is only a product and the iterated decomposition
helps to construct a basis of Q[Sn] adapted to the calculation needs of
Dynkin’s projector [6]. In the second case we have a semi-direct product
(where Fn−1 is the Free Group with n − 1 generators.

5 / 70

Rewriting the factors

We recall the pattern with colors

STRUCT ⟨x1, x2, . . . , xn⟩ ∼= NICE ⟨x1, x2, . . . , xn⟩ ⋄ STRUCT1⟨x1, . . . , xn−1⟩

(when STRUCT1 = STRUCT the process can be iterated).
Let us firstly see the case of two permutable subgroups (where the ⋄ is
multiplicative), we have G = G1G2 = G2G1 (and it is required that G = G1.G2 be
of unique factorisation). Then, at the level of the terms, the rewriting reads

g2g1 −→ l(g1, g2)r(g1, g2) (2)

and, in the case when r(g1, g2) = g2, we have a semidirect product i.e. for every
(g1, g2) ∈ G1 × G2, g2g1g2

−1 ∈ G1, so that we only need to know the factor
l(g1, g2).

6 / 70

Categories of this talk.

1 These categories are as follows
1 Set the category of sets.
2 Mon, the category of monoids.
3 k− Lie, the category of k-Lie algebras.
4 Grp, the category of groups.
5 k− AAU, the category of k-associative algebras with unit.

2 Functors are as follows

Mon(2) Grp(5)

Set(1) k− AAU(4)

k− Lie(3)

F12

F25

F24

F34F13

Figure 1: Rq: Similar lower diagram with algebras and k−Mod replacing Set.
7 / 70

Free Objects: Adjunction “A la Samuel”.

3 We recall here the mechanism of adjunction w.r.t. a functor.
Let C1, C2 be two categories and F12 : C2 → C1 a (covariant) functor
between them

C1 C2
X Y

X̂ = G21(X)

F12

f

jX f̂

Figure 2: In natural language, the universal problem reads:

Does it exist a pair (jX , X̂) with the property that for any C1-theoretical
morphism f : X → Y , there exists a unique f̂ : X̂ → Y such that the
diagram above commutes through F (when needed).
If it is the case for every object X ∈ C1, then the correspondence
X → X̂ , f → f̂ between C1 and C2 turns out to be a (covariant) functor G21.

8 / 70

Combinatorics of Free objects and their gradings (fine and
coarse).

Category Abbv. Free Gen. by X

Monoids Mon X ∗

Groups Grp F (X) (→ FG (X))

k unital associative algebras k− AAU k⟨X ⟩ (= k[X ∗])

k-Lie algebras k− Lie Liek⟨X ⟩ ⊂ k⟨X ⟩

X ∗ = ⊔α∈N(X)Xα = ⊔n∈NX
n

k⟨X ⟩ = ⊕α∈N(X)k⟨X ⟩α = ⊕n∈Nk⟨X ⟩n

Liek⟨X ⟩ = ⊕α∈N(X)Liek⟨X ⟩α = ⊕n∈NLiek⟨X ⟩n

9 / 70

Words and their gradings

Example with X = {a, b} and Z = {a},B = {b}

Length words

0 1X∗

1 a, b
2 aa, ab, ba, bb
3 aaa, aab, aba, abb, baa, bab, bba, bbb
4 a4, a3b, a2ba, a2b2, aba2, abab, ab2a, ab3

ba3, ba2b, baba, babb, b2a2, b2ab, b3a, b4

In red words of (X ∗)BZ and in blue words of (X ∗)B = B∗.

10 / 70

Words and Lyndon words

Although words be strictly equivalent to lists (and in obvious one-to-one
correspondence with them), coding by words gives access to a welter of
structures, studies, relations and results (algebra, geometry, topology,
probability, combinatorics on words, on polynomials and series). We will
use in particular their complete factorisation by Lyndon words.

The data structure

Finite lists of symbols taken within a set (called alphabet) including the
void one.

Algebraic structure

Concatenation: Words concatenate by shifting and union of domains,
this law is noted conc

With the empty word as neutral, the set of words is the free monoid
(X ∗, conc , 1X∗)

11 / 70

Words and Lyndon words/2

Words and classes

Example with X = {a, b}

Length words

0 1X∗

1 a, b
2 aa, ab, ba, bb
3 aaa, aab, aba, abb, baa, bab, bba, bbb
4 a4, a3b, a2ba, a2b2, aba2, abab, ab2a, ab3

ba3, ba2b, baba, babb, b2a2, b2ab, b3a, b4

In red Lyndon words (for the ordering a < b), in blue and
(brown+underlined) two conjugacy classes (that of abab and aabb).

12 / 70

Words and Lyndon words/3

Conjugacy & Lyndon words

abba

aabb

baab

bbaa

c c

cc

abab

baba

cc

Two conjugacy
classes, one
of them is
primitive and
contains, as its
minimum, a
Lyndon word.

Words and Lyndon words/4

The word w , |w | ≥ 1 is Lyndon iff, for each (non trivial) decomposition
w = uv , u, v ̸= 1X∗ , one has u ≺lex v .

13 / 70

Factorisation properties and series

Free monoid

Each word w factorizes uniquely as w = lα1
1 · · · lαn

n with li ∈ Lyn(X) and

l1 ≻ · · · ≻ ln (strict). We have (Schützenberger, MPS) X ∗ =
∏↘

l∈Lyn(X) l
∗.

