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Topological quantum field theories (TQFTs) which have a simple physical formulation as lattice gauge theory with
finite gauge group G admit elegant expressions for partition functions on closed higher genus Riemann surfaces.
There are expressions for the partition functions in terms of the combinatorial counting of flat G-bundles and in
terms of dimensions of irreducible representations (irreps). Consideration of the partition functions of these
G-Flat-TQFTs across different genuses gives finite algorithms which start from group multiplications and yield the
spectrum of dimensions of irreps. The input into the algorithms is formed by identities which generalise the classic
formula for the order of a group as a sum of squares of the dimensions of irreps. Considering the partition functions
of the G-Flat-TQFTs for surfaces with boundaries leads to the derivation of integrality properties of certain partial
sums along columns of the character table of G. Analogous considerations starting from a topological field theory
based on the fusion ring of a finite group (denoted G-Fusion-TQFT) allows the proof of analogous integrality
properties for partial sums along rows of the character table. These row-column relations between integrality
properties of characters can be viewed as a mathematical reflection of a physical row-column duality between the
G-flat TQFTs and the G-fusion TQFTs.
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Introduction : TQFTs on 2D surfaces from physics

Topological quantum field theories in two dimensions - defined
according to Atiyah’s axioms (or subsequent developments) or
by physical method (e.g. lattice gauge theory) - based on finite
groups G.

Lattice gauge theory - defined by discretising (triangulating) a
the two-dimensional surface of genus G. Partition function
defined by a sum over group variables associated to the edges.
The summand is a product of weights of the 2-cells.

The weights imposed a flatness and are topological: invariant
under refinement of the triangulation. This defines G-Flat-TQFT
(Dijkgraaf-Witten TQFT2).



Introduction : Partition functions

The partition functions on genus G have two kinds of
expressions :

1. Sums over group elements (close to the lattice gauge theory
definition).

2. Sums over irreducible representations(irreps)

The latter are derived from the former using finite group
representation theory identities.



Introduction : Combinatorial representation theory (CRT)

In CRT we are interested in combinatorial constructions of
integer quantities defined using representation theory. Some
classic examples :

1. Enumeration of irreps of the symmetric groups Sn using
Young diagrams having n boxes.

2. Dimensions of these irreps using a product of weights
associated with the Young diagram boxes (hook formula).

3. The multiplicities of the reduction of irreps R of Sn into a
direct sum of irreps of Sn−k × Sk . (Littelwood-Richardson rule)

4. Burnside algorithm for irreducible characters of any finite
group G - combinatorial data of group multiplications.

5. The identity : |G| =
∑

R d2
R.



Lattice TQFTs and Combinatorial representation theory (CRT)

The expressions for partition functions of G-Flat-TQFTs on
surfaces,combining information from a range of genuses of the
surfaces (in the spirit of string theory), allow us to generalise
the last two constructions.

Interesting integers in rep theory from TQFTs

1. All the dR for a finite group.

2. Integer partial sums of characters along columns of the
character table of a finite group G.



What about partial row sums

It is known in CRT that row sums of characters are integers∑
C

χR
C =

∑
S

NR
SS

where NR
SS are the multiplicities of decomposition

VS ⊗ VS =
⊕

R

VR ⊗ Vmult :SSR

i.e.

NR
SS = Dim(Vmult :SSR)



What about partial row sums

This gives a hint : Use TQFTs (this time defined axiomatically
using Atiyah’s axioms) based on fusion coefficients
(G-Fusion-TQFTs).

We find that analogous computations which replace
G-Flat-TQFTs with G-Fusion-TQFTs give results on integrality
of partial row sums of character tables.



OUTLINE

1. Using G-Flat-TQFT to obtain dR

2. Using G-Flat TQFT : Burnside algorithm

3. G-Flat TQFT : Integrality of partial column sums

4. G-Fusion TQFT : Integrality of partial row sums.



PART 1: Partition functions on closed surfaces

Zh, the genus h partition function of G-Flat TQFT, is given by

Zh =
1
|G|

∑
g1,g2,··· ,g2h−1,g2h∈G

δ([g1,g2][g3,g4] · · · [g2h−1,g2h])

=
∑

R

(
|G|
dR

)2h−2

The LHS is combinatorial - counting numbers of 2h-tuples of
group elements which multiply to identity. The RHS gives a
power sum of dimensions dR.



