Miracle of integer eigenvalues

Example: start with a finite poset (P, \preceq) with $n \geqslant 1$ elements, e.g. in the case n = 3:

Here is the list $L = L_P$ of *linear extensions* of P=total orderings of P, in other words, monotonic maps $\phi: (P, \preccurlyeq) \to (\{1, \ldots, n\}, \leqslant)$ which are *bijections* of sets:

Construct a square matrix filled by permutations $\in Sym_n$, the entry at $(\phi, \psi) \in L_P \times L_P$ is $\phi \circ \psi^{-1} \in Sym_n$:

$$\begin{bmatrix} 3 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 3 \\ 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 3 \\ 2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 \\ 1 & 3 \end{bmatrix}$$

$$ext{Eigenvalues}(M_P) = (t_{00} + t_{01} + t_{10}, \quad t_{00} - t_{01}, \quad t_{00} - t_{10})$$

$$M_P = egin{bmatrix} a_1 & a_5 & a_7 & a_3 & a_9 & a_2 & a_6 & a_8 & a_3 & a_9 & a_5 & a_2 & a_8 & a_4 & a_{10} & a_6 \ a_5 & a_1 & a_7 & a_3 & a_9 & a_6 & a_2 & a_8 & a_3 & a_9 & a_5 & a_2 & a_8 & a_4 & a_{10} & a_6 \ a_5 & a_7 & a_1 & a_9 & a_3 & a_6 & a_8 & a_2 & a_9 & a_3 & a_5 & a_8 & a_2 & a_{10} & a_4 & a_6 \ a_5 & a_3 & a_9 & a_1 & a_7 & a_6 & a_2 & a_8 & a_4 & a_{10} & a_6 & a_2 & a_8 & a_3 & a_9 & a_5 \ a_5 & a_9 & a_3 & a_7 & a_1 & a_6 & a_8 & a_2 & a_{10} & a_4 & a_6 & a_8 & a_2 & a_9 & a_3 & a_5 \ a_2 & a_6 & a_8 & a_3 & a_9 & a_1 & a_5 & a_7 & a_3 & a_9 & a_5 & a_4 & a_{10} & a_2 & a_8 & a_6 \ a_6 & a_2 & a_8 & a_3 & a_9 & a_5 & a_1 & a_7 & a_3 & a_9 & a_5 & a_4 & a_{10} & a_2 & a_8 & a_6 \ a_6 & a_2 & a_8 & a_4 & a_{10} & a_5 & a_3 & a_9 & a_5 & a_4 & a_{10} & a_2 & a_8 & a_6 \ a_6 & a_8 & a_2 & a_9 & a_3 & a_5 & a_7 & a_1 & a_9 & a_3 & a_5 & a_{10} & a_4 & a_8 & a_2 & a_6 \ a_6 & a_8 & a_2 & a_{10} & a_4 & a_5 & a_9 & a_3 & a_7 & a_1 & a_5 & a_9 & a_3 & a_8 & a_2 & a_6 \ a_6 & a_8 & a_2 & a_{10} & a_4 & a_5 & a_9 & a_3 & a_7 & a_1 & a_9 & a_3 & a_8 & a_2 & a_6 \ a_6 & a_8 & a_2 & a_{10} & a_4 & a_5 & a_9 & a_3 & a_7 & a_5 & a_1 & a_9 & a_3 & a_8 & a_2 & a_6 \ a_6 & a_8 & a_2 & a_{10} & a_4 & a_5 & a_9 & a_3 & a_7 & a_5 & a_1 & a_9 & a_3 & a_8 & a_2 & a_6 \ a_6 & a_4 & a_{10} & a_2 & a_8 & a_6 & a_4 & a_{10} & a_2 & a_8 & a_6 & a_1 & a_7 & a_3 & a_9 & a_5 \ a_5 & a_9 & a_3 & a_8 & a_2 & a_6 & a_1 & a_1 & a_9 & a_3 & a_5 \ a_6 & a_4 & a_{10} & a_2 & a_8 & a_6 & a_1 & a_7 & a_3 & a_9 & a_5 \ a_6 & a_4 & a_{10} & a_2 & a_8 & a_6 & a_1 & a_7 & a_3 & a_9 & a_1 & a_7 & a_5 \ a_6 & a_{10} & a_4 & a_8 & a_2 & a_5 & a_9 & a_3 & a_9 & a_2 & a_6 & a_9 & a_3 & a_7 & a_1 & a_5 \ a_6 & a_{10} & a_4 & a_8 & a_2 & a_5 & a_9 & a_3 & a_9 & a_2 & a_6 & a_9 & a_3 & a_7 & a_1 & a_5 \ a_6 & a_{10} & a_4 & a_8 & a_2 & a_5 & a_9 & a_3 & a_8 & a_6 & a_2 & a_9 & a_3 & a_7 & a_1 & a_5 \ a_6 & a_{10} & a_4 & a_8 & a_2 & a_5 & a_9 & a_3 & a_8 & a_6 & a_2 & a_9 & a_3 & a_7 & a_1 & a_5 \ a_6 & a_{10} & a_4 & a_8 & a_2 & a_5$$