χ =

↘∏
l∈Lyn(X)

eχ(Sl)Pl (MRS)

Towards series

Series are functions X ∗ → R where R is a semiring (i.e. a ring without the
“minus” operation). We have different ways to consider a series, namely:
Math: Functions, elements of a dual (total, restricted, Sweedler’s &c.)
Computer Science: Behaviour of a system (automaton, transducer, grammar
&c.)

Physics: Non commutative differential equations, evaluation of paths, normal

orderings &c.

14 / 70

Classical Lazard elimination theorem

Theorem (Lazard elimination theorem)

Let X = B ⊔ Z be a set partitioned in two blocks. We have an
isomorphism of split short exact sequences (see [5] Ch II §2.9 Props 9 and
10])

0 Liek⟨B∗Z ⟩ Liek⟨X ⟩ Liek⟨B⟩ 0

0 Liek⟨X ⟩BZ Liek⟨X ⟩ Liek⟨X ⟩B 0

rn

rn Id

pB|Z

jB

j p

(3)

This non-trivial result is proved by “semi-direct recomposition” (of Lie
algebras). Semi-direct products of groups have been evoked in slide
“Rewriting the factors”. The mechanism for Lie algebras is analogue
replacing “action by automorphisms” by “action by derivations”.

15 / 70

Classical Lazard elimination theorem/2

Theorem (Lazard elimination theorem)

Let X = B ⊔ Z be a set partitioned in two blocks. We have an
isomorphism of split short exact sequences

0 Liek⟨B∗Z ⟩ Liek⟨X ⟩ Liek⟨B⟩ 0

0 Liek⟨X ⟩BZ Liek⟨X ⟩ Liek⟨X ⟩B 0

rn

rn Id

pB|Z

jB

j p

(4)

Remark

The bottom row is trivial, it is nevertheless the prototype of all semi-direct
product of Lie algebras in the following sense : every semi-direct product is
the homomorphic image of a Lazard elimination scheme.

16 / 70

Classical Lazard elimination theorem/3

Theorem (Lazard elimination theorem)

Let X = B ⊔ Z be a set partitioned in two blocks. We have an
isomorphism of split short exact sequences

0 Liek⟨B∗Z ⟩ Liek⟨X ⟩ Liek⟨B⟩ 0

0 h g b 0

rn

rn Id

pB|Z

jB

j p

(5)

Remark

Every semi-direct product is the homomorphic image of a Lazard
elimination scheme. Here g = h⋊ b.

17 / 70

The Drinfeld-Kohno Lie algebra DKk,n.

Tn =

T2 T3 T4 Tn

t1,2 t1,3 t1,4 t1,n
t2,3 t2,4

t3,4
.

.
tn−1,n

DKk,n = ⟨ Tn |R[n] ⟩k−Lie = Liek⟨Tn⟩
/
JR[n]

∼= Liek⟨Tn⟩⋊ DKk,n−1 (6)

18 / 70

Free objects, partition of alphabets and eliminations.

Category Abbv. Free Gen. by X

Monoids Mon X ∗

Groups Grp F (X) (→ FG (X))

k unital associative algebras k− AAU k⟨X ⟩ (= k[X ∗])

k-Lie algebras k− Lie Liek⟨X ⟩ ⊂ k⟨X ⟩

Category Abbv. Elimination formula (free case)

Monoids Mon X ∗ = (B∗Z)∗B∗

Groups Grp F (X) = F (CB(Z))⋊ F (B)

k AAU k− AAU k⟨X ⟩ = k⟨B∗Z ⟩ ⊗ k⟨B⟩
k-Lie algebras k− Lie Liek⟨X ⟩ ∼= Liek⟨B∗Z ⟩⋊ Liek⟨B⟩

19 / 70

Part two :

Partially commutative structures.

20 / 70

Partially Commutative structures: between commutative
and non commutative worlds as first example.

4 As, today, we consider four categories:

Mon, Grp, k-Lie, k-AAU (7)

In each of these categories, there is a notion of “What are two commuting
elements”

in Mon, Grp, k-AAU, it is xy = yx
in k-Lie it is [x , y] = 0

but, for all of them, this relation is reflexive and symmetric.
This leads us to the following questions

5 What is elimination in these categories ?

6 What is the best system or category of formal generators ? i.e. the category
C1 (if possible) in order to consider these objects as freely generated over C1.

7 We will begin by the “partially commutative monoid” so called
“Cartier-Foata monoid”.

21 / 70

Partially Commutative monoids

8 This monoid was introduced by P. Cartier and D. Foata in (1969) for
combinatorial problems of commutations and rerrangements [4]. It
ignited a considerable literature in combinatorics and computer
science.

9 A partially commutative alphabet (X , θ) is a set endowed with a
commutation relation θ ⊂ X × X , reflexive and symmetric. As follows
(loops are on every vertex and not represented).

a

b

c

d

Figure 3:
22 / 70

Partially Commutative monoids

10 A partially commutative alphabet (X , θ) is a set endowed with a
commutation relation θ ⊂ X × X , reflexive and symmetric.

11 The partially commutative monoid M(X , θ) is

M(X , θ) := ⟨X ; (xy , yx)(x,y)∈θ⟩Mon (8)

12 For example, with the graph above we have

M(X , θ) := {a, c}∗ × {b}∗ × {d}∗ = {w bp dq} w∈{a,c}∗
p,q∈N

(9)

and the first words of this monoid (i.e. traces, elements) are

1, a, b, c , d︸ ︷︷ ︸
length 1

, a2, c2, ac , ca, ab, ad , cb, cd , b2, d2, bd︸ ︷︷ ︸
l=2, 11 words

, · · ·

13 For length 2, if it were free, we would have 16 words and 10 if it were
completely commutative.

23 / 70

Partially Commutative monoids: Hilbert series

14 In general, let us denote M(X , θ)(n) the set of words of M(X , θ) of
length n.

15 If the alphabet is finite, we have

Hilb(M(X , θ), t) =
∑
n∈N

|M(X , θ)(n)| tn =
1∑

n≥0(−1)ncntn
(10)

where cn is the number of n-cliques of θ. This is a consequence of a
more general theorem of Cartier and Foata [4] about the Möbius
function of the Cartier-Foata monoid.

