
Computation of periods of 
projective hypersurfaces  

via Picard-Lefschetz theory
Joint work with Pierre Lairez and Pierre Vanhove
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Periods as integrals of rational functions

∫γ

A
Pk Ω

A cycle  defines a smooth hypersurface
P
$ = V(P) = {P = 0}

 volume-form

of 

Ω
ℙn+1

 homogeneous of 

degree 

A
k deg P − deg Ω

2
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The period matrix
Let  and  be bases 

of singular homology and algebraic DeRham cohomology.

γ1, …, γr ∈ Hn($) ω1, …, ωr ∈ Hn
DR($)

The period matrix is

Π = ∫γj

ωi
1 ≤ i ≤ r
1 ≤ j ≤ r

It is an invertible matrix that encodes the isomorphism between DeRham cohomology and homology.

The goal is to compute, given , the period matrix of .P $ = V(P)

3
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Why are periods interesting?

4

The period matrix of  encodes several algebraic invariants of . 

Torelli-type theorems: the period matrix of  determines its isomorphism class.

$ $
$

Feynman integrals are (relative) periods that arise as scattering amplitudes in quantum 
field theory.
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Previous works

5

[Sertöz 2019]: compute the period matrix by deformation.

[Deconinck, van Hoeij 2001], [Bruin, Sijsling, Zotine 2018], [Molin, Neurohr 2017]: 

Algebraic curves (Riemann surfaces)

[Elsenhans, Jahnel 2018], [Cynk, van Straten 2019]: 

Higher dimensional varieties (double covers of  ramified along 6 lines / of  ramified along 8 planes)ℙ2 ℙ3
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Previous works

6

Sertöz 2019: compute the periods matrix by deformation :

We wish to compute . ∫γ

Ω
X3 + Y3 + Z3 + XYZ

0 1
ℂ

π0 π1

We may numerically compute the analytic continuation of  

along a path from 0 to 1   [Chudnovsky2, Van der Hoeven, Mezzarobba] 


This way, we obtain a numerical approximation of .

π0

π1

Let us consider instead , πt = ∫γt

Ω
X3 + Y3 + Z3 + tXYZ

Exact formulae are known for  [Pham 65, Sertöz 19]π0

Furthermore  is a solution to the differential operator

  (Picard-Fuchs equation)

πt
ℒ = (t3 + 27)∂2

t + 3t2∂t + t
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Previous works

7

Sertöz 2019: compute the periods matrix by deformation :

Two drawbacks :

We rely on the knowledge of the periods of some variety.

[Pham 65, Sertöz 19] provides the periods of the Fermat hypersurfaces .V(Xd

0 + … + Xd
n)

In more general cases (e.g. complete intersections), we do not have this data.

The differential operators that need to be integrated quickly go beyond what current software can manage:
To compute the periods of a smooth quartic surface in , 


one needs to integrate an operator of order 21. 
ℙ3

Goal: a more intrinsic description of the integrals should solve both problems. 
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Contributions
New method for computing periods with high precision:


 implementation in Sagemath (relying on OreAlgebra) — lefschetz_family


 sufficiently efficient to compute periods of new varieties (generic quartic surface)


 homology of complex algebraic varieties


 generalisable to other types of varieties (e.g. complete intersections, varieties with 

isolated singularities, etc.)

→

→

→

→

8

Hundreds of digits
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First example: algebraic curves

9

t1 t2
ℂ

ℓ

f −1(t1) f −1(t2)

Let  be an algebraic curve 

with equation  .

Let  .

$
P = y3 + x3 + 1 = 0

f : (x, y) ↦ y/(2x + 1)
The fibre above  is 


.

It deforms continuously with .

t ∈ ℂ $t = f −1(t)
= {(x, t(2x + 1)) ∣ P (x, t(2x + 1)) = 0}

t
In dimension 1, we are looking for 1-cycles of  

(i.e. closed paths up to deformation).

$

ℂ

ℓ


f(loop)
= loop

 ?f −1(loop) = loop
Not always, see next slide

Values of  for which 
 

has double roots (critical values)

t
P(x, t(2x + 1)) = t3(2x + 1)3 + x3 + 1
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What happens when we loop around a critical value?

10

$t1 = f −1(t1)

t1

ℂ

ℓ

A loop  in  based at  induces a permutation of .ℓ ℂ t1 $t1

This permutation is called the action of monodromy along  on . It will be denoted 

If  is a simple loop around a critical value,  is a transposition.

ℓ $t1 ℓ*
ℓ ℓ*
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ℂ

b

Δ1

Δ2

Δ3

ℓ1

ℓ2ℓ3

The lift of a simple loop  around a critical value  that has a non-trivial boundary in  
is called the thimble of . It is an element of .

ℓ c $b
c H1($, $b)

Concretely, we take the kernel of the boundary map δ : H1($, $b) → H0($b)

Simple loop 

around c1

c1

Fact: all of  can be recovered this way.H1($)

Periods of algebraic curves

c2
c3

Thimbles serve as “building blocks” to recover . Indeed, to find a loop that lifts to a 1-cycle 
in , it is sufficient to glue thimbles together in a way such that their boundaries cancels.


H1($)
$

Paths in  with

boundary in 

$
$b
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ℂ

b

Extensions along contractible paths in  

have a trivial homology class in .

ℙ1∖{crit. val.}
H1($)

Certain combinations of thimbles are trivial

ℙ1

∞

b

Fact: these are the only ones — the kernel of the map , 
 is generated by these extensions “around infinity”.