$$egin{align*} ext{Eigenvalues of M_P} = (a_1 - a_4 - a_7 + a_{10})_3 \,, \, a_1 - a_4 + a_7 - a_{10} \,, \, (a_1 + a_2 - a_5 - a_6)_2 \,, \, (a_1 - a_2 - a_5 + a_6)_2 \,, \ (a_1 - a_2 - a_3 + a_4 + a_7 - a_8 - a_9 + a_{10})_2 \,, \, (a_1 - a_2 - a_3 + a_4 - a_7 + a_8 + a_9 - a_{10})_2 \,, \ (a_1 - a_4 + a_5 - a_6 + a_7 - a_{10})_2 \,, \, a_1 + 2a_2 + 2a_3 + a_4 - a_7 - 2a_8 - 2a_9 - a_{10} \,, \ a_1 + 2a_2 + 2a_3 + 2a_5 + 2a_6 + a_7 + 2a_8 + 2a_9 + a_{10} \,. \end{gathered}$$

Theorem: for any finite poset (P, \preccurlyeq) all eigenvalues of M_P are **integer** linear combinations of variables t_{ϵ} , where $\epsilon \in \{0,1\}^n$, n=#P.

In general, matrix M_P can be written as the linear combination of matrices $M_{P,\epsilon}$ with the entries equal to 0 or 1:

$$M_P = \sum_{\epsilon \in \{0,1\}^n} t_\epsilon \cdot M_{P,\epsilon}$$

Individual matrices $M_{P,\epsilon}$ do not commute with each other, so the fact that the eigenvalues are *linear functions* (instead of *algebraic functions*) in parameters (t_{ϵ}) is surprising.

The matrix M_P (as well as each of summands $M_{P,\epsilon}$ is *stochastic*, i.e. sums of all rows are the same \iff the *column* vector $(1,1,\ldots,1)$ is its eigenvector.

The explanation of the miracle of integer eigenvalues comes from the existence of certain filtration

$$A^{\leqslant 0} \subseteq A^{\leqslant 1} \subseteq \cdots \subseteq A^{\leq rac{n(n-1)}{2}} = A^{-1}$$

on the algebra A of functions on L_P preserved by all operators $M_{P,\epsilon}$ and such that the induced operators on associated graded spaces $A^{\leqslant i}/A^{\leqslant (i-1)}$ **commute** with each other.

The space $A^{\leq 0}$ is 1-dimensional and spanned by the constant function 1 on L_P (hence the stochasticity of M_P).

The next space $A^{\leqslant 1}$ is spanned by $A^{\leqslant 0}$ and all functions $f_{a,b}$ on L_P of the form

$$f_{a,b}: \phi \in L_P \mapsto \operatorname{sign}(\phi(a) - \phi(b)) \in \{-1, +1\} \subset \mathbb{R}, \qquad orall \, a
eq b \in P$$

Finally, the filtration is *strictly multiplicative*, i.e.

$$A^{\leq i} = \underbrace{A^{\leqslant 1} \cdot A^{\leqslant 1} \cdot \ldots \cdot A^{\leqslant 1}}_{i \text{ times}}$$

Proof:

First, we will construct certain "universal" family of matrices acting on functions on a finite set, such they are preserving certain strictly multiplicative filtration and commute on the associated graded spaces.

For a given $N \geqslant 1$ consider the set V_N of vertices of an N-dimensional cube, it has 2^N elements. For any *face* of the cube we have a natural idempotent map (retraction) from V_N to itself, contracting V_N to the subset of vertices lying in the given face:

$$F_N o \operatorname{Maps}(V_N, V_N), \qquad F_N := \{ ext{faces of } V_N \}, \quad \# F_N = 3^N$$

(in fact F_N is a monoid acting on V_N).

Lemma: operators on the space $A = \mathbb{R}^{V_N}$ of functions on V_N induced by elements of F_N preserve the filtration given by the restriction of *polynomials* of degree $0, \le 1, \le 2, \ldots$ on $\mathbb{R}^N \supset V_N$, and the corresponding operators on associated graded spaces *commute* with each other.

Proof: Enough to check the case N=1: we get 3 operators acting on $\mathbb{R}^2=\mathbb{R}^{V_1}$

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$$

preserving the 1-dimensional subspace spanned by the constant function 1.

Now consider the case $N=\binom{n}{2}=\frac{n(n-1)}{2}$, and an abstract n-element set S.

The set of vertices V_N will be the set of *tournaments* on S, i.e. all possible orientations of edges on the complete graph with the vertices equal to S.

