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What is known by Loop Vertex Expansion (LVE)
The domain of analyticity for the free energy of the quartic matrix
model,
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[V. Rivasseau, 2007; R. Gurau, T. Krajewski 2014].



Loop Vertex Expansion

To prove