16 With the the graph above, we have

Hilb(M(X , θ), t) =
1

1− 4t + 5t2 − 2t3
=

1

(1− 2t)

1

(1− t)2
(11)

24 / 70

Another commutation graph.

b2

a1

a2

a3

b1

Figure 4: Commutation graph G1. The Hilbert series as in Eq. (10) is

∑
n∈N |M(X , θ)(n)| tn =

1

1− 6t + 6t2 − t3

25 / 70

The model of heaps (of pieces)

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
�

�
�

�
�

�
�
�
�

�
�

�
�

�
�

b1 b2

b5b3 b4

b6 b1

b7

Figure 5: A heap of pieces Ht corresponding to the word
t = b1b2b3b4b5b6b1b7 ∈ M(X , θ) here TAlph(t) = {b1, b2} even if b1 and b6
commute.

From Krattenthaler [15], order of the letters has been reversed.
26 / 70

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

◦ ◦

◦ ◦

◦ ◦

◦ ◦

◦ ◦
a1

b1

a2

b2

a3

0 1 2 3 4 5

Figure 6: Dimers for the commutation graph G1.

27 / 70

17 We recall our research here

STRUCT ⟨x1, x2, . . . , xn⟩ ∼= NICE ⟨x1, x2, . . . , xn⟩ ⋄ STRUCT1⟨x1, . . . , xn−1⟩

18 It turns out that, for partially commutative structures, eliminating totally
noncommutative alphabets (i.e. Z is a set of vertices such that for all
distinct x , y ∈ Z , we have (x , y) /∈ θ)) liberates a free structure.

Category Abbv. Elim. formula (part. comm.)

Monoids Mon M(X , θ) = CB(Z)
∗M(B, θB)

Groups Grp F (X , θ) = F (CGrp
B (Z))⋊ F (B, θB)

k AAU k− AAU k⟨X , θ⟩ = k⟨CAAU
B (Z)⟩ ⊗ k⟨B, θB⟩

k-Lie algebras k− Lie Liek⟨X , θ⟩ ∼= Liek⟨CB(Z)⟩⋊ Liek⟨B, θB⟩

28 / 70

Free and partially commutative eliminations: comparison.

Category Abbv. Elimination formula (free)

Monoids Mon X ∗ = (B∗Z)∗B∗

Groups Grp F (X) = F (CGrp
B (Z))⋊ F (B)

k AAU k− AAU k⟨X ⟩ = k⟨B∗Z ⟩ ⊗ k⟨B⟩
k-Lie algebras k− Lie Liek⟨X ⟩ ∼= Liek⟨B∗Z ⟩⋊ Liek⟨B⟩

With free partially commutative structures (Z totally non-commutative
and X = B + Z).

Category Abbv. Elim. formula (part. comm.)

Monoids Mon M(X , θ) = CB(Z)
∗M(B, θB)

Groups Grp F (X , θ) = F (CGrp
B (Z))⋊ F (B, θB)

k AAU k− AAU k⟨X , θ⟩ = k⟨CAAU
B (Z)⟩ ⊗ k⟨B, θB⟩

k-Lie algebras k− Lie Liek⟨X , θ⟩ ∼= Liek⟨CB(Z)⟩⋊ Liek⟨B, θB⟩

29 / 70

free partially commutative structures Lie algebra: Ladder

Theorem (Lazard elimination theorem)

Let X = B ⊔ Z be a set partitioned in two blocks. We have an
isomorphism of split short exact sequences

0 Liek⟨B∗Z ⟩ Liek⟨X ⟩ Liek⟨B⟩ 0

0 Liek⟨CB(Z)⟩ Liek⟨X , θ⟩ Liek⟨B, θB⟩ 0

rn

rn Id

pB|Z

jB

j p

(12)

30 / 70

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

◦ ◦

◦ ◦

◦ ◦

◦ ◦

◦ ◦
a1

b1

a2

b2

a3

0 1 2 3 4 5

Figure 7: Example with the dimers of the commutation graph G1.
Here Z = {a1, b1}, B = {a2, b2, a3}
and

CB(Z) = a1 + CB(b1) .

31 / 70

Where the (forgetful) functor comes: Monoids.

19 Def CAlph be the category of alphabets with commutation i.e.
reflexive and symmetric graphs (X , θ) with f : (X1, θ1) → (X2, θ2)
such that f : X1 → X2, set-theoretical such that
(u, v) ∈ θ1 =⇒ (f (u), f (v)) ∈ θ2 and Mon the category of monoids.
Now a monoid M being given θM = F (M) = {(u, v) ∈ M | uv = vu}
can be checked to be a functor F : Mon → CAlph

CAlph Mon

(X , θ) M

M(X , θ)

F

f

j f̂

Figure 8: M(X , θ) is the monoid freely generated by (X , θ) w.r.t. F . Then

M(X , θ) := ⟨X ; (xy , yx)(x,y)∈θ⟩Mon .
32 / 70

Functor/2: k-Lie algebras.

