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T J

F(t,u) =1+ tu(F(t, u)® + (2F(t,u) + F(t, 1))

hard particles on planar maps
u—1

F(t,u) = x —y + G(t,u) + tu (uF(t, u)? + 7“”““)*(“”)

G(t,u) =y + tsu(F(t, u)G(t, u) + 7‘;“’”’:16“’”>
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How to relate these combinatorial objects to such equations?

rooted planar maps
F(t,u)=1+ tu(uF(t, u)? + M) [Tutte '68]

u—1

/
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In this talk
Solving = Classifying the initial series F(t, 1)
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In this talk
Solving = Classifying the initial series F(t, 1)
+ Computing a witness of this classification

(e.g. R €Q[z,t]st. R(F(t,1),t) =0)

Algebraic \
Rational Going back to our planar maps...
1i6t F(t,1) = 1+ 2t + 9t* + 54t + 378" + - - € Q[[t]]
1oaees annihilated by R = 27t22% + (1 — 18t)z + 16t — 1 € Q[z, ]
(1—t)5 — (1+2t)% From R:
e (Recurrence) ap =1 and (n+3)asr1 —6(2n+1)a, =0,
3"(2n)!

e (Closed-form) a, = 2n(n+2)],

12"
Vrns'

e (Asymptotics) a, ~ 2 when n — 4o0.
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of the talk

Objectives

e Introduce so-called Discrete Differential Equations (DDEs),

e Determine the nature of the solutions of DDEs,

Provide an efficient algorithm for computing a witness,

Implementation in action ~ Solving a problem previously out of reach.
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Objectives

e Introduce so-called Discrete Differential Equations (DDEs),
e Determine the nature of the solutions of DDEs,
e Provide an efficient algorithm for computing a witness,

e Implementation in action ~ Solving a problem previously out of reach.

Plan

| Perform the above points for DDEs [Bostan, N., Safey El Din '23]
Il Perform the above points for systems of DDEs [N., Yurkevich '23]
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Objects of interest:

e B

Definition
Given f € Q[u], k > 1, and Q € Q[yo, ..., Yk, t, u],

F=f+t-Q(F,AF,...,AF,t u) (DDE)

is a Discrete Differential Equation, where A : F € Q[u][[t]] — w € Q[u][[t]], and
where for £ > 1 we define A = Afo A,
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e B

Definition
Given f € Q[u], k > 1, and Q € Q[yo, ..., Yk, t, u],

F=f+t-Q(F,AF,...,AF,t u) (DDE)

is a Discrete Differential Equation, where A : F € Q[u][[t]] — w € Q[u][[t]], and
where for £ > 1 we define A = Afo A,

Going back to our 3-constellations... Theorem
F(t,u) — F(t,1) [Bousquet-Mélou, Jehanne '06]

v _ L The unique solution in Q[u][[t]]
+ F(t,u) — F(t,1) — (u—1)0uF(t, 1) of (DDE) is algebraic over Q(t, u).
(u—1)

F(t,u) =1+ tu(F(t, u)® 4 (2F(t, u) + F(t,1))

J

~~» Constructive proof =—> algorithm
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and 's algorithm

Input: F(t,u) =1+ tu<F(t, u)® + (2F(t, u) + F(£,1)) EEu=FED 4 F("“)‘F“’(lu’jf,”{”‘””F(*’”>,

Output: 81t2F(t,1)* — 9t(9t — 2)F(t, 1)? + (27t* — 66t + 1)F(t,1) — 3t + 47t — 1 = 0.
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e Show that there exist distinct Uy, U, € |J @[[t%]] s.t. O«P(F(t,U), Ui, F(t,1),0,F(t,1)) =0,

d>1
e Set up
,0uF(t,1)) =0,

~

P(F(t, U), Ui, F(t,1

For 1 <i <2, ¢0.P(F(t,U), U, F(t,1),0,F(t,1)) =0,
AuP(F(t,U;), Ui, F(t,1),0,F(t,1)) =0,
m-(Up—U)—1=0.
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Quantitative estimates with

