Eric Pichon-Pharabod

Computation of periods of projective hypersurfaces via Picard-Lefschetz theory

Joint work with Pierre Lairez and Pierre Vanhove

Periods as integrals of rational functions

The period matrix

Let $\gamma_1, \ldots, \gamma_r \in H_n(\mathcal{X})$ and $\omega_1, \ldots, \omega_r \in H_{DR}^n(\mathcal{X})$ be bases of singular homology and algebraic DeRham cohomology.

The period matrix is

$$\Pi = \left(\int_{\gamma_j} \omega_i \right)_{\substack{1 \le i \le r \\ 1 \le j \le r}}$$

It is an **invertible** matrix that encodes the isomorphism between DeRham cohomology and homology.

The goal is to compute, given P, the period matrix of $\mathscr{X} = V(P)$.

Why are periods interesting?

The period matrix of \mathscr{X} encodes several **algebraic invariants** of \mathscr{X} . **Torelli-type theorems**: the period matrix of \mathscr{X} determines its isomorphism class.

Feynman integrals are (relative) periods that arise as scattering amplitudes in quantum field theory.

Previous works

[Deconinck, van Hoeij 2001], [Bruin, Sijsling, Zotine 2018], [Molin, Neurohr 2017]: Algebraic curves (Riemann surfaces)

[Elsenhans, Jahnel 2018], [Cynk, van Straten 2019]:

Higher dimensional varieties (double covers of \mathbb{P}^2 ramified along 6 lines / of \mathbb{P}^3 ramified along 8 planes)

[Sertöz 2019]: compute the period matrix by deformation.

Previous works

Sertöz 2019: compute the periods matrix by deformation :

We wish to compute
$$\int_{\gamma} \frac{\Omega}{X^3 + Y^3 + Z^3 + XYZ}$$
.
Let us consider instead $\pi_t = \int_{\gamma_t} \frac{\Omega}{X^3 + Y^3 + Z^3 + tXYZ}$,

Exact formulae are known for π_0 [Pham 65, Sertöz 19]

Furthermore π_t is a solution to the differential operator $\mathscr{L} = (t^3 + 27)\partial_t^2 + 3t^2\partial_t + t$ (Picard-Fuchs equation)

We may numerically compute the analytic continuation of π_0 along a path from 0 to 1 [Chudnovsky², Van der Hoeven, Mezzarobba] This way, we obtain a numerical approximation of π_1 .

Previous works

Sertöz 2019: compute the periods matrix by deformation :

Two drawbacks :

We rely on the knowledge of the periods of some variety. **[Pham 65, Sertöz 19]** provides the periods of the Fermat hypersurfaces $V(X_0^d + ... + X_n^d)$. In more general cases (e.g. complete intersections), we do not have this data.

The differential operators that need to be integrated quickly go beyond what current software can manage: To compute the periods of a smooth quartic surface in \mathbb{P}^3 , one needs to integrate an operator of order 21.

Goal: a more intrinsic description of the integrals should solve both problems.

Contributions

Hundreds of digits

New method for computing periods with high precision:

- \rightarrow implementation in Sagemath (relying on OreAlgebra) lefschetz_family
- → sufficiently efficient to compute periods of new varieties (generic quartic surface)
- \rightarrow homology of complex algebraic varieties

 \rightarrow generalisable to other types of varieties (e.g. complete intersections, varieties with isolated singularities, etc.)

First example: algebraic curves

Let \mathscr{X} be an algebraic curve with equation $P = y^3 + x^3 + 1 = 0$. Let $f: (x, y) \mapsto y/(2x + 1)$.

In dimension 1, we are looking for 1-cycles of $\mathcal X$ (i.e. closed paths up to deformation).

The fibre above
$$t \in \mathbb{C}$$
 is $\mathscr{X}_t = f^{-1}(t)$
= { $(x, t(2x + 1)) \mid P(x, t(2x + 1)) = 0$ }.

It deforms continuously with *t*.

What happens when we loop around a critical value?

This permutation is called the **action of monodromy along** ℓ on \mathscr{X}_{t_1} . It will be denoted ℓ_* If ℓ is a simple loop around a critical value, ℓ_* is a transposition.

Periods of algebraic curves

The lift of a simple loop ℓ around a critical value c that has a non-trivial boundary in \mathscr{X}_b is called the **thimble** of c. It is an element of $H_1(\mathscr{X}, \mathscr{X}_b)$.

Thimbles serve as "building blocks" to recover $H_1(\mathcal{X})$. Indeed, to find a loop that lifts to a 1-cycle in \mathcal{X} , it is sufficient to glue thimbles together in a way such that their boundaries cancels.

Concretely, we take the kernel of the boundary map $\delta: H_1(\mathcal{X}, \mathcal{X}_b) \to H_0(\mathcal{X}_b)$

Fact: all of $H_1(\mathcal{X})$ can be recovered this way.

Certain combinations of thimbles are trivial

Extensions along contractible paths in $\mathbb{P}^1 \setminus \{ \text{crit. val.} \}$ have a trivial homology class in $H_1(\mathcal{X})$.

Fact: these are the only ones — the kernel of the map $\mathbb{Z}^r \mapsto H(\mathcal{X}, \mathcal{X}_b)$, $k_1, \ldots, k_r \mapsto \sum_i k_i \Delta_i$ is generated by these extensions "around infinity".

