Eric Pichon-Pharabod Computation of periods of projective hypersurfaces via Picard-Lefschetz theory

Joint work with Pierre Lairez and Pierre Vanhove

Periods as integrals of rational functions

A homogeneous of degree $k \operatorname{deg} P-\operatorname{deg} \Omega$

The period matrix

Let $\gamma_{1}, \ldots, \gamma_{r} \in H_{n}(\mathscr{X})$ and $\omega_{1}, \ldots, \omega_{r} \in H_{D R}^{n}(\mathcal{X})$ be bases
of singular homology and algebraic DeRham cohomology.

The period matrix is

$$
\Pi=\left(\int_{\gamma_{j}} \omega_{i}\right)_{\substack{1 \leq i \leq r \\ 1 \leq j \leq r}}
$$

It is an invertible matrix that encodes the isomorphism between DeRham cohomology and homology.

The goal is to compute, given P, the period matrix of $\mathscr{X}=V(P)$.

Why are periods interesting?

The period matrix of \mathscr{X} encodes several algebraic invariants of \mathscr{X}. Torelli-type theorems: the period matrix of \mathscr{X} determines its isomorphism class.

Feynman integrals are (relative) periods that arise as scattering amplitudes in quantum field theory.

Previous works

[Deconinck, van Hoeij 2001], [Bruin, Sijsling, Zotine 2018], [Molin, Neurohr 2017]: Algebraic curves (Riemann surfaces)

[Elsenhans, Jahnel 2018], [Cynk, van Straten 2019]:
Higher dimensional varieties (double covers of \mathbb{P}^{2} ramified along 6 lines / of \mathbb{P}^{3} ramified along 8 planes)
[Sertöz 2019]: compute the period matrix by deformation.

Previous works

Sertöz 2019: compute the periods matrix by deformation :
We wish to compute $\int_{\gamma} \frac{\Omega}{X^{3}+Y^{3}+Z^{3}+X Y Z}$.
Let us consider instead $\pi_{t}=\int_{\gamma_{t}} \frac{\Omega}{X^{3}+Y^{3}+Z^{3}+t X Y Z}$,
Exact formulae are known for π_{0} [Pham 65, Sertöz 19]
Furthermore π_{t} is a solution to the differential operator $\mathscr{L}=\left(t^{3}+27\right) \partial_{t}^{2}+3 t^{2} \partial_{t}+t$ (Picard-Fuchs equation)

We may numerically compute the analytic continuation of π_{0} along a path from 0 to 1 [Chudnovsky², Van der Hoeven, Mezzarobba] This way, we obtain a numerical approximation of π_{1}.

Previous works

Sertöz 2019: compute the periods matrix by deformation :

Two drawbacks :

We rely on the knowledge of the periods of some variety.
[Pham 65, Sertöz 19] provides the periods of the Fermat hypersurfaces $V\left(X_{0}^{d}+\ldots+X_{n}^{d}\right)$. In more general cases (e.g. complete intersections), we do not have this data.

The differential operators that need to be integrated quickly go beyond what current software can manage:
To compute the periods of a smooth quartic surface in \mathbb{P}^{3}, one needs to integrate an operator of order 21.

Goal: a more intrinsic description of the integrals should solve both problems.

Contributions

New method for computing periods with high precision:
\rightarrow implementation in Sagemath (relying on OreAlgebra) - lefschetz_family
\rightarrow sufficiently efficient to compute periods of new varieties (generic quartic surface)
\rightarrow homology of complex algebraic varieties
\rightarrow generalisable to other types of varieties (e.g. complete intersections, varieties with isolated singularities, etc.)

First example: algebraic curves

Let \mathscr{X} be an algebraic curve with equation $P=y^{3}+x^{3}+1=0$. Let $f:(x, y) \mapsto y /(2 x+1)$.

In dimension 1, we are looking for 1-cycles of \mathscr{X} (i.e. closed paths up to deformation).

What happens when we loop around a critical value?

This permutation is called the action of monodromy along ℓ on $X_{t_{1}}$. It will be denoted ℓ_{*} If ℓ is a simple loop around a critical value, ℓ_{*} is a transposition.