Definition: a *filtration* on finite set S is a surjective map $f: S \rightarrow \{1, ..., l\}$ for some $1 \le l \le \#S$.

Each filtration gives a face of the cube of tournaments, the corresponding retraction forces all edges for pairs $(a,b) \in S^2$, $a \neq b$ such that f(a) > f(b) to be directed from a to b, i.e. $a \to b$.

Among all $2^{\frac{n(n-1)}{2}}$ tournaments we have a class of n! special ones corresponding to the *total orderings* of S.

Fact 1: retractions on tournaments corresponding to filtrations *preserve* the class of total orderings.

Hence, we get a smaller class of matrices (of smaller size!) with the integral eigenvalue property.

Finally, if S is endowed with a partial order \leq (i.e. it is a poset), which we now denote by P := S, we have even smaller class of

- filtrations compatible with \preccurlyeq , (\iff monotonic surjections $P \twoheadrightarrow \{1,\ldots,l\}$), as well as
- *total orderings compatible with* \leq , or equivalently, linear extensions L_P of \leq .

Fact 2: retractions corresponding to filtrations compatible with \preccurlyeq , preserve the class of total orderings compatible with \preccurlyeq .

Hence, we get operators T_f with the integer eigenvalue property corresponding to the filtrations f of the poset P.

For any ordered partition $n=n_1+\cdots+n_l,\quad n_i\geqslant 1,\,l\geqslant 1$ define

$$T_{n_1,\ldots,n_l} := \sum_{egin{array}{c} \mathsf{f}:P os\{1,\ldots,l\} ext{ monotonic} \ \#\mathsf{f}^{-1}(i)=n_i \ orall i=1,\ldots,l \end{array}} T_i$$

In this way we get 2^{n-1} operators acting on functions on L_P . These operators are *not* exactly our operators M_{ϵ} which we previously constructed, but closely related. Namely, both types of indices (n_1, \ldots, n_l) and $\epsilon = (\epsilon_1, \ldots, \epsilon_{n-1}) \in \{0, 1\}^{n-1}$ we can naturally identify with the *subsets* $J \subseteq \{1, \ldots, n-1\}$:

$$(n_1,\ldots,n_l)\mapsto J=\{n_1,n_1+n_2,\ldots,n_1+\cdots+n_{l-1}\}\subseteq \{1,\ldots,n-1\}$$

$$(\epsilon_1,\ldots,\epsilon_{n-1})\mapsto J=\left\{i\in\{1,\ldots,n-1\}|\,\epsilon_i=1
ight\}$$

Then one has

$$T_J = \sum_{J' \subseteq J} M_{J'} \quad \implies \quad M_J = \sum_{J' \supseteq J} (-1)^{\#J' - \#J} \cdot T_{J'}$$

This proves the Theorem. ■

Special case: the *trivial order* on a finite set S, #S = n.

Then $\#L_S=n!$, and the group $\operatorname{Aut}(S)\simeq Sym_n$ commutes with M_S . Hence for each isomorphism class of irreducible representations of Sym_n (i.e. a partition λ of n) we get a non-empty class of eigenvalues $\subset \oplus_{\epsilon} \mathbb{Z} \cdot t_{\epsilon}$ depending on λ .

Surprisingly, there are a lot of coincidences, and we get all together again *only* p(n) different eigenvalues!

This means that we have a decomposition of the regular n!-dimensional representation of Sym_n into the sum of (highly reducible) subrepresentations R_{λ} labeled by partitions $\lambda \vdash n$.

It turns out that each R_{λ} has dimension equal to the cardinality of the conjugacy class $C_{\lambda} \subset S_n$ corresponding to λ .

Consider the centralizer of the element $(1)^{a_1}(2)^{a_2}\cdots \in Sym_n$ in conjugacy class C_λ , where $\sum_k a_k \cdot k = n$:

$$Cent_{a_1,a_2,\dots} = \prod_{k\geqslant 1} Sym_{a_k} \ltimes (\mathbb{Z}/k\mathbb{Z})^{a_k}, \qquad C_{\lambda} = Sym_n/Cent_{a_1,a_2,\dots}$$

There is a canonical 1-dimensional representation (character)

$$\chi=\chi_{a_1,a_2,\dots}:Cent_{a_1,a_2,\dots} o \mathbb{C}^ imes:
onumber \ \chi_{|Sym_{a_k}}=1,\quad \chi_{|(\mathbb{Z}/k\mathbb{Z})^{a_k}}:(u_1,\dots,u_{a_k})\mapsto e^{rac{2\pi\mathrm{i}}{k}(u_1+\dots+u_{a_k})}$$

Then

$$R_{\lambda} = \operatorname{Ind}_{Cent_{a_1,a_2,\dots}}^{Sym_n} \chi_{a_1,a_2,\dots}$$