PART 1: Partition functions
A special case is h = 0

1
|G|

=
∑

R

d2
R
|G|2

|G| =
∑

R

d2
R

Useful known fact from finite group rep theory : |G|dR
are known

to be integers.



PART 1: Partition functions and power sums
Consider h = 2, · · · , (K + 1) where K is the number of
conjugacy classes. Define

aR =

(
|G|
dR

)
This sequence gives us ∑

R

a2
R = Z2∑

R

a4
R = Z3

...∑
R

a2K
R = ZK +1



PART 1: USeful matrix X

It is useful to define a K × K matrix

X = Diag

(
|G|2

d2
R

)
= Diag

(
a2

R

)

The Zh partition functions for h ∈ {2,3, · · · ,K + 1} give us
tr(X ), tr(X 2), · · · , tr(X K ) as combinatorial input.



PART 1: Characteristic polynomial of X
Consider the polynomial

F (x ,X ) ≡ det(x − X ) = (x − a2
1)(x − a2

2) · · · (x − a2
K )

= xK − (trX )xK−1 +
1
2

((trX )2 − trX 2)xn−2 + · · ·+ (−1)K (det X )

= xK − e1(X )xK−1 + e2(X )xK−2 + · · ·+ (−1)K eK (X )

The ei(X ) are elementary symmetric functions which can be
expressed in terms of products of traces (newton’s identities
give a recursive formula).

It is also useful to define El(X ) = (−1)lel(X ) which leads to

F (X , x)
= xn + E1(X )xn−1 + E2(X )xn−2 + · · ·+ EK−1(X )x + EK (X )

=
K∑

l=0

xK−lEl(X )



PART 1: Solving for integer solutions of characteristic polynomial of X

The a2
R are the zeroes of F (X , x), which is viewed as a

polynomial in x with coefficients constructed from G-TQFT2
partition functions as above.

The aR are known to be integers. There are simple algorithms
using this integrality for finding the roots of the polynomial.

The numbers (a2
1,a

2
2, · · · ,a2

K ) are divisors of det X since
F (X , x = 0) = (−1)K det X = (−1)K ∏K

i=1 a2
i . Let

Div0 = Set of divisors of (−1)K F (X , x = 0)

Each of the a2
R is a divisor of (−1)K F (X , x = 0), i.e. an element

of Div0.



PART 1: Solving for integer eigenvalues of characteristic polynomial of X
Next note that (−1)K F (X , x = 1) =

∏
R(a2

R − 1). Let ri be the
divisors of (−1)K F (X , x = 1). The a2

i are among the (ri + 1).

Div1 = Set of divisors of F (X , x = 1) shifted up by 1

Each element in the list {a2
1,a

2
2, · · · ,a2

K} is in the intersection

Div0 ∩ Div1 ∩ Div2 · · · ∩ DivK−1

and the list satisfies∏
R

(a2
R − l) = (−1)K−lF (X , l)

for all l ∈ {0,1, · · · ,K − 1}.
Search among the elements of (1) sets of K integers
(candidate {a2

1,a
2
2, · · · ,a2

K} which satisfy the condition in (1).
This suffices to ensure that we get the correct a’s. As explained
in [1] this ensures that the set of resulting elements is indeed
the set of {a2

1,a
2
2, · · · ,a2

K}



PART 2: Partition functions for surfaces
with boundaries and characters

Let Cp be a conjugacy class of G and let |Cp| be the number of
elements in the conjugacy class. We will denote by Tp the sum
of group elements, in the group algebra C(G)

Tp =
∑
g∈Cp

g

Tp is a central element of C(G), i.e. commutes with all
elements in C(G). The normalized characters for Cp are, for
g ∈ Cp,

|Cp|χR(g)

dR
=
χR(Tp)

dR

The set of Tp for all conjugacy classes spans the centre
Z(C(G)). Another basis for Z(C(G)) is given by the projectors
labelled by irreducible representations R