P(F(t, U), F(t,1),0uF(t,1),t,U;) =0,
S For 1 <i <2, 0.P(F(t,U;), F(t,1),0.F(t,1),t,U;) =0, U — U #0.
OuP(F(t,U;), F(t,1),0.F(t,1),t,U;) =0,
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P(F(t, U), F(t,1),0uF(t,1),t,U;) =0,
S For 1 <i <2, 0.P(F(t,U;), F(t,1),0.F(t,1),t,U;) =0, U — U #0.
OuP(F(t,U;), F(t,1),0.F(t,1),t,U;) =0,

Assumptions Useful properties
e U, U> are distinct series, e &, acts on V/(S) by permuting Ui, Us,
e S has finitely many solutions in @6, e #V(S) < Bézout bound associated with S,
e S generates a radical ideal over Q(t). e Allows to forget Ui — U> # 0 in the Bézout bound.
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Quantitative estimates with
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P(F(t, U), F(t,1),0uF(t,1),t,U;) =0,
S For 1 <i <2, 0.P(F(t,U;), F(t,1),0.F(t,1),t,U;) =0, U — U #0.
OuP(F(t,U;), F(t,1),0.F(t,1),t,U;) =0,

Assumptions Useful properties
o Ui, Us are . o acts on V/(S) by Ut, Uz,
——6
e S has in Q(t), ° associated with S,
e S generates a over Q(t). e Allows to forget U; — U # 0 in the Bézout bound.
[Bostan, N., Safey El Din 23]
Under the above assumptions: 0 := deg(P)
e There exists some nonzero polynomial R € Q|zo, t] whose partial degrees
are upper bounded by , such that R(F(t,1),t) =0.
e There exists an algorithm computing this R in ops. in Q.

(We proved a general version of this result)



Some preliminaries on Grobner bases

A := Q[x, y] polynomial ring, where y = y1,...,ys.

Monomial orders
4.3 2 3.4 2 . -
e X"yiy5s =iex X“yi y> for a lexicographic order,
o x*yy3 > bmon X" iy for a block monomial order.
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8/17



Some preliminaries on

A := Q[x, y] polynomial ring, where y = y1,...,ys.

Monomial orders Leading terms for some order >
o x*y3y2 = 1ex X2yiy2 for a lexicographic order, For Q € A, the leading term LT.(Q) of Q
o x*yy3 > bmon X" iy for a block monomial order. is the monomial of highest weight for >.
Definition

Fix a monomial order = on A. A finite sub-
set G = {gi,...,4} of an ideal Z C A dif-
ferent from 0 is said to be a Grobner basis

if (LTw(g1);---,LTx(ge)) = (LT (2)).

8/17



Some preliminaries on

A := Q[x, y] polynomial ring, where y = y1,...,ys.

Monomial orders Leading terms for some order >
o x*y3y2 = 1ex X2yiy2 for a lexicographic order, For Q € A, the leading term LT.(Q) of Q
o x*yy3 > bmon X" iy for a block monomial order. is the monomial of highest weight for >.

Definition Properties

Fix a monomial order > on A. A finite sub- e Such bases always exist and generate Z,
set G = {gi,...,4} of an ideal Z C A dif- e Computing Grobner bases is NP-hard,
ferent from 0 is said to be a Grobner basis e Grobner bases are a powerful tool in elim-
if (LTw(g1);---,LTx(ge)) = (LT (2)). ination theory.
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New geometric modelling of the problem with

. . T2 . .
There exist 2 solutions (x,u) € Q(t) with u-coordinates to

P(x,u, F(t,0),d.F(t,0)) = 0,
BP(x, u,F(t, 0), 0uF(t,0) = 0, u£0,
0uP(x,u, F(t,0),0,F(t,0)) = 0.
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New geometric modelling of the problem with

. . T2 . .
There exist 2 solutions (x,u) € Q(t) with u-coordinates to

P(x,u, F(t,0),0.F(t,0)) = 0,
8P (x, u, F(t,0),0,F(t,0)) = 0, u#0,
auP(X, u, F(t3 0)7 auF(t? 0)) = 0

7x : (x,u,20,21) € @4 — (u, 20, 21) € @3,

W = m(V(P, 0xP, 8,P) \ V(u))
7y (U, 20,21) € @3 — (20,21) € @27
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of the problem with

There exist 2 solutions (x,u) € @2 with distinct u-coordinates to
P(x,u, F(t,0),9,F(t,0)) =0,
OxP(x,u,F(t,0),0,F(t,0)) =0, u#0,
OuP(x,u, F(t,0),0,F(t,0)) = 0.

