Miracle of integer eigenvalues

Example: start with a finite poset (P, \preccurlyeq) with $n \geqslant 1$ elements, e.g. in the case $n=3$:

Here is the list $L=L_{P}$ of linear extensions of $P=$ total orderings of P, in other words, monotonic maps $\phi:(P, \preccurlyeq) \rightarrow(\{1, \ldots, n\}, \leqslant)$ which are bijections of sets:

Construct a square matrix filled by permutations $\in S y m_{n}$, the entry at $(\phi, \psi) \in L_{P} \times L_{P}$ is $\phi \circ \psi^{-1} \in S y m_{n}:$

$$
\begin{aligned}
& \\
& \leadsto\left(\begin{array}{lll}
\nearrow \nearrow & \searrow \nearrow & \nearrow \searrow \\
\searrow \nearrow & \nearrow \nearrow & \nearrow \searrow \\
\nearrow \searrow & \searrow \nearrow & \nearrow \nearrow
\end{array}\right) \rightsquigarrow M_{P}=\left(\begin{array}{ccc}
t_{00} & t_{10} & t_{01} \\
t_{10} & t_{00} & t_{01} \\
t_{01} & t_{10} & t_{00}
\end{array}\right)
\end{aligned}
$$

Eigenvalues $\left(M_{P}\right)=\left(t_{00}+t_{01}+t_{10}, \quad t_{00}-t_{01}, \quad t_{00}-t_{10}\right)$

$$
\boldsymbol{\sim} \boldsymbol{\sim}=\left(\begin{array}{llllllllllllll}
a_{1} & a_{5} & a_{7} & a_{3} & a_{9} & a_{2} & a_{6} & a_{8} & a_{3} & a_{9} & a_{5} & a_{2} & a_{8} & a_{4}
\end{array} a_{10} a_{6}\right.
$$

Eigenvalues of $M_{P}=\left(a_{1}-a_{4}-a_{7}+a_{10}\right)_{3}, a_{1}-a_{4}+a_{7}-a_{10},\left(a_{1}+a_{2}-a_{5}-a_{6}\right)_{2},\left(a_{1}-a_{2}-a_{5}+a_{6}\right)_{2}$,

$$
\begin{gathered}
\left(a_{1}-a_{2}-a_{3}+a_{4}+a_{7}-a_{8}-a_{9}+a_{10}\right)_{2},\left(a_{1}-a_{2}-a_{3}+a_{4}-a_{7}+a_{8}+a_{9}-a_{10}\right)_{2}, \\
\left(a_{1}-a_{4}+a_{5}-a_{6}+a_{7}-a_{10}\right)_{2}, a_{1}+2 a_{2}+2 a_{3}+a_{4}-a_{7}-2 a_{8}-2 a_{9}-a_{10}, \\
a_{1}+2 a_{2}+2 a_{3}+2 a_{5}+2 a_{6}+a_{7}+2 a_{8}+2 a_{9}+a_{10}
\end{gathered}
$$

Theorem: for any finite poset (P, \preccurlyeq) all eigenvalues of M_{P} are integer linear combinations of variables t_{ϵ}, where $\epsilon \in\{0,1\}^{n}, \quad n=\# P$.

In general, matrix M_{P} can be written as the linear combination of matrices $M_{P, \epsilon}$ with the entries equal to 0 or 1 :

$$
M_{P}=\sum_{\epsilon \in\{0,1\}^{n}} t_{\epsilon} \cdot M_{P, \epsilon}
$$

Individual matrices $M_{P, \epsilon}$ do not commute with each other, so the fact that the eigenvalues are linear functions (instead of algebraic functions) in parameters $\left(t_{\epsilon}\right)$ is surprising.

The matrix M_{P} (as well as each of summands $M_{P, \epsilon}$ is stochastic, i.e. sums of all rows are the same \Longleftrightarrow the column vector $(1,1, \ldots, 1)$ is its eigenvector.