Periods of algebraic curves

The lift of a simple loop ℓ around a critical value c that has a non-trivial boundary in \mathscr{X}_{b} is called the thimble of c. It is an element of $H_{1}\left(\mathscr{X}, \mathscr{X}_{b}\right)$.

Thimbles serve as "building blocks" to recover $H_{1}(\mathscr{X})$. Indeed, to find a loop that lifts to a 1-cycle in \mathscr{X}, it is sufficient to glue thimbles together in a way such that their boundaries cancels.

Concretely, we take the kernel of the boundary map $\delta: H_{1}\left(\mathscr{X}, \mathscr{X}_{b}\right) \rightarrow H_{0}\left(\mathscr{X}_{b}\right)$
Fact: all of $H_{1}(\mathscr{X})$ can be recovered this way.

Certain combinations of thimbles are trivial

Extensions along contractible paths in $\mathbb{P}^{1} \backslash\{$ crit. val. $\}$
have a trivial homology class in $H_{1}(X)$.

Fact: these are the only ones - the kernel of the map $\mathbb{Z}^{r} \mapsto H\left(X, X_{b}\right)$,
$k_{1}, \ldots, k_{r} \mapsto \sum_{i} k_{i} \Delta_{i}$ is generated by these extensions "around infinity".

Computing periods of algebraic curves

1. Compute simple loops $\ell_{1}, \ldots, \ell_{\text {\#crit. }}$ around the critical values - basis of $\pi_{1}(\mathbb{C} \backslash\{$ crit. val. $\})$

Computing periods of algebraic curves

1. Compute simple loops $\ell_{1}, \ldots, \ell_{\# \text { crit. }}$ around the critical values - basis of $\pi_{1}(\mathbb{C} \backslash\{$ crit. val. $\})$
2. For each i compute the action of monodromy along ℓ_{i} on \mathscr{X}_{b} (transposition)

Computing periods of algebraic curves

1. Compute simple loops $\ell_{1}, \ldots, \ell_{\# \text { crit. }}$ around the critical values - basis of $\pi_{1}(\mathbb{C} \backslash\{$ crit. val. $\})$
2. For each i compute the action of monodromy along ℓ_{i} on \mathscr{X}_{b} (transposition)
3. This provides the thimble Δ_{i}. Its boundary is the difference of the two points of \mathscr{X}_{b} that are permuted.

Computing periods of algebraic curves

1. Compute simple loops $\ell_{1}, \ldots, \ell_{\# \text { crit. }}$ around the critical values - basis of $\pi_{1}(\mathbb{C} \backslash\{$ crit. val. $\})$
2. For each i compute the action of monodromy along ℓ_{i} on \mathscr{X}_{b} (transposition)
3. This provides the thimble Δ_{i}. Its boundary is the difference of the two points of \mathscr{X}_{b} that are permuted.
4. Compute sums of thimbles without boundary \rightarrow basis of $H_{1}(\mathscr{X})$

Computing periods of algebraic curves

1. Compute simple loops $\ell_{1}, \ldots, \ell_{\# \text { crit. }}$ around the critical values - basis of $\pi_{1}(\mathbb{C} \backslash\{$ crit. val. $\})$
2. For each i compute the action of monodromy along ℓ_{i} on \mathscr{X}_{b} (transposition)
3. This provides the thimble Δ_{i}. Its boundary is the difference of the two points of \mathscr{X}_{b} that are permuted.
4. Compute sums of thimbles without boundary \rightarrow basis of $H_{1}(\mathscr{X})$
5. Periods are integrals along these loops
\rightarrow we have an explicit parametrisation of these paths \rightarrow numerical integration.

$$
\int_{\gamma} \omega=\int_{\ell} \omega_{t}
$$

Higher dimensions: surfaces

The fibre X_{t} is an algebraic curve.
It deforms continuously with respect to t.

Periods of an algebraic curve

Comparison with dimension 1
 Dimension 1
 Dimension 2

Looking for 1 -cycles of \mathscr{X}

We obtain all 1-cycles by gluing thimbles.