20 Let k-Lie be the category of k-Lie algebras (k is a ring). Now
L ∈ k-Lie being given θL = F (L) = {(u, v) ∈ L | [u, v] = 0} can be
checked to be a functor F : k-Lie → CAlph

CAlph k-Lie

(X , θ) L

Liek(X , θ)

F

f

j f̂

Figure 9: Liek(X , θ) is the k-Lie algebra freely generated by (X , θ) w.r.t. F .
Then

Liek(X , θ := ⟨X ; [x , y] = 0(x,y)∈θ⟩k−Lie

33 / 70

Part three :

General case.

34 / 70

Main result: Elimination for presented Lie algebras/1.

21 Let k be a ring. Let X = B + Z be a set partitioned in two blocks.
We suppose given a relator r = {rj}j∈J ⊂ Liek⟨X ⟩ (cf. [5] Ch II
§2.3a) which is compatible with the alphabet partition i.e. there exists
a partition of the set of indices J = JZ ⊔ JB such that

rB = {rj}j∈JB = r ∩ Liek⟨X ⟩B and rZ = {rj}j∈JZ = r ∩ Liek⟨X ⟩BZ .
The notations being as above, we construct the ideals

JB is the Lie ideal of Liek⟨X ⟩B generated by {rj}j∈JB

J ,JZ and JBZ are the Lie ideals of Liek⟨X ⟩ generated respectively by
r, rZ and rBZ := {adQ z}Q∈JB ,z∈Z .

aThe set I there being replaced by X .

35 / 70

Elimination for presented Lie algebras/2

When we have such a type of relator, we can state the following theorem.

Theorem (Th 2)

With our constructions above, we get the following properties:
i) we have (JZ + JBZ) ⊂ Liek⟨X ⟩BZ (and then (JZ + JBZ) ∩ JB = {0}).

Moreover, (JZ + JBZ) is a Lie ideal of Liek⟨X ⟩BZ (and even, by definition,
of Liek⟨X ⟩).

ii) the action of Liek⟨X ⟩B on Der(Liek⟨X ⟩BZ (by internal ad) passes to
quotients as an action

α : Liek⟨X ⟩B → Der(Liek⟨X ⟩BZ
/
(JZ + JBZ)) (13)

such that rB ⊂ ker(α) and then, we get an action

α : Liek⟨X ⟩B
/
JB → Der(Liek⟨X ⟩BZ

/
(JZ + JBZ)) (14)

36 / 70

Elimination for presented Lie algebras/3

Th 2 cont’d

iii) We can construct an isomorphism (and its inverse) from presented Lie
algebra Liek⟨X ⟩ /J by the set r = {rj}j∈J of relators onto the
semidirect product of Lie algebras
Liek⟨X ⟩BZ

/
(JZ + JBZ) ⋊ Liek⟨X ⟩B

/
JB which will be denoted by

β25 : Liek⟨X ⟩ /J
≃−→ Liek⟨X ⟩BZ

/
(JZ + JBZ) ⋊ Liek⟨X ⟩B

/
JB

(15)

iv) In fact, one has a commutative diagram of Lie algebras with split
short exact rows

0 Liek⟨X ⟩BZ Liek⟨X ⟩ Liek⟨X ⟩B 0

0 Liek⟨X ⟩BZ
/
(JZ + JBZ)

Liek⟨X ⟩ /J Liek⟨X ⟩B
/
JB 0

j

sJZ+JBZ

p

sJ sJB

37 / 70

Example 1

Infinitesimal Pure Braids Relations (n strands).

22 We consider the alphabet Tn = {tij}1≤i<j≤n and the infinitesimal pure
braid relator R[n] in the free Lie algebra

R[n] =


R1[n] [ti ,j , ti ,k + tj ,k] for 1 ≤ i < j < k ≤ n,
R2[n] [ti ,j + ti ,k , tj ,k] for 1 ≤ i < j < k ≤ n,

R3[n] [ti ,j , tk,l] for 1≤i<j≤n,
1≤k<l≤n, and |{i , j , k, l}| = 4

23 This is a typical example of relator compatible with the partition

X := Tn = Tn−1 ⊔ Tn := B ⊔ Z

where Tn = {ti ,n}1≤i≤n−1 and the infinitesimal pure braid relator
r := R[n] ⊂ Liek⟨Tn⟩ = DKk,n the Drinfel’d-Kohno Lie algebra.

24 Applying the theorem, we get a semi-direct decomposition. One can
prove that the first (i.e. ”acted”) factor is free.

38 / 70

Tn =

T2 T3 T4 Tn

t1,2 t1,3 t1,4 t1,n
t2,3 t2,4

t3,4
.

.
tn−1,n

DKk,n = ⟨ Tn |R[n] ⟩k−Lie = Liek⟨Tn⟩
/
JR[n]

∼= Liek⟨Tn⟩⋊DKk,n−1 (16)

39 / 70

Example 2

Infinitesimal Pure Braids Relations (infinitely many strands).

25 For DKk,∞, we consider the alphabet T∞ = {tij}1≤i<j and the
infinitesimal pure braid relator R[∞] in the free Lie algebra Liek⟨T∞⟩

R[∞] =


R1[∞] [ti ,j , ti ,k + tj ,k] for 1 ≤ i < j < k,
R2[∞] [ti ,j + ti ,k , tj ,k] for 1 ≤ i < j < k,

R3[∞] [ti ,j , tk,l] for 1≤i<j ,
1≤k<l , and |{i , j , k, l}| = 4

26 With the embeddings DKk,n ↪→ DKk,n+1, the Lie algebra DKk,∞ can
be proved to be the inductive (direct) limit of all DKk,n.

40 / 70

Part four :

Sup gradings and tensor indexed computations.