The explanation of the miracle of integer eigenvalues comes from the existence of certain filtration

$$
A^{\leqslant 0} \subseteq A^{\leqslant 1} \subseteq \cdots \subseteq A^{\leq \frac{n(n-1)}{2}}=A
$$

on the algebra A of functions on L_{P} preserved by all operators $M_{P, \epsilon}$ and such that the induced operators on associated graded spaces $A^{\leqslant i} / A^{\leqslant(i-1)}$ commute with each other.

The space $A^{\leqslant 0}$ is 1 -dimensional and spanned by the constant function 1 on L_{P} (hence the stochasticity of M_{P}).

The next space $A^{\leqslant 1}$ is spanned by $A^{\leqslant 0}$ and all functions $f_{a, b}$ on L_{P} of the form

$$
f_{a, b}: \phi \in L_{P} \mapsto \operatorname{sign}(\phi(a)-\phi(b)) \in\{-1,+1\} \subset \mathbb{R}, \quad \forall a \neq b \in P
$$

Finally, the filtration is strictly multiplicative, i.e.

$$
A^{\leq i}=\underbrace{A^{\leqslant 1} \cdot A^{\leqslant 1} \cdot \ldots \cdot A^{\leqslant 1}}_{i \text { times }}
$$

Proof:

First, we will construct certain "universal" family of matrices acting on functions on a finite set, such they are preserving certain strictly multiplicative filtration and commute on the associated graded spaces.

For a given $N \geqslant 1$ consider the set V_{N} of vertices of an N-dimensional cube, it has 2^{N} elements. For any face of the cube we have a natural idempotent map (retraction) from V_{N} to itself, contracting V_{N} to the subset of vertices lying in the given face:

$$
F_{N} \rightarrow \operatorname{Maps}\left(V_{N}, V_{N}\right), \quad F_{N}:=\left\{\text { faces of } V_{N}\right\}, \quad \# F_{N}=3^{N}
$$

(in fact F_{N} is a monoid acting on V_{N}).

Lemma: operators on the space $A=\mathbb{R}^{V_{N}}$ of functions on V_{N} induced by elements of F_{N} preserve the filtration given by the restriction of polynomials of degree $\leqslant 0, \leqslant 1, \leqslant 2, \ldots$ on $\mathbb{R}^{N} \supset V_{N}$, and the corresponding operators on associated graded spaces commute with each other.

Proof: Enough to check the case $N=1$: we get 3 operators acting on $\mathbb{R}^{2}=\mathbb{R}^{V_{1}}$

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right), \quad\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right)
$$

preserving the 1-dimensional subspace spanned by the constant function 1.

Now consider the case $N=\binom{n}{2}=\frac{n(n-1)}{2}$, and an abstract n-element set S.
The set of vertices V_{N} will be the set of tournaments on S, i.e. all possible orientations of edges on the complete graph with the vertices equal to S.

Definition: a filtration on finite set S is a surjective map f:S $\rightarrow\{1, \ldots, l\}$ for some $1 \leqslant l \leqslant \# S$.

Each filtration gives a face of the cube of tournaments, the corresponding retraction forces all edges for pairs $(a, b) \in S^{2}, a \neq b$ such that $\mathrm{f}(a)>\mathrm{f}(b)$ to be directed from a to b, i.e. $a \rightarrow b$.

Among all $2^{\frac{n(n-1)}{2}}$ tournaments we have a class of $n!$ special ones corresponding to the total orderings of S.
Fact 1 : retractions on tournaments corresponding to filtrations preserve the class of total orderings.

Hence, we get a smaller class of matrices (of smaller size!) with the integral eigenvalue property.

Finally, if S is endowed with a partial order \preccurlyeq (i.e. it is a poset), which we now denote by $P:=S$, we have even smaller class of

- filtrations compatible with $\preccurlyeq,(\Longleftrightarrow$ monotonic surjections $P \rightarrow\{1, \ldots, l\})$, as well as
- total orderings compatible with \preccurlyeq, or equivalently, linear extensions L_{P} of \preccurlyeq.

Fact 2: retractions corresponding to filtrations compatible with \preccurlyeq, preserve the class of total orderings compatible with \preccurlyeq.

Hence, we get operators T_{f} with the integer eigenvalue property corresponding to the filtrations f of the poset P.