1. Compute simple loops $\ell_1, ..., \ell_{\text{\#crit.}}$ around the critical values - basis of $\pi_1(\mathbb{C} \setminus \{\text{crit. val.}\})$

1. Compute simple loops $\ell_1, \ldots, \ell_{\text{\#crit.}}$ around the critical values - basis of $\pi_1(\mathbb{C} \setminus \{\text{crit. val.}\})$

2. For each *i* compute the action of monodromy along \mathscr{C}_i on \mathscr{X}_b (transposition)

1. Compute simple loops $\ell_1, \ldots, \ell_{\text{#crit.}}$ around the critical values - basis of $\pi_1(\mathbb{C} \setminus \{\text{crit. val.}\})$

2. For each *i* compute the action of monodromy along ℓ_i on \mathcal{X}_b (transposition)

3. This provides the thimble Δ_i . Its boundary is the difference of the two points of \mathscr{X}_h that are permuted.

1. Compute simple loops $\ell_1, ..., \ell_{\text{\#crit.}}$ around the critical values - basis of $\pi_1(\mathbb{C} \setminus \{\text{crit. val.}\})$

2. For each *i* compute the action of monodromy along ℓ_i on \mathcal{X}_h (transposition)

3. This provides the thimble Δ_i . Its boundary is the difference of the two points of \mathscr{X}_h that are permuted.

1. Compute simple loops $\ell_1, ..., \ell_{\text{\#Crit.}}$ around the critical values - basis of $\pi_1(\mathbb{C} \setminus \{\text{crit. val.}\})$

2. For each *i* compute the action of monodromy along ℓ_i on \mathcal{X}_h (transposition)

3. This provides the thimble Δ_i . Its boundary is the difference of the two points of \mathcal{X}_b that are permuted.

4. Compute sums of thimbles without boundary \rightarrow basis of $H_1(\mathcal{X})$

5. Periods are integrals along these loops \rightarrow we have an explicit parametrisation of these paths \rightarrow numerical integration.

$$\int_{\gamma} \omega = \int_{\mathscr{C}} \omega_t$$
 DEMO

Higher dimensions: surfaces

The fibre \mathcal{X}_t is an algebraic curve. It deforms continuously with respect to *t*.

Periods of the surface $\int_{\tau} f(x, y) dx dy = \int_{\ell} \left(\int_{\gamma_y} f(x, y) dx \right) dy$ Periods of an algebraic curve

Comparison with dimension 1

Dimension 1

Dimension 2

Looking for 1-cycles of ${\mathcal X}$

Thimbles are paths obtained as extensions of points along loops.

Monodromy along ℓ is an isomorphism of $H_0(\mathcal{X}_b)$ (induced by a permutation of \mathcal{X}_b)

Complex analysis

Looking for 2-cycles of ${\mathcal X}$

Thimbles are "tubes" (pink) obtained as extensions of 1-cycles (green) along loops.

Monodromy along ℓ is an isomorphism of $H_1(\mathcal{X}_h)$

There is one thimble per critical value

Picard-Lefschetz theory

We obtain all 1-cycles by gluing thimbles.

We obtain **almost** all 2-cycles by gluing thimbles.

Periods are given as integrals along paths.

Some complications

The fibration of \mathscr{X} is given by a hyperplane pencil $\{H_t\}_{t\in\mathbb{P}^1}$, with $\mathscr{X}_t = \mathscr{X} \cap H_t$.

In dimension ≥ 2 , this pencil has an axis $A = \bigcap_{t \in \mathbb{P}^1} H_t$ that intersects \mathscr{X} . Therefore each fibre contains a copy of $\mathscr{X}' = \mathscr{X} \cap A$.

The fibration is thus not isomorphic to \mathcal{X} , but to the blow up \mathcal{Y} of \mathcal{X} along \mathcal{X}' .

What we compute is in fact $H_n(\mathcal{Y})$, which contains the homology classes of the exceptional divisors. To recover $H_n(\mathcal{X})$ we need to be able to identify these classes.

$$0 \to H_{n-2}(\mathcal{X}') \to H_n(\mathcal{Y}) \to H_n(\mathcal{X}) \to 0$$

Some complications

Not all cycles of $H_n(\mathcal{Y})$ are lift of loops, and thus not all are combinations of thimbles.

More precisely, we are missing the homology class of the fibre $H_n(\mathcal{X}_b)$ and a section (an extension to $H_{n-2}(X_b)$ to all of \mathbb{P}^1).

> We have a (non-canonical) decomposition $H_n(\mathscr{Y}) \simeq H_n(\mathscr{X}_b) \oplus \mathscr{T} \oplus H_{n-2}(X_b)$

Computing monodromy

 $\pi_1(\mathbb{C} \setminus \{ \text{critical values} \}) \to GL(H_{n-1}(\mathcal{X}_b))$

- Induction on dimension we know the cycles of $H_{n-1}(\mathcal{X}_b)$
- Isomorphism between homology and De Rham cohomology \rightarrow we obtain analytical structure!
- Monodromy of differential operators (Picard-Fuchs equation / Gauss-Manin connexion)

Results and perspectives

Holomorphic periods of quartic surfaces in an hour (previously unattainable in most cases).

 \rightarrow explicit embedding of the Néron-Severi lattice in the standard K3 homology lattice

Quartic surfaces of
$$\mathbb{P}^3$$
 with Picard rank 2, 3, 5

$$\mathcal{X} = V \begin{pmatrix} X^4 - X^2Y^2 - XY^3 - Y^4 + X^2YZ + XY^2Z + X^2Z^2 - XYZ^2 + XZ^3 \\ -X^3W - X^2YW + XY^2W - Y^3W + Y^2ZW - XZ^2W + YZ^2W - Z^3W + XYW^2 \\ +Y^2W^2 - XZW^2 - XW^3 + YW^3 + ZW^3 + W^4 \end{pmatrix}$$
FIGURE 13. The tardigrade graph

This approach is generalisable to other types of varieties (complete intersections, elliptic surfaces, etc)

The bottleneck for dealing with higher dimensional/higher degree examples is still the order and degree of the Picard-Fuchs equations.

Thank you!