PR =
dR

|G|
∑

g

χR(g)g−1



PART 2: Partition functions for surfaces with boundaries and characters
The first basis {Tp} corresponds to conjugacy classes. The
second basis set {PR} is labelled by irreps. The projectors
satisfy

PRPS = δRSPS

A useful property is

TpPR =
χR(Tp)

dR
PR

The normalised characters are the eigenvalues of Tp viewed as
an operator on Z(C(G) .
The product in Z(C(G)) in the Tp basis is

TpTq =
∑

r

C r
pq Tr =

∑
r

δ(TpTqTr ′)

|Tr |
Tr

The coefficients Cr
pq are integers. The matrix (Cp)r

q is an integer
matrix. Its eigenvalues are algebraic integers. It follows that
χR(Tp)

dR
are algebraic integers ( for G = Sn they are integers).



PART 2: Partition functions for surfaces with boundaries
and power sums of normalised characters

A standard result in G-Flat-TQFT2 is that the amplitude for a
genus h surface with r distinct boundaries, where the group
element at the boundary is constrained to be in a conjugacy
class Cp is

∑
R

(
|G|
dR

)2h−2(χR(Tp)

dR

)r

= tr
(

X 2h−2X r
p

)
=

1
|G|

∑
si ,ti

∑
σ1.··· ,σr∈Cp

δ

(
(

h∏
i=1

si tis−1
i t−1

i )σ1 · · ·σr

)



X is a diagonal matrix with diagonal entries equal to |G|dR
. We

have defined Xp to be the diagonal matrix with matrix entries(
χR(Tp)

dR

)
. Fixing h = 1, we get power sums of the normalised

character from combinatoric data.

tr(X r
p) =

∑
R

(
χR(Tp)

dR

)r

=
1
|G|

∑
s1,t1

∑
σ1.··· ,σr∈Cp

δ(s1t1s−1
1 t−1

1 σ1 · · ·σr )
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This gives the combinatoric data reproducing tr(X r
p). It is the

counting of G bundles on genus one surfaces with r punctures
where the monodromy around each puncture has the specified
conjugacy class. In this way we can construct the characters of
all conjugacy classes, using the same algorithm as for the
dimensions. The problem reduces to solving the polynomial
equation

F (Xp, x) = det(Xp − x) = 0



PART 2: Connection to Burnside algorithm
Burnside algorithm proceeds by finding the eigenvalues of
(Cp)r

q
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PART 3: Partial sums along columns of character tables
For the Burnside algorithm, we used genus one with general
number of boundaries labelled by Cp.
What do we get if consider one boundary labelled by Cp, and a
multiple boundaries labelled by Cq.
First observe that higher genus partition functions are related to
the handle creation operator

Π =
∑

g1,h1∈G

ghg−1h−1 =
∑

R

|G|2

d2
R

PR =
∑

R

a2
RPR

Zh =
1
|G|

δ
(

Πh
)
,



PART 3: Powers of Π
Theorem The powers of Π, that is, {1,Π,Π2, · · · } span a
subspace of Z(C(G)) which has dimension D0 - the number of
distinct values of the dimensions dR of irreducible
representations.
Proof

Π =
∑

R

a2
RP2

R =
∑
R′

a2
R′P̃R′

R′ runs over a maximal set of irreps which have distinct
dimensions. P̃R′ is the sum of projectors for the irreps which
have the same dimension as R′.

P̃S′ =
∏

R′ 6=S′

(Π− a2
R′)

(a2
S′ − a2

R′)



PART 3: Powers of Π and characters
Let D0 be the number of distinct values of the dimension dR as
R ranges over the irreps of G.