7x : (x,u,20,21) € @4 — (u, 20, 21) € @3,
W = m(V(P, 0xP, 8,P) \ V(u))

7y : (u,20,21) € @3 — (20,21) € @27

Characterize with polynomial constraints

Foi={az € Q) | # 7 Maz) "W > 2}
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of the problem with

. . T2 . .- .
There exist 2 solutions (x,u) € Q(t) with distinct u-coordinates to

P(x,u, F(t,0),0,F(t,0)) = 0,
8XP(x7 u, F(t7 0)’ auF(t7 0)) = Oa u 7é Oa
0uP(x,u, F(t,0),0,F(t,0)) = 0.

7x : (x,u,20,21) € @4 — (u, 20, 21) € @3,

W := 71 (V(P, 5P, 3,P) \ V(u))

i (u,20,21) € QE) = (20,21) € QT

Characterize with polynomial constraints

Fr={o: € Q) | # 70 (ax) NW > 2} # T ()W = 2
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Solving a toy example... with

Input: F(t, U) -1 + t(UF(t7 Ll) + F(t,u)*F(t,l(J)z)fuauF(t,O)>’ k=2
Output: t3F(t,0)* — F(t,0) +1=0.
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Input: F(t, U) -1 + t(UF(t7 Ll) + F(t,u)*F(t,l(l)z)fuauF(t,O)>’ k=2
Output: t3F(t,0)* — F(t,0) +1=0.

e Compute P € Q(t)[x, u, z0, z1] such that P(F(t,u), u, F(t,0),0,F(t,0)) =0,

e Compute G, Grobner basis of (P,01P,0:P,m-u— 1) N Q(t)[u, o, z1] for {u} >iex {20, 21 }:
Bo : Yo

Br-u+m7
Bi : : »%is Bi € Q(t)[20, 21] “At o € m,(V(G,)) € Qt),
s @A there exist two distinct solutions in u”

By: g =0+ Brt1- U+ Vi1
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Solving a toy example... with

Input: F(t, U) -1 + t(UF(t7 Ll) + F(t,u)*F(t,Oz)fuauF(t,O)>’ k=2

u

Output: t3F(t,0)* — F(t,0) +1=0.

e Compute P € Q(t)[x, u, z0, z1] such that P(F(t,u), u, F(t,0),0,F(t,0)) =0,

e Compute G, of (P,01P,0:P,m-u— 1) NQ(t)[u, z0, z1] for {u} >jex {20, 21 }:
B[) 5 “Yo
> @) <k
B:: : i Bj € Q(t)[z0, 21] “At a € m,(V(G,)) € Q(t)’,
e there exist two distinct solutions in u”

By: g =0+ Brt1- U+ Vi1

At a € V(G NK]t, zo, z1]) fixed,
there exist two solutions in u
== 9 = 0 ( )
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Solving a toy example... with

Input: F(t, U) -1 + t(UF(t7 Ll) + F(t,u)*F(t,l(J)z)fuauF(t,O)>’ k=2
Output: t3F(t,0)* — F(t,0) +1=0.

e Compute P € Q(t)[x, u, z0, z1] such that P(F(t,u), u, F(t,0),0,F(t,0)) =0,

e Compute G, of (P,01P,0:P,m-u— 1) NQ(t)[u, z0, z1] for {u} >jex {20, 21 }:
B[) 5 “Yo
> @) <k
B:: : i Bj € Q(t)[z0, 21] “At a € m,(V(G,)) € Q(t)’,
e there exist two distinct solutions in u”

By: g =0+ Brt1- U+ Vi1

At a € V(G NK]t, zo, z1]) fixed, [Extension theorem]
there exist two solutions in u a e m,(V(G)) = #0
= Bi,7 =0 ( ) Distinct solutions in v — #0 ( )
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... yields an algorithm based on elimination theory

Projecting ==
Lifting points of the projections —-
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... yields an algorithm based on elimination theory

Projecting ==
Lifting points of the projections —-

[Proposition] Let g € (Q(t)[z0,z1])[u]. Then g has at least i distinct solutions

2 Ca . - f
at a € Q(t) if and only if the (i X i)-minors of the Hermite quadratic form associated
with g do not vanish simultaneously at a.

~+ Reduces to studying the multiplication maps (M, : g — q - u*)¢>1 in (Q[t, 20, z1])[u] /(&)
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and whose zero set is F»

(Our strategy works in the general case)
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... yields an algorithm based on elimination theory

Davidk[ox
John Little
Donal 0'Shea

Projecting ==
Lifting points of the projections —-

deals,

[Proposition] Let g € (Q(t)[z0,z1])[u]. Then g has at least i distinct solutions Varieties, and
2, . e A oo . . . Algorithms

at a € Q(t) if and only if the (i X i)-minors of the Hermite quadratic form associated "

with g do not vanish simultaneously at a.

) Springer

~+ Reduces to studying the multiplication maps (M, : g — q - u*)¢>1 in (Q[t, 20, z1])[u] /(&)

[Bostan, N., Safey El Din ‘23] [5—constellations k = 4]
of of polynomial Strategy Timing (dz, dt)
and whose zero set is F> Duplication > 5d ?
Elimination 2d21h 9,3)
(Our strategy works in the general case)

11/17



Systems of Discrete Differential Equations

What could be extended to ?
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Systems of Discrete Differential Equations

What could be extended to ?

Modelling special Eulerian planar orientations:

F(t,u)=1+t¢- <u+2uF(t u)? +2uG(t,1) + ULUIF(”)),
G(t,u)=t- <2uF(t, u)G(t,u) + uF(t,u) + uG(t,1) + UM)

u

[Bonichon, Bousquet-Mélou, Dorbec, Pennarun '17]
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Systems of Discrete Differential Equations

What could be extended to ?

Modelling special Eulerian planar orientations:

F(t,u)=1+t¢- <u+2uF(t u)? +2uG(t,1) + ULUIF(”)),
G(t,u)=t- <2uF(t, u)G(t,u) + uF(t,u) + uG(t,1) + UM)

u

[Bonichon, Bousquet-Mélou, Dorbec, Pennarun '17]

Modelling hard particles on planar maps:

F(t,u) =x —y + G(t,u) + tu(uF(t, u)? + 7"““”)’““1))

u—1
G(t,u s
G(t,u)=y + tsu(F(t u)G(t,u) + “71(”)>

[Bousquet-Mélou, Jehanne '06]
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's theorem yielding algebraicity of the solutions

[Popescu 86, Swan 98]

(1.4) THEOREM. Let k be a field, k(X ) the algebraic power series ring
in X=(X, - --,X,) over k, f a finite system of polynomial equations over
KXY and 5 = 3y, -, 5.) € R[X]" a formal solution of f such that §, € k[ X,
<, X, 1< i < n for some positive integers s; < r. Then there exists a
solution y = (¥ - -+, ¥a) Of fin k(X ) such that y, e k(X,, ---, X, ), 1 <i < n.
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[Popescu 86, Swan 98]

(1.4) THEOREM. Let k be a field, k(X ) the algebraic power series ring
in X=(X, - -+,X,) over k, f a finite system of polynomial equations over
k<X> and 5' =@y, -, Ju) € R[X]" a formal solution of f such that 3, ¢ k[ X,

-, X, 1< i< n for some positive integers s; < r. Then there exists a
solutzony = (Y5, -+, ¥) Of fin k(X such that y,; e (X}, -+, X;>,1<i<n
e Solutions of systems of DDEs are with components in Q[u][[t]] = they are !
[planar maps] H(t,u) =1+ t(u H(t,u)* + u%)

e There exists a solution (H, G) = (F, F(t,1)), where F € Q[u][[t]].
e The involved series are F(t,1) and F(t,u), and {t} C {t,u}.
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's theorem yielding algebraicity of the solutions

[Popescu 86, Swan 98]

(1.4) THEOREM. Let k be a field, k(X ) the algebraic power series ring
in X=(X, - -+,X,) over k, f a finite system of polynomial equations over
k<X> and 5' =@y, -, Ju) € R[X]" a formal solution of f such that 3, ¢ k[ X,