41 / 70

Generalized gradings

27 We will take the families (DKk,n)n∈N∪{∞}, Liek⟨X , θ⟩ as guiding
examples.

28 Remark that DKk,n (resp. DKk,∞) is ([2, · · · , n],∨)× N≥1-graded
(resp. (N≥2,∨)× N≥1-graded.

29 On the other hand when a Lie algebra is a semi-direct product
g = h⋊ b we can endow it with a (B,+)-grading where (B,+) is the
additive part of the boolean semiring whose law reads

+ 0 1

0 0 1

1 1 1

(17)

with g0 = b and g1 = h.

30 Therefore iterated semi-direct products can be seen and (I ,∨)-graded
(where “the low” acts on “the high”).

42 / 70

Example of the Drinfeld-Kohno Lie algebras

31 As an example we see that DKk,n+1 is an iterated semi-direct product
of free Lie algebras as follows

DKk,n+1 = DK
(n+1)
k,n+1 ⋊

(
DK

(n)
k,n+1 ⋊ (· · ·⋊ DK

(2)
k,n+1) · · ·

)
∼= Liek⟨Xn⟩⋊ (Liek⟨Xn−1⟩⋊ (· · ·⋊ Liek⟨X1⟩) · · ·).(18)

32 Now when g = h⊕ b, we have a canonical morphism (of modules)

U(h)⊗ U(b) → U(g)

which is one-to-one when g = h⋊ b.

33 Therefore, formula 18 entails

U(DKk,n+1) ∼= k⟨Xn⟩ ⊗ k⟨Xn−1⟩ ⊗ · · · ⊗ k⟨X1⟩. (19)

43 / 70

A rewriting result (setting).

34 In order to formulate a theorem about iterated smash products, we
start with (A, <) a totally ordered alphabet. Let SA := {A,∨} be the
corresponding max-semigroup (i.e. a ∨ b = max{a, b} for all a, b ∈ A)
and g =

⊕
a∈A ga a SA-graded Lie algebra. Let us consider

1 the formal direct sum M =
⊕

a∈A U+(ga) (where U+(ga) is the
augmentation ideal of the universal enveloping algebra U(ga))

2 the language of strictly increasing words SI (A) ⊂ A∗, formally

SI (A) := {w ∈ A∗ | for all j < |w |, w [j] < w [j + 1]}

3 the decomposition T (M) =
⊕

w∈A∗ Tw (M)
4 the space TSI (A) :=

⊕
w∈SI (A) Tw (M) where SI (A) ⊂ A∗ is the

language of strictly increasing words
5 the language of (weakly) increasing words WI (A) ⊂ A∗, formally

WI (A) := {w ∈ A∗ | for all 1 ≤ j < |w |, w [j] ≤ w [j + 1]}.

44 / 70

A rewriting result (Theorem).

The following theorem states that TSI (A) is a section of the natural
morphism T (M) → U(g).

Theorem (A)

We consider the canonical morphism defined by multiplication of factors

can : T (M) → U(g) i.e. . .
xa1 ⊗ · · · ⊗ xak 7→ xa1 · · · xak . (20)

Then
T (M) = TSI (A) ⊕ ker(can) (21)

45 / 70

Computation scheme/0

1 In order to prove Thm (A) we must construct a “word driven” way of
rearranging the tensors in increasing form which converges towards
the projector on TSI (A) parallel to the kernel of the natural morphism.

2 To this end, we must define what is “rearranging the tensors” and will
use the structure of paths of computations through appropriate
labeled graphs in the spirit of Hopcroft and Ullmann [13]. For a
modern version (with R. Motwani), see [14]).

46 / 70

Computation scheme/1

We define
The graph of transitions Γtrans

(a) Vertices: All finite sets of words 2(A
∗).

(b) Elementary Steps: Their set will be noted ES . These steps are of
three types:
First type (Reduction of inversions) α = ({ubav}, φα, {uabv , ubv})
with a < b and

φα : xu ⊗ xb ⊗ xa ⊗ xv → xu ⊗ τ(xb ⊗ xa)⊗ xv (22)

where τ0 is the “twist” of the smash product (see Remark ??). It can
be shown that

τ0(U+(gb)⊗ U+(ga)) ⊂ U+(ga)⊗ U+(gb) + 1k ⊗ U+(gb) (23)

47 / 70

Computation scheme/2

1 therefore the result of the preceding reduction process belongs to
Tuabv (M)⊕ Tubv (M).
Second type (Reduction of powers) α = ({uapv}, φα, {uav}) with
p ≥ 2, by

φα : xu ⊗

p factors in U+(ga)︷ ︸︸ ︷
x
(1)
a ⊗ · · · ⊗ x

(p)
a ⊗xv → xu ⊗ x

(1)
a · · · x (p)a︸ ︷︷ ︸

multiplication

⊗xv(24)

the result of this reduction process is in Tuav (M).
Third type (Loops) α = ({w}, φα, {w}) for w ∈ SI (A) with
φα = IdTw .
All the preceding (linear) maps φα (of first, second and third types)
are extended by 0 outside of their definition domains (Tubav (M) for
the first type Tuapv (M) for the second and Tw (M), w ∈ SI (A) for
the third). 48 / 70

Computation scheme/3

2 Summarizing, all φα belong to End(T (M)).

(c) General arrows i.e. all arrows of Γtrans . Their set is denoted GA. It
is the set of triplets (F1,Φ,F2), with Fi ∈ 2(A

∗), Φ ∈ 2(ES) (finite sets
of elementary steps) such that

1 for all w ∈ F1 exists one and only one elementary step in α ∈ Φ with
t(α) = {w} (its tail).