1
|G|

δ(ΠhTp) =
∑

R

(
|G|2

(dim R)2

)h−1
χR(Tp)

dim R
,

=
∑
R′

(
|G|2

(dim R′)2

)h−1 ∑
{R:R′}

χR(Tp)

dim R

for the range h ∈ {1,2, · · · ,D0}
The primed sum runs over a maximal set {R′} of irreducible
representations R′ having distinct dimensions. The sum over
{R : R′} is a sum over the distinct irreducible representations R
with the same dimension as R′. Let us define R̃′ to be the direct
sum of irreducible representations R with the same dimension
as R′. Then we can write

1
|G|

δ
(

ΠhTp

)
=
∑
R′

(
|G|2

(dim R′)2

)h−1
χR̃′(Tp)

dim R′



PART 3: Partial sums along columns of character tables
Then we can write

1
|G|

δ
(

ΠhTp

)
=
∑
R′

(
|G|2

(dim R′)2

)h−1
χR̃′(Tp)

dim R′

As h runs over the set {1, · · · ,D0}, we have a linear system of
equations of size D0 × D0 for the normalized characters
χR̃′(Tp)/ dim R′. As R′ and l range over the D0 possibilities, we
have a matrix

VR′,h =

(
|G|2

(dim R′)2

)h−1

of size D0 × D0.



PART 3: Partial sums along columns of character tables
The equation (1) takes the form

Y = V · X

where

Yh =
1
|G|

δ
(

ΠhTp

)
,

XR′ =
χR̃′(Tp)

dim R′

and we recognize V as a Vandermonde matrix.
Since the R′ have been chosen to run over a set of irreducible
representations with distinct dimensions, the integers(

|G|2
(dim R′)2

)
are distinct. This ensures that V is invertible. The

inverse matrix can thus be used to construct the normalized
characters XR′ from the combinatoric G-CTST data Yh.



PART 3: Partial sums along columns of character tables : for fixed dimension
These ratios are known to be algebraic integers.

χR̃′(Tp)

dim R′

1.e solutions to a polynomial equation of the form

xn + a1xn−1 + · · ·+ an = 0

with integer coefficients. They are eigenvalues of the integer
(structure constant) matrices (Cp)r

q.
The Van der Monde matrix has integer entries. The inverse has
rational entries. Applying this integer matrix to the vector of
partition functions gives rational numbers.
An elementary fact from number theory says that: Algebraic
integers which are rational are actually integers. Hence
Theorem These sums of normalised characters over irreps of
fixed dimension dR′ are integers

χR̃′(Tp)

dim R′
=
∑
{R;R′}

χR(Tp)

dR



If the sum over {R; R′} of∑
{R;R′}

χR(Tp)

dR
=
∑
{R;R′}

|Cp|χR
p

dR

=
|Cp|
dR′

∑
{R;R′}

χR
p

is integer, then
∑
{R;R′} χ

R
p is rational.

The individual χR
p are known to be algebraic integers. The sum

is therefore also algebraic integers (algebraic integers form a
ring).

Again using the fact that an algebraic integer which is rational
must be an integer, we conclude that
Theorem The sums ∑

{R;R′}

χR
p

are integers.



EXAMPLE :
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Sums of characters in any column, for fixed value in first column
( Dimension) - is integer.



PART 3: Partial sums along columns of character tables :
for fixed integer value of an integer column

Consider a conjugacy class Cq where all the characters are
integer, entries for any other column say for Cp, taken over

subsets where χR(Tq)
dR

is fixed, is integer.
Similar reasoning as above except the partition functions
considered are

1
|G|

δ(ΠT l
qTp) =

∑
R

(
χR(Tq)

dR

)l
χR(Tp)

dR
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Similar steps :
- Write the sum as a sum over distinct level sets for χR(Tq)

dR
- Recognise an invertible integer Van-der-Monde matrix
- Invert and apply to rational data on the left.
- Infer that the sums of χ

R(Tp)
dR

over the distinct level sets are
rational.
- Use the algebraic number property of the sums above, along
with the rationality, to conclude that the sums over level sets
must be intger.
Along the same lines, partial sums of χR

p along level sets of
dR, χ

R
q1
, · · · where qi 6= p.



PART 4: Row sums
Two classsical identities (proved using expansion into
characters and orthogonality relations):

∑
R

χR(Tp)

dR
=
∑

q

1
|Tq|

δ(TqTqTq)

∑
p

χR
p =

∑
S

NR
SS

NR
SS is the multiplicity of R in the tensor product S ⊗ S.