-, X, 1< i< n for some positive integers s; < r. Then there exists a
solutzony = (Y5, -+, ¥) Of fin k(X such that y,; e (X}, -+, X;>,1<i<n
e Solutions of systems of DDEs are with components in Q[u][[t]] = they are !
) H(t ) Glt,1) The proof is highly not
[planar maps] H(t,u) =1+ t(“ H(t,u)” + u==05 ) constructive... How

to compute witnesses?
e There exists a solution (H, G) = (F, F(t,1)), where F € Q[u][[t]]. ~
e The involved series are F(t,1) and F(t,u), and {t} C {t,u}. %

== 4
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Constructive algebraicity theorem for solutions of systems of DDEs

[N., Yurkevich '23]

Let n,k > 1 be integers and fi,...,f, € Q[u], Q1,...,Qn € Q[y1,...,Ynkt1), t, u] be polynomials. De-
note VKF := F,AF,...,A*F. Then the of DDEs

(E,): F= fi(u)+t- Qu(V*Fi,...,V¥F, t, u),
: : (SDDEs)
(B¢ ): Fo=fo(u)+t- Qu(V*Fr,...,V*Fp t,u).

admits a vector of solutions (Fi, ..., F,) € Q[u][[t]]", and all its components are over Q(t, u).
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Constructive algebraicity theorem for solutions of systems of DDEs

[N., Yurkevich '23]

Let n,k > 1 be integers and fi,...,f, € Q[u], Q1,...,Qn € Q[y1,...,Ynkt1), t, u] be polynomials. De-
note VKF := F,AF,...,A*F. Then the of DDEs

(E,): F= fi(u)+t- Qu(V*Fi,...,V¥F, t, u),
: : (SDDEs)
(B¢ ): Fo=fo(u)+t- Qu(V*Fr,...,V*Fp t,u).

admits a vector of solutions (Fi, ..., F,) € Q[u][[t]]", and all its components are over Q(t, u).

[Proof sketch]

e There exists a polynomial system S defined over Q(t) in nk(n 4 2) equations and
unknowns, that admits a solution P with Fi(t,1) as one of its coordinates,

e The of S'is at P = Fi(t,1)is over Q(t).

14/17



Identifying more polynomial equations

Consider ~ F1, Fa = Fi(t, u), Fa(t, u) € Q[u][[t]]

0=(1-F) - (u—1)+tu-(2uFZ —uFi(t,1) +2uF(t,1) — 2F2 + u+ F — 2F>(t,1) — 1),
0=F- (1 — u) + tu - (2UF1F2 +uF —2FRFH - F+F — Fz(t, 1))

Denote by Ei, E; € Q(t)[x1, X2, u, Zo, z1] polynomials such that

fori € {]_, 2}7 E;(Fl(t’7 u)7 FQ(I‘7 u), u, Fl(t, 1)7 Fg(f.'7 1)) =0. (E E,(U))
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Identifying more polynomial equations

Consider ~ F1, Fa = Fi(t, u), Fa(t, u) € Q[u][[t]]

0=(1-F) - (u—1)+tu-(2uFZ —uFi(t,1) +2uF(t,1) — 2F2 + u+ F — 2F>(t,1) — 1),
0=F- (1 = u) + tu - (2UF1F2 +uf —2FRF - FR+ F— Fg(t, 1))

Denote by Ei, E> € Q(t)[x1, x2, u, 20, z1] polynomials such that

fori € {1,2}, Ei(Fi(t,u), F2(t,u),u, F(t,1), F(t,1)) =0. (= Ei(u))

with respect to u yields
<(axlE1)(u) (axZEI)(u)> , (m) N <(aua)(u>> o,
(0x E2)(u)  (Ox, E2)(u) OuF2 (OuE2)(u)
{ (O Er - 8y Bz — 8, B2 - 8y E1)(U(1)) = O,

U(t) e U Q[[t4]], (O E1 - OuEr — 0 E2 - OuEr) (U(t)) = 0.

d>1
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Consider ~ F1, Fa = Fi(t, u), Fa(t, u) € Q[u][[t]]
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<(axlE1)(u) (axZEI)(u)> , (m) N <(aua)(u>> o,
(0x E2)(u)  (Ox, E2)(u) OuF2 (OuE2)(u)
{ (O Er - 8y Bz — 8, B2 - 8y E1)(U(1)) = O,

U(t) e U Q[[t4]], (O E1 - OuEr — 0 E2 - OuEr) (U(t)) = 0.

d>1

\.