For any ordered partition $n=n_{1}+\cdots+n_{l}, \quad n_{i} \geqslant 1, l \geqslant 1$ define

$$
T_{n_{1}, \ldots, n_{l}}:=\sum_{\substack{\mathrm{f}: P \rightarrow\{1, \ldots, l\} \\ \# \mathrm{f}^{-1}(i)=n_{i} \forall i=1, \ldots, l}} T_{\mathrm{f}}
$$

In this way we get 2^{n-1} operators acting on functions on L_{P}. These operators are not exactly our operators M_{ϵ} which we previously constructed, but closely related. Namely, both types of indices $\left(n_{1}, \ldots, n_{l}\right)$ and $\epsilon=\left(\epsilon_{1}, \ldots, \epsilon_{n-1}\right) \in\{0,1\}^{n-1}$ we can naturally identify with the subsets $J \subseteq\{1, \ldots, n-1\}$:

$$
\left.\begin{array}{rl}
\left(n_{1}, \ldots, n_{l}\right) & \mapsto J
\end{array}\right)=\left\{n_{1}, n_{1}+n_{2}, \ldots, n_{1}+\cdots+n_{l-1}\right\} \subseteq\{1, \ldots, n-1\}, ~\left(\epsilon_{1}, \ldots, \epsilon_{n-1}\right) \mapsto J=\left\{i \in\{1, \ldots, n-1\} \mid \epsilon_{i}=1\right\}
$$

Then one has

$$
T_{J}=\sum_{J^{\prime} \subseteq J} M_{J^{\prime}} \quad \Longrightarrow \quad M_{J}=\sum_{J^{\prime} \supseteq J}(-1)^{\# J^{\prime}-\# J} \cdot T_{J^{\prime}}
$$

This proves the Theorem.

Special case: the trivial order on a finite set $S, \# S=n$.
Then $\# L_{S}=n$!, and the group $\operatorname{Aut}(S) \simeq S y m_{n}$ commutes with M_{S}. Hence for each isomorphism class of irreducible representations of $S y m_{n}$ (i.e. a partition λ of n) we get a non-empty class of eigenvalues $\subset \oplus_{\epsilon} \mathbb{Z} \cdot t_{\epsilon}$ depending on λ.

Surprisingly, there are a lot of coincidences, and we get all together again only $p(n)$ different eigenvalues!
This means that we have a decomposition of the regular n !-dimensional representation of $S y m_{n}$ into the sum of (highly reducible) subrepresentations R_{λ} labeled by partitions $\lambda \vdash n$.
It turns out that each R_{λ} has dimension equal to the cardinality of the conjugacy class $C_{\lambda} \subset S_{n}$ corresponding to λ.
Consider the centralizer of the element $(1)^{a_{1}}(2)^{a_{2}} \cdots \in S y m_{n}$ in conjugacy class C_{λ}, where $\sum_{k} a_{k} \cdot k=n$:

$$
\operatorname{Cent}_{a_{1}, a_{2}, \ldots}=\prod_{k \geqslant 1} \operatorname{Sym}_{a_{k}} \ltimes(\mathbb{Z} / k \mathbb{Z})^{a_{k}}, \quad C_{\lambda}=\operatorname{Sym}_{n} / \text { Cent }_{a_{1}, a_{2}, \ldots}
$$

There is a canonical 1-dimensional representation (character)

$$
\begin{gathered}
\chi=\chi_{a_{1}, a_{2}, \ldots}: \text { Cent }_{a_{1}, a_{2}, \ldots} \rightarrow \mathbb{C}^{\times}: \\
\chi_{\mid S y m_{a_{k}}}=1, \quad \chi_{\mid(\mathbb{Z} / k \mathbb{Z})^{a_{k}}}:\left(u_{1}, \ldots, u_{a_{k}}\right) \mapsto e^{\frac{2 \pi i}{k}\left(u_{1}+\cdots+u_{a_{k}}\right)}
\end{gathered}
$$

Then

$$
R_{\lambda}=\operatorname{Ind}_{\text {Cent }_{a_{1}, a_{2}, \ldots}^{S y m_{n}}}^{S} \chi_{a_{1}, a_{2}, \ldots}
$$