PART 4: A dual 2D topological field theory
where projectors are labelled by conjugacy classes

The G-Flat-TQFT can be defined, from an axiomatic point of
view, by associated conjugacy classes (p,q, r) to 3-holed
spheres and the class algebra structure constants to the
3-holed sphere.
The algebra is

TpTq =
∑

r

Cr
pqTr

Fourier transforming the states to representation basis states :

PR =
dR

|G|
∑

p

χR
p T ′p

PRPS = δRSPR



PART 4: A dual 2D topological field theory
where projectors are labelled by conjugacy classes

aRaS =
∑

T

NT
RSaT

Ap =
1

Sym p

∑
R

χR̄
p aR

ApAq = δpqAp

aRAp = χR
p Ap



In this G-Fusion-TQFT, the handle creation operator is
calculated to be

Θ =
∑

p

(Sym p)Ap

The genus h partition function

Zh =
∑

p

(Symp)h−1

Can use the genus-h partition functions as input ( some
polynomials in fusion coefficients ), get the power sums of the
Symp and hence recover the conjugacy class sizes.
By considering general genus partition functions, with one
boundary labelled by irrep R, we can prove integrality of partial
sums of characters running over conjugacy classes of equal
size.



Let S be an irrep such that all the characters in the
corresponding row of the character table are integer, i.e.
χS

p ∈ Z for conjugacy classes p.
Consider the set 〈S,q〉 which is the complete set of conjugacy
classes with a fixed value of the character equal to χS

q Then∑
p∈〈S,q〉

χR
p ∈ Z

Zh=1,Sl ,R =
∑

p

(χS
p )lχR

p
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PART 4: Generalised partitions
Row sum is a positive integer. A question in CRT/complexity :
is there an efficient combinatorial construction for this integer
)e.g. G = Sn ?
We are learning that this integer has the structure
zR = z+

R − z−R , where z+
R is a sum of positive integers, over level

sets of a subset of integer rows S 6= R and z−R is a sum of
positive integers over level sets for the complementary subset
of integer rows S 6= R.



PART 4: Generalised partitions
Row sum is a positive integer. FOr some groups e.g. symmetric
groups, all the entries in the character table are integer ; and
the positive number is the sum of a greater positive number
with a smaller negative number. Something analogous is true
for general G.

We are learning that this integer has the structure
zR = z+

R − z−R , where z+
R is a sum of positive integers, over level

sets of a subset of integer rows S 6= R and z−R is a sum of
positive integers over level sets for the complementary subset
of integer rows S 6= R.

In [2] we obtained analogous integrality results for partial
column sums, using twisted Dijkgraaf-Witten theory, for
projective irreducible reps of G.



PART 5: OUTLOOK
More standard approach to integrality properties of finite group
character tables is based on Galois theory. For any finite group
there is a minimal integer E ( the exponent) such that gE = 1.
The Galois extension of the rationals by e2πi/E - the cyclotomic
field Q(e2πi/E ) - can be used to study the rep theory of G (over
C). There is a Galois action on character tables.



PART 5: OUTLOOK
We did not find the proofs of the partial row/colum sum
integrality results in the literature. We gave these proofs in [3].

Interplay between the Galois methods and the constructive
TQFT methods will be interesting to study.

Better understanding of the duality between G-Flat-TQFT and
G-Fusion-TQFT. Duality invariant observables ? Can we extend
this in a meaningful way to C(G) ? ( and derive results about
DR

ij (g) ) ?



PART 5: OUTLOOK

The study of constructive algorithms for rep theory questions
using objects arising in physics (here lattice TQFT, fusion TQFT
on surfaces) is also relevant to more refined aspects of rep
thery – e.g. LR coefficients, or Kronecker coefficients.
J Ben Geloun, S. Ramgoolam, arXiv-2020 ; Algebraic Combinatorics 2023

Bipartite ribbon graphs, Integrality play an important role there
... Understanding the classical/quantum complexity of these
algorithms raises some precise questions about symmetric
groups...
J Ben Geloun, S. Ramgoolam, https://arxiv.org/abs/2303.12154 ; JHEP-2023