Does this yield an ?
15/17



A polynomial system for systems of = DDEs of order 1

{5 = fi(u) + t- Qi(F1, AR, Fo, AR, £, 1),

(SDDEs)
Fo = f(u) + t- QuF1, AR, P2, AP, t,u).
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A polynomial system for systems of = DDEs of order 1

Fi=f(u)+t- Qi(F, AF, Foy AF, t,u),

(SDDEs)
F> = h(u) +t- Q(F1, AF1, Fo, AF,, t, u).

the “numerators” Ei, E> and the polynomials

Det = det [ 051 O2B1) g p_ger (B OB
8X1 E2 8><2 E2 8X1 E2 8u E2

the duplicated polynomial system S, consisting in the 2 duplications of the polynomi-
als (Ei, E>, Det, P): it has 8 equations and unknowns.

Moreover, one of its solutions in (@(t)8 is
P = (Fu(t, U), Fao(t, Uh), Fi(t, Us), Fa(t, Ua), Us, Ua, Fi(2,1), F(2,1)).

an element of (S, m- (U1 — U:) — 1) N Qlz, t].
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A polynomial system for systems of = DDEs of order 1

Fi=f(u)+t- Qi(F, AF, Foy AF, t,u),

(SDDEs)
F> = h(u) +t- Q(F1, AF1, Fo, AF,, t, u).

the “numerators” Ei, E> and the polynomials

Det = det [ 051 O2B1) g p_ger (B OB
8X1 E2 8><2 E2 8X1 E2 8u E2

the duplicated polynomial system S, consisting in the 2 duplications of the polynomi-
als (Ei, E>, Det, P): it has 8 equations and unknowns.

Moreover, one of its solutions in (@(t)8 is
P = (Fu(t, U), Fao(t, Uh), Fi(t, Us), Fa(t, Ua), Us, Ua, Fi(2,1), F(2,1)).

an element of (S, m- (U1 — U:) — 1) N Qlz, t].

The previously described for solving one DDE can be extended here!
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e Decidability: geometry-driven algorithm computing R € Q[z, t] \ {0} s.t. R(Fi(t,1),t) =0,

e Resolution of the DDE of 5-constellations in an automatic fashion,

e Constructive proof of algebraicity of solutions of SDDEs.
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e Decidability: geometry-driven algorithm computing R € Q[z, t] \ {0} s.t. R(Fi(t,1),t) =0,

e Resolution of the DDE of 5-constellations in an automatic fashion,

e Constructive proof of algebraicity of solutions of SDDEs.

e Implementing the algorithm in a Maple package?
(Work in progress)

e Expanded algorithmic comparison in the system case?
(Work in progress with S. Yurkevich)

e More nested catalytic variables in the direction of Popescu’s theorem?
(Work in progress with M. Bousquet-Mélou)
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e Special week:
November 27th — December 1st,
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https://rtca2023.github.io/pages_Paris/m6.html

Solving 5-constellations using a Hybrid Guess-and-Prove strategy

Input: (The rather big DDE associated with the enumeration of 5-constellations)
Output: 15625t°F(t,1)° — 31250t°F(t,1)* + (25000t — 1000t)F(t,1)*> — (10000t> —
8700t)F(t,1)? 4 (2000t* — 15855t + 16)F(t, 1) — 160t 4+ 8139t — 16 = 0
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Solving 5-constellations using a strategy

Input: (The rather big DDE associated with the enumeration of 5-constellations)
Output: 15625t°F(t,1)° — 31250t°F(t,1)* + (25000t — 1000t)F(t,1)*> — (10000t> —
8700t)F(t,1)? 4 (2000t* — 15855t + 16)F(t, 1) — 160t 4+ 8139t — 16 = 0

g \

e Draw at random a prime number p and some c € [y,

e Compute upper bounds (9, 3) on the bidegree of M € F|z, t]
annihilating F(t,1) modulo p,

e Expand the truncated series F(t,1) mod t*°, 55=2.9-3+1
e Guess R € Q[z, t] such that R(F(t,1),t) = O(t©®+D)CG+I)-1),
e Check that R(t, F(t,1)) = O(t>). (= R is satisfied)
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Output: 15625t°F(t,1)° — 31250t°F(t,1)* + (25000t — 1000t)F(t,1)*> — (10000t> —
8700t)F(t,1)? 4 (2000t* — 15855t + 16)F(t, 1) — 160t 4+ 8139t — 16 = 0