2 F2 = ∪α∈Φh(α) (union of their heads).

(d) Tail and Head: For every general arrow α = (F1,Φ,F2), we set
t(α) = F1 and h(α) = F2. This definition is extended for elementary
arrows by (for α = (F1, φ,F2)) the same projections (i.e. t(α) = F1
and h(α) = F2).

49 / 70

Computation scheme/4

(e) Composition of Arrows: Composition of (F1,Φ1,F2) and
(F2,Φ2,F3) is (F1,Φ2 ◦ Φ1,F3) where

Φ2 ◦ Φ1 = {pr2(β) ◦ pr2(α) |β ∈ Φ2, α ∈ Φ1, t(β) ⊆ h(α)}.

(f) Paths: A path in Γtrans is a word P = α1 · · ·αn ∈ GA∗ such that, for
all j < |P| (= n), h(αj) = t(αj+1), we classically have t(P) = t(α1)
and h(P) = h(αn). The evaluation of P, Ev(P) is the composition of
all the linear maps of its arrows i.e. with P = α1 · · ·αn,

Ev(P) = pr2(αn) ◦ · · · ◦ pr2(α1) (25)

50 / 70

Computation scheme/5

3 Norm: For all w ∈ A∗, we set norm(w) = |w |+ Inv(w)) (where
Inv(w) = ♯{(i , j)|1 ≤ i < j ≤ |w | and w [i] > w [j]}). This definition
is at once extended to finite subsets of F ⊂ A∗ by
norm(F) = maxw∈F\SI (A) norm(w). We remark that, for all
elementary arrow α of the two first types, norm(t(α)) > norm(h(α))
and equality is got for the third type. Hence, for any general arrow
α = (F1,Φ,F2), norm(t(α)) > norm(h(α)) unless F1 = F2 ⊂ SI (A)
in which case we have equality and all arrows of Φ are of third type.

(g) Aperiodic paths: An aperiodic path is a path whose last arrow has
identical head and tail i.e. αn = (F ,Φ,F), this entails that
F ⊂ SI (A) and that all arrows of Φ are of third type.

(h) Remark. – Conditions (b.i) and (b.ii) above say respectively that
there is no outgoing computation fork (i.e. two different elementary
steps) from one w ∈ F1 and that F2 is the image of F1 through the
arrows of Φ.

51 / 70

Alternative with an algebra cross: Crossed products

See [3]

We consider augmented algebras (A, ϵA) (resp. (B, ϵB)) with
A+ := ker(ϵA) (resp. B+ := ker(ϵB)) and an algebra cross (see below)

τB,A : B ⊗A → A⊗ B

Definition

Suppose given two objects A and B in k− AAU. A morphism
τ : B ⊗A → A⊗B in k−Mod is called an algebra cross if it satisfies the
following conditions

c1) τ(1B ⊗ a) = a⊗ 1B,

c2) τ ◦ (mB ⊗ IdA) = (IdA⊗mB) ◦ (τ ⊗ IdB) ◦ (IdB ⊗τ),

d1) τ(b ⊗ 1A) = 1A ⊗ b,

d2) τ ◦ (IdB ⊗mA) = (mA ⊗ IdB) ◦ (IdA⊗τ) ◦ (τ ⊗ IdA).
52 / 70

Alternative with an algebra cross: Link with the smash
product of enveloping algebras and iterated versions

4 When a Lie algebra is decomposed as a semi-direct product
g = h⋊ b, one has an algebra cross

τ : U(b)⊗ U(h) → U(h)⊗ U(b)

given by the action of b on h by derivations.

53 / 70

5 Let us call α : b → Der(h) the action by adg on h. It is a morphism
in k− Lie. We first extend (classically) α from b to
Der(U(h)) ⊂ End(U(h)). Moreover, we can also extend α as a
morphism αU : U(b) → End(U(h)) in k− AAU by the universal
property. Together with a bialgebra structure (U(b), µU , 1k,∆U , ϵU),
we then obtain a left U(b)-module algebra action
▷ : U(b)⊗ U(g1) → U(g1), b ⊗ a 7→ b ▷ a = αU (b)(a).. Now, the
k-module U(g1)⊗U(b) can be endowed with a smash (cross) product
structure U(h)♯U(b) = (U(h)⊗ U(b), 1k ⊗ 1k). The multiplication
being

m♯[(u1 ⊗ u2)⊗ (v1 ⊗ v2)] =
∑
(1)(2)

u1αU (u
(1)
2)(v1)⊗ u

(2)
2 v2. (26)

54 / 70

Alternative with an algebra cross/2.

6 We start with (A, <) a totally ordered alphabet. Let (Aa)a∈A be a
family of augmented algebras and, for b > a, an algebra cross

τb,a : Ab ⊗Aa → Aa ⊗Ab

The limit of the finite iterated cross-products can be realized by the
quotient T (M) /J where M is the formal direct sum M =

⊕
a∈AA+

a
and J be the two-sided ideal generated by the elements
mb ⊗ma − τb,a(mb ⊗ma). Let us consider:

1 the language of strictly increasing words SI (A) ⊂ A∗, formally

SI (A) := {w ∈ A∗ | for all j < |w |, w [j] < w [j + 1]}

2 the decomposition T (M) =
⊕

w∈A∗ Tw (M)
3 the space TSI (A) :=

⊕
w∈SI (A) Tw (M) where SI (A) ⊂ A∗ is the

language of strictly increasing words
4 the language of (weakly) increasing words WI (A) ⊂ A∗, formally

WI (A) := {w ∈ A∗ | for all 1 ≤ j < |w |, w [j] ≤ w [j + 1]}.