Looking for 2-cycles of \mathscr{X}

Thimbles are "tubes" (pink) obtained as extensions of 1-cycles (green) along loops.

Monodromy along ℓ is an isomorphism of $H_{1}\left(X_{b}\right)$

Picard-Lefschetz
theory
There is one thimble per critical value

We obtain almost all 2-cycles by gluing thimbles.

Periods are given as integrals along paths.

Some complications

The fibration of \mathscr{X} is given by a hyperplane pencil $\left\{H_{t}\right\}_{t \in \mathbb{P}^{1}}$, with $\mathscr{X}_{t}=\mathscr{X} \cap H_{t}$.

In dimension ≥ 2, this pencil has an axis $A=\cap_{t \in \mathbb{P}^{1}} H_{t}$ that intersects \mathscr{X}. Therefore each fibre contains a copy of $\mathscr{X}^{\prime}=\mathscr{X} \cap A$.

The fibration is thus not isomorphic to \mathscr{X}, but to the
 blow up \mathscr{Y} of \mathscr{X} along \mathscr{X}^{\prime}.

What we compute is in fact $H_{n}(\mathscr{Y})$, which contains the homology classes of the exceptional divisors. To

$$
0 \rightarrow H_{n-2}\left(X^{\prime}\right) \rightarrow H_{n}(\mathscr{Y}) \rightarrow H_{n}(\mathscr{X}) \rightarrow 0
$$

recover $H_{n}(\mathcal{X})$ we need to be able to identify these classes.

Some complications

Not all cycles of $H_{n}(\mathscr{Y})$ are lift of loops, and thus not all are combinations of thimbles.

More precisely, we are missing the homology class of the fibre $H_{n}\left(X_{b}\right)$
and a section (an extension to $H_{n-2}\left(X_{b}\right)$ to all of \mathbb{P}^{1}).

We have a (non-canonical) decomposition

$$
H_{n}(\mathscr{Y}) \simeq H_{n}\left(X_{b}\right) \oplus \mathscr{T} \oplus H_{n-2}\left(X_{b}\right)
$$

Computing monodromy

$$
\pi_{1}(\mathbb{C} \backslash\{\text { critical values }\}) \rightarrow G L\left(H_{n-1}\left(X_{b}\right)\right)
$$

\qquad

DEMO

Tools used:

- Induction on dimension - we know the cycles of $H_{n-1}\left(X_{b}\right)$
- Isomorphism between homology and De Rham cohomology \rightarrow we obtain analytical structure!
- Monodromy of differential operators (Picard-Fuchs equation / Gauss-Manin connexion)
[Mezzarobba]

Results and perspectives

Holomorphic periods of quartic surfaces in an hour (previously unattainable in most cases).

A specific example: the Tardigrade family (a family of singular quartic K 3 surfaces).

[Doran, Harder, PP, Vanhove 2023]

\rightarrow explicit embedding of the Néron-Severi lattice in the standard K3 homology lattice

Figure 13. The tardigrade graph

$$
\mathscr{X}=V\left(\begin{array}{c}
\text { Quartic surfaces of } \mathbb{P}^{3} \text { with Picard rank 2, 3,5 } \\
X^{4}-X^{2} Y^{2}-X Y^{3}-Y^{4}+X^{2} Y Z+X Y^{2} Z+X^{2} Z^{2}-X Y Z^{2}+X Z^{3} \\
-X^{3} W-X^{2} Y W+X Y^{2} W-Y^{3} W+Y^{2} Z W-X Z^{2} W+Y Z^{2} W-Z^{3} W+X Y W^{2} \\
+Y^{2} W^{2}-X Z W^{2}-X W^{3}+Y W^{3}+Z W^{3}+W^{4}
\end{array}\right)
$$

This approach is generalisable to other types of varieties (complete intersections, elliptic surfaces, etc)

The bottleneck for dealing with higher dimensional/higher degree examples is still the order and degree of the Picard-Fuchs equations.

Thank you!