e Draw at random a prime number p and some c € F,, [Bostan, N., Safey El Din 23]

e Compute upper bounds (9, 3) on the bidegree of M € F,|z, t] ~ elimination strategy,
annihilating F(t,1) modulo p,

e Expand the truncated series F(t,1) mod t*°, 55=2.9.3+41 ~> Newton iteration,

e Guess R € Q[z, t] such that R(F(t,1),t) = O(tO) =1y ~» Hermite Padé approximants,

e Check that R(t, F(t,1)) = O(t55). (= R is satisfied) ~+ multiplicity lemma.
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Solving 5-constellations using a strategy

Input: (The rather big DDE associated with the enumeration of 5-constellations)
Output: 15625t°F(t,1)° — 31250t°F(t,1)* + (25000t — 1000t)F(t,1)*> — (10000t> —
8700t)F(t,1)? 4 (2000t* — 15855t + 16)F(t, 1) — 160t 4+ 8139t — 16 = 0

e Draw at random a prime number p and some c € F,, [Bostan, N., Safey El Din 23]
e Compute upper bounds (9, 3) on the bidegree of M € F,|z, t] ~ elimination strategy,
annihilating F(t,1) modulo p,
e Expand the truncated series F(t,1) mod t*°, 55=2.9-3+1 ~+ Newton iteration,
e Guess R € Q[z, t] such that R(F(t,1),t) = O(tO) =1y ~» Hermite Padé approximants,
e Check that R(t, F(t,1)) = O(t>). (= R is satisfied) ~ multiplicity lemma.
Strategy Timing (d;, dt)
Elimination 2d21h 9,3)
Hybrid G-P 2h40min (5,2)
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A polynomial system for systems of DDEs

Consider
F1 = fl(u) +t- Ql(kal, 000 7kan7 t, U)7

: : (SDDEs)
Fo=fo(u) +t- Qu(VKFy,...,V¥F, t,u).
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A polynomial system for systems of DDEs

Consider

F1 = fl(u)+ t- Ql(VkFl,...,Van,t,u),

: : (SDDEs)
Fo=fo(u) +t- Qu(V¥Fy,...,V¥F, t,u).

(SDDEs) and the “numerators” Ej, ..., E, and the polynomials
0.E ... O.E (9X1. E; e 3Xn7.1 E; 8,,.E1
Det := det : : and P :=det : : : ,
’ | axl En—l e 8><n,1 En—l au En—l

8.Er ... 8,E,
g ’ 84E ... 0. En 0.E

xp—1En




A polynomial system for systems of DDEs

Consider
Fi=fi(u)+t- QuV*F,...,V*Fp, t,u),
: : (SDDEs)
Fn - fn(u) +t- Qn(kala 00 -vkanv t, u)'
(SDDEs) and the “numerators” Ej, ..., E, and the polynomials
0.E ... O.E G Gnb 0k
Det := det : : and P :=det : : : ,
: ' ax En—l e 8>< En—l auEn—l
W En ... 0.E . -
By Bx, 0.E ... 0. .En 0.E

up the duplicated polynomial system (Sgyp), consisting in the nk duplications of the
polynomials Ey, ..., E,, Det, P. It has nk(n + 2) variables and equations.




A polynomial system for systems of DDEs

Consider
Fi=fi(u)+t- QuV*F,...,V*Fp, t,u),
: : (SDDEs)
Fn - fn(u) +t- Qn(kala 00 -vkanv t, u)'
(SDDEs) and the “numerators” Ej, ..., E, and the polynomials
0.E ... O.E G Gnb 0k
Det := det : : and P :=det : : : ,
: ' ax En—l e 8>< En—l auEn—l
W En ... 0.E . -
By Bx, 0.E ... 0. .En 0.E

up the duplicated polynomial system (Sgyp), consisting in the nk duplications of the
polynomials Ey, ..., E,, Det, P. It has nk(n + 2) variables and equations.

a non-trivial element of ((Syup) : det(Jacs,,,)>°) NK[t, zo, €], then set € to 0.
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