55 / 70

Alternative with an algebra cross/3.

We define
The graph of transitions Γtrans

(a) Vertices: All finite sets of words 2(A
∗).

(b) Elementary Steps: Their set will be noted ES . These steps are of
three types:
First type (Reduction of inversions) α = ({ubav}, φα, {uabv , ubv})
with a < b and

φα : xu ⊗ xb ⊗ xa ⊗ xv → xu ⊗ τ(xb ⊗ xa)⊗ xv (27)

where τ is the “twist” of the an algebra cross. We have

τ(A+
b ⊗A+

a) ⊂ A+
a ⊗A+

b + 1k ⊗A+
b +A+

a ⊗ 1k + 1k ⊗ 1k (28)

56 / 70

Alternative with an algebra cross/4.

1 therefore the result of the preceding reduction process belongs to
Tuabv (M)⊕ Tubv (M)⊕ Tuav (M)⊕ Tuv (M).
Second type (Reduction of powers) α = ({uapv}, φα, {uav}) with
p ≥ 2, by

φα : xu ⊗

p factors in U+(ga)︷ ︸︸ ︷
x
(1)
a ⊗ · · · ⊗ x

(p)
a ⊗xv → xu ⊗ x

(1)
a · · · x (p)a︸ ︷︷ ︸

multiplication

⊗xv(29)

the result of this reduction process is in Tuav (M).
Third type (Loops) α = ({w}, φα, {w}) for w ∈ SI (A) with
φα = IdTw .
All the preceding (linear) maps φα (of first, second and third types)
are extended by 0 outside of their definition domains (Tubav (M) for
the first type Tuapv (M) for the second and Tw (M), w ∈ SI (A) for
the third). 57 / 70

Alternative with an algebra cross/5.

2 Summarizing, all φα belong to End(T (M)).

(c) General arrows i.e. all arrows of Γtrans . Their set is denoted GA. It
is the set of triplets (F1,Φ,F2), with Fi ∈ 2(A

∗), Φ ∈ 2(ES) (finite sets
of elementary steps) such that

1 for all w ∈ F1 exists one and only one elementary step in α ∈ Φ with
t(α) = {w} (its tail).

2 F2 = ∪α∈Φh(α) (union of their heads).

(d) Tail and Head: For every general arrow α = (F1,Φ,F2), we set
t(α) = F1 and h(α) = F2. This definition is extended for elementary
arrows by (for α = (F1, φ,F2)) the same projections (i.e. t(α) = F1
and h(α) = F2).

58 / 70

Alternative with an algebra cross/6.

(e) Composition of Arrows: Composition of (F1,Φ1,F2) and
(F2,Φ2,F3) is (F1,Φ2 ◦ Φ1,F3) where

Φ2 ◦ Φ1 = {pr2(β) ◦ pr2(α) |β ∈ Φ2, α ∈ Φ1, t(β) ⊆ h(α)}.

(f) Paths: A path in Γtrans is a word P = α1 · · ·αn ∈ GA∗ such that, for
all j < |P| (= n), h(αj) = t(αj+1), we classically have t(P) = t(α1)
and h(P) = h(αn). The evaluation of P, Ev(P) is the composition of
all the linear maps of its arrows i.e. with P = α1 · · ·αn,

Ev(P) = pr2(αn) ◦ · · · ◦ pr2(α1) (30)

59 / 70

Alternative with an algebra cross/7.

3 Norm: For all w ∈ A∗, we set norm(w) = |w |+ Inv(w)) (where
Inv(w) = ♯{(i , j)|1 ≤ i < j ≤ |w | and w [i] > w [j]}). This definition
is at once extended to finite subsets of F ⊂ A∗ by
norm(F) = maxw∈F\SI (A) norm(w). We remark that, for all
elementary arrow α of the two first types, norm(t(α)) > norm(h(α))
and equality is got for the third type. Hence, for any general arrow
α = (F1,Φ,F2), norm(t(α)) > norm(h(α)) unless F1 = F2 ⊂ SI (A)
in which case we have equality and all arrows of Φ are of third type.

(g) Aperiodic paths: An aperiodic path is a path whose last arrow has
identical head and tail i.e. αn = (F ,Φ,F), this entails that
F ⊂ SI (A) and that all arrows of Φ are of third type.

(h) Remark. – Conditions (b.i) and (b.ii) above say respectively that
there is no outgoing computation fork (i.e. two different elementary
steps) from one w ∈ F1 and that F2 is the image of F1 through the
arrows of Φ.

60 / 70

Convergence result

4 The preceding computation scheme converges to proj. Indeed,
1 every sufficiently long path is aperiodic, more precisely
2 A path of Γcalc originating from F1

F1 → F2 → · · · · · · → Fn → Fn+1

(with arrows (Fi ,Φi ,Fi+1)) with n ≥ norm(t(F1)) is aperiodic
3 If t ∈ T (M) and supp(t) ⊂ F1, then the evaluation of the path applied

to t has value proj(t).

61 / 70

Concluding remarks and perspectives

1 Starting with a dichotomy of the alphabet of generators X = B + Z ,
we constructed an adapted semi-direct product in the free Lie algebra
Liek⟨X ⟩ (classical LE).

2 This semi-direct product is the prototype of all other semi-direct
products in the sense that any semi-direct product is the
homomorphic image of a (LE)

3 Iterated (LE) lead to a filtration of the alphabet which accounts for
repeated semi-direct products

4 When the ideal factors are free Lie algebras, we can get normal forms
in terms of words with conditions.

5 It will be interesting to extend the work done with Drinfeld-Kohno Lie
algebras to other configuration spaces taking into account that (a)
central filtrations provide Z-Lie algebras (b) our procedures preserve
torsion phenomena and hence cyclic direct sums with no bases.