ℤr ↦ H($, $b)
k1, …, kr ↦ ∑

i
kiΔi
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Computing periods of algebraic curves

13

b

ℂ

1. Compute simple loops  around the critical values — basis of ℓ1, …, ℓ#crit. π1(ℂ∖{crit. val.})
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2. For each  compute the action of monodromy along  on  (transposition)i ℓi $b

$b

b

ℂ

ℓ

Computing periods of algebraic curves

1. Compute simple loops  around the critical values — basis of ℓ1, …, ℓ#crit. π1(ℂ∖{crit. val.})
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b

ℂ

ℓ

3. This provides the thimble . Its boundary is the difference of the two points of  that are permuted.Δi $b

Computing periods of algebraic curves

1. Compute simple loops  around the critical values — basis of ℓ1, …, ℓ#crit. π1(ℂ∖{crit. val.})

2. For each  compute the action of monodromy along  on  (transposition)i ℓi $b
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4. Compute sums of thimbles without boundary  basis of → H1($)

ℂ

b

Δ1

Δ2

Δ3

ℓ1

ℓ2ℓ3

c1

c2
c3

Computing periods of algebraic curves

1. Compute simple loops  around the critical values — basis of ℓ1, …, ℓ#crit. π1(ℂ∖{crit. val.})

3. This provides the thimble . Its boundary is the difference of the two points of  that are permuted.Δi $b

2. For each  compute the action of monodromy along  on  (transposition)i ℓi $b
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∫γ
ω = ∫ℓ

ωt
DEMO

Computing periods of algebraic curves

1. Compute simple loops  around the critical values — basis of ℓ1, …, ℓ#crit. π1(ℂ∖{crit. val.})

3. This provides the thimble . Its boundary is the difference of the two points of  that are permuted.Δi $b

2. For each  compute the action of monodromy along  on  (transposition)i ℓi $b

4. Compute sums of thimbles without boundary  basis of → H1($)

5. Periods are integrals along these loops 

 we have an explicit parametrisation of these paths  numerical integration.→ →
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Higher dimensions: surfaces

19

The fibre   is an algebraic curve. 

It deforms continuously with respect to .

$t
t

γ′ 

γ

$t1

t1 t2
ℂ

ℓ

∫τ
f(x, y)dxdy = ∫ℓ ∫γy

f(x, y)dx dy

τ

Periods of an algebraic curve

Periods of the surface
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Comparison with dimension 1
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Monodromy along  is an 
isomorphism of 


(induced by a permutation of  )

ℓ
H0($b)

$b

Monodromy along  is an 
isomorphism of 

ℓ
H1($b)

Thimbles are paths obtained 

as extensions of points along loops.

Thimbles are “tubes’’ (pink) obtained 
as extensions of 1-cycles (green) 

along loops.

Looking for 1-cycles of $ Looking for 2-cycles of $

γ

$b

t1

ℂ

ℓ

γ′ 

There is one thimble per 
critical value

We obtain all 1-cycles by 
gluing thimbles.

Periods are given as integrals along paths.

Dimension 1 Dimension 2

Picard-Lefschetz

theoryComplex analysis

We obtain almost all 2-cycles by 
gluing thimbles.

τ
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Some complications

21

The fibration of  is given by a hyperplane pencil 
, with .

$
{Ht}t∈ℙ1 $t = $ ∩ Ht

In dimension , this pencil has an axis  
that intersects . Therefore each fibre contains a copy 
of .

≥ 2 A = ∩t∈ℙ1 Ht
$

$′ = $ ∩ A

The fibration is thus not isomorphic to , but to the 
blow up  of  along . 

$
! $ $′ 

What we compute is in fact , which contains the 
homology classes of the exceptional divisors. To 
recover  we need to be able to identify these 
classes.

Hn(!)

Hn($)

A

0 → Hn−2($′ ) → Hn(!) → Hn($) → 0
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Some complications

22

Not all cycles of  are lift of loops, and thus not all are combinations of thimbles.Hn(!)

More precisely, we are missing the homology class of the 
fibre  


and a section (an extension to  to all of ).
Hn($b)

Hn−2(Xb) ℙ1

b
ℂ

Hn($b)

5

Hn−2($b)

We have a (non-canonical) decomposition

    Hn(!) ≃ Hn($b) ⊕ 5 ⊕ Hn−2(Xb)
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Computing monodromy

24

π1(ℂ∖{critical values}) → GL(Hn−1($b))

γ1

γ2

ℓ*γ1

ℓ*γ2

b bℓ

Hn−1($b)
Hn−1($b)

Tools used: 


• Induction on dimension — we know the cycles of 


• Isomorphism between homology and De Rham cohomology  we obtain analytical structure!


• Monodromy of differential operators (Picard-Fuchs equation / Gauss-Manin connexion)

Hn−1($b)
→

Given by  
periods

[Mezzarobba]

DEMO
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Results and perspectives

26

Holomorphic periods of quartic surfaces in an hour (previously unattainable in most cases).

A specific example: the Tardigrade family (a family of singular quartic K3 surfaces). 
[Doran, Harder, PP, Vanhove 2023] 


 explicit embedding of the Néron-Severi lattice in the standard K3 homology lattice→

Quartic surfaces of  with Picard rank 2, 3, 5
ℙ3

$ = V (
X4 − X2Y2 − XY3 − Y4 + X2YZ + XY2Z + X2Z2 − XYZ2 + XZ3

−X3W − X2YW + XY2W − Y3W + Y2ZW − XZ2W + YZ2W − Z3W + XYW2

+Y2W2 − XZW2 − XW3 + YW3 + ZW3 + W4 )
This approach is generalisable to other types of varieties (complete intersections, elliptic surfaces, etc)

The bottleneck for dealing with higher dimensional/higher degree examples is still the order 
and degree of the Picard-Fuchs equations.

Thank you!


