Miracle of integer eigenvalues

Example: start with a finite poset (P, <) with n > 1 elements, e.g. in the case n = 3:

/
Here is the list L = L p of linear extensions of P=total orderings of P, in other words,
monotonic maps ¢ : (P, <) — ({1,...,n}, <) which are bijections of sets:
/ / /

1 2 2 1 1 3

Construct a square matrix filled by permutations < Sym,, the entry at
(p,9) € Lp x Lpis o™ € Symy,:
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. ) 123 213 132
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Mp — ag ag az a9 az a5 ay ay a9 a3 as ajpp a4 ag a2 as
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ag ag az ajp a4 a5 ag a3 ay as ay ag az ag ag a2
as a3 a9 a2 ag ag Qa4 aip a2 ag ag ay ay az ag as
as a9 agz ag az ag a1 a4 ag az as ary air ag asg as
ag a4 aip a2 ag a5 az ag az ag ag az ag ai; ar as

ag aip a4 ag az as ag az ag a2 ag ag az ay a; as

\a6 aip a4 ag a2 a5 a9 a3 ag ae a2 a9 a3 ar as al]
Eigenvalues Of MP = (a1 — a4 — a7+ a10)3 , A1 — a4 + a7 — ajo , (a1 +as — a5 — a6)2 , (a1 —as —as + 0,6)2 ,
(@1 —az —as +as+ar —ag —ag+a)2, (a1 —az —az+ag — a7 +ag+ag —ap)2,
(a1 — a4 + a5 —ag + a7 — ayg)a , a1 + 2as + 2a3 + a4 — a7 — 2ag — 2a9 — ayg ,

a1 + 2a9 + 2a3 + 2a5 + 2a¢ + a7 + 2ag + 2a9 + aqg



Theorem: for any finite poset (P, <) all eigenvalues of Mp are integer linear

combinations of variables t., where € € {0, 1}", n = #P.

In general, matrix Mp can be written as the linear combination of matrices Mp  with

the entries equal to O or 1:

MP — Z le - MP,e
ec{0,1}"

Individual matrices Mp,. do not commute with each other, so the fact that the
eigenvalues are linear functions (instead of algebraic functions) in parameters (t.) is

surprising.

The matrix Mp (as well as each of summands Mp . is stochastic, i.e. sums of all rows

are the same <= the column vector (1,1, ...,1) is its eigenvector.



The explanation of the miracle of integer eigenvalues comes from the existence of

certain filtration

n(n—1)

A<0gA<1g---gA§ 7 = A

on the algebra A of functions on L p preserved by all operators Mp . and such that the

induced operators on associated graded spaces A< / AS(—1) commute with each other.

The space A< is 1-dimensional and spanned by the constant function 1 on Lp (hence
the stochasticity of Mp).

The next space AS! is spanned by AS? and all functions f,; on Lp of the form
fap: ¢ € Lp— sign(é(a) — ¢(b)) € {—1,+1} CR, Va#beP
Finally, the filtration is strictly multiplicative, i.e.

<i _ <1 <1 <1
ASi= A<t gt 49!

WV
7 times




Proof:

First, we will construct certain "universal" family of matrices acting on functions on a
finite set, such they are preserving certain strictly multiplicative filtration and commute

on the associated graded spaces.

For a given N > 1 consider the set Vi of vertices of an N-dimensional cube, it has 2%
elements. For any face of the cube we have a natural idempotent map (retraction) from

Vi to itself, contracting Viy to the subset of vertices lying in the given face:
Fn — Maps(Vy, Vi), Fy := {facesof Vy}, #Fy=3"

(in fact F'y is a monoid acting on V).



Lemma: operators on the space A = R"" of functions on Vy induced by elements of
Fn preserve the filtration given by the restriction of polynomials of degree
<0,<1,<2,...0on RY O Vy, and the corresponding operators on associated graded

spaces commute with each other.

Proof: Enough to check the case N = 1: we get 3 operators acting on R? = R"

G 6 6

preserving the 1-dimensional subspace spanned by the constant function 1.



Now consider the case N = (’g’) — “(”2_1)

The set of vertices Vi will be the set of tournaments on S, i.e. all possible orientations

, and an abstract n-element set S.

of edges on the complete graph with the vertices equal to S.

Definition: a filtration on finite set S is a surjective map f: S — {1,...,l} for some
1 < I #S.

Each filtration gives a face of the cube of tournaments, the corresponding retraction
forces all edges for pairs (a,b) € S?, a # b such that f(a) > f(b) to be directed from a
to b, i.e.a — b.

n(n—1)

Among all 272 tournaments we have a class of n! special ones corresponding to the
total orderings of S.
Fact 1 : retractions on tournaments corresponding to filtrations preserve the class of

total orderings.

Hence, we get a smaller class of matrices (of smaller size!) with the integral eigenvalue

property.



Finally, if S is endowed with a partial order < (i.e. it is a poset), which we now denote

by P := §, we have even smaller class of

e filtrations compatible with <, ( <= monotonic surjections P —» {1,...,1}),

as well as

e total orderings compatible with <, or equivalently, linear extensions L p of <.

Fact 2: retractions corresponding to filtrations compatible with <, preserve the class of

total orderings compatible with <.

Hence, we get operators 77 with the integer eigenvalue property corresponding to the

filtrations f of the poset P.

For any ordered partitionn =nqy 4+ ---+mn;, n; > 1,1 > 1 define

Tnl,...,nl ‘= Z Tf

f:P—{1,...,l} monotonic

#£1(1)=n, Vi=1,.. .l



In this way we get 2”1 operators acting on functions on L p. These operators are not
exactly our operators M, which we previously constructed, but closely related. Namely,
both types of indices (n1,...,n;) and € = (€1,...,€,-1) € {0,1}" ! we can naturally
identify with the subsets J C {1,...,n — 1}:

(n1,...,n) = J ={ny,n1+ng,...,n1+---+n_1} C{1,...,n—1}
(€1, n1) = J={i€{l,...,n— 1} =1}

Then one has

T; = Z M; — M;= Z(_l)#J’—#J.TJ,
J'CJ J'2J

This proves the Theorem. B



Special case: the trivial order on a finite set S, #S5 = n.

Then #Lg = n!, and the group Aut(S) ~ Sym,, commutes with Ms. Hence for each
isomorphism class of irreducible representations of Sym, (i.e. a partition A of n) we

get a non-empty class of eigenvalues C &.Z - t. depending on .

Surprisingly, there are a lot of coincidences, and we get all together again only p(n)
different eigenvalues!

This means that we have a decomposition of the regular n!-dimensional representation
of Sym,, into the sum of (highly reducible) subrepresentations R) labeled by partitions
A n.

It turns out that each R) has dimension equal to the cardinality of the conjugacy class
C)y C S, corresponding to .

Consider the centralizer of the element (1)%(2)%--- € Sym,, in conjugacy class C,

where ) |, ay - k = n:

Centa17a27. o H Symak Z/kZ) C)\ — Symn/centa1,a2a---



There is a canonical 1-dimensional representation (character)

X — Xa1,a2,... . Cental,ag,... — CX .

. 21 (ug 4+ -+,
X|Syma, = 1, X|@/mzyew * (U1, .oy Ug,) —> €F (u1 0

Then

Sym,
R)\ = Ind Xai,a2,. ..

Cental,a2,. .