62 / 70

Concluding remarks and perspectives/2

6 Remains to carefully pave the way(s) of contact points with the schools who
developed noncommutative Gröbner bases [2, 12], especially in the light of
Lie algebras like(

Liek⟨B∗Z ⟩
/
n.Liek⟨B∗Z ⟩

)
⋊ Liek⟨B⟩ having images like

g
/
n.h = h

/
n.h ⋊ b (31)

7 This can be applied to p-adic approximation, for example, with

DKk,n

/
pr .Liek⟨Tn⟩ = Liek⟨Tn⟩

/
pr .Liek⟨Tn⟩ ⋊ DKk,n−1 (32)

DKk,n+1 can be seen as a projective limit, but none of the factors have a
basis (although they have implementable normal forms).

8 Passing to enveloping algebras and then their iterated smash products helps
us understand what can be iterated crossed products a model that can be
deformed.

63 / 70

Thank you for your presence (close or remote) ...

and your attention.

64 / 70

Links

1 Categorical framework(s)

https://ncatlab.org/nlab/show/category

https://en.wikipedia.org/wiki/Category_(mathematics)

2 Universal problems

https://ncatlab.org/nlab/show/universal+construction

https://en.wikipedia.org/wiki/Universal_property

3 Paolo Perrone, Notes on Category Theory with examples from basic
mathematics, 181p (2020)
arXiv:1912.10642 [math.CT]

https://en.wikipedia.org/wiki/Abstract_nonsense

4 Heteromorphism

https://ncatlab.org/nlab/show/heteromorphism

5 D. Ellerman, MacLane, Bourbaki, and Adjoints: A Heteromorphic
Retrospective, David EllermanPhilosophy Department, University of
California at Riverside

65 / 70

Links/2

6 https://en.wikipedia.org/wiki/Category_of_modules

7 https://ncatlab.org/nlab/show/Grothendieck+group

8 Traces and hilbertian operators

https://hal.archives-ouvertes.fr/hal-01015295/document

9 State on a star-algebra

https://ncatlab.org/nlab/show/state+on+a+star-algebra

10 Hilbert module

https://ncatlab.org/nlab/show/Hilbert+module

66 / 70

(Short) bibliography. I

[1] J. S. Birman, Braid groups and their relationship to mapping class
groups Ph.D. thesis, New York University, 1968. Advised by W.
Magnus. MR 2617171

[2] L. A. Bokut and Y. Chen, Gröbner-Shirshov bases and their
calculation, Bull. Math. Sci. (2014) 4:325-395.

[3] A. Borowiec and W. Marcinek, On crossed product of algebras, J.
Math. Phys. 41 (2000) 6959-6975.

[4] P. Cartier and D. Foata, Problèmes combinatoires de commutation et
réarrangements Lecture Notes in Mathematics, 85, Berlin,
Springer-Verlag, (1969)
Electronic version
https://www.mat.univie.ac.at/~slc/books/cartfoa.html

67 / 70

https://www.mat.univie.ac.at/~slc/books/cartfoa.html

(Short) bibliography. II

[5] N. Bourbaki, Lie groups and Lie algebras, Chapters 1-3,
Springer-Verlag; (1989).

[6] G. Duchamp, Orthogonal projection onto the free Lie Algebra,
Theorerical Computer Science, 79 , 227-239 (1991)

[7] Gérard H. E. Duchamp, Christophe Tollu, Karol A. Penson and Gleb
A. Koshevoy, Deformations of Algebras: Twisting and Perturbations,
Séminaire Lotharingien de Combinatoire, B62e (2010).

[8] G. Duchamp, D.Krob, Free partially commutative structures, Journal
of Algebra, 156 , 318-359 (1993)

[9] Gérard Duchamp, Jean-Gabriel Luque, Lazard’s Elimination (in traces)
is finite-state recognizable, International Journal of Algebra and
Computation, 17, No. 01, pp. 53-60 (2007).
https://arxiv.org/abs/math/0607280

68 / 70

https://arxiv.org/abs/math/0607280

(Short) bibliography. III

[10] S. Eilenberg, Automata, languages and machines, vol A. Acad. Press,
New-York, 1974.

[11] B. Enriquez and V. V. Vershinin, On the lie algebras of surface pure
braid groups.
arXiv:0902.1963v1

[12] Gareth Alun Evans, Noncommutative Involutive Bases, Ph. Thesis,
University of Wales (Sept. 2005)
https://arxiv.org/abs/math/0602140v1

[13] J. E. Hopcroft and J. D. Ullmann, Introduction to Automata Theory,
Languages and Computation, Addison-Wesley (1979).

[14] J.E. Hopcroft, R. Motwani, J.D. Ullman, Introduction to Automata
Theory, Languages, and Computation, Addison-Wesley, 2007, 3e éd
(ISBN 978-0-32146225-1).

69 / 70

arXiv:0902.1963v1
https://arxiv.org/abs/math/0602140v1

(Short) bibliography. IV

[15] C. Krattenthaler, The Theory of Heaps and the Cartier–Foata
Monoid. In Commutation and Rearrangements by Pierre Cartier and
Dominique Foata [4].

[16] M.P. Schützenberger, On the definition of a family of automata, Inf.
and Contr., 4 (1961), 245-270.

[17] Kernels in nlab
https://ncatlab.org/nlab/show/kernel

70 / 70

https://ncatlab.org/nlab/show/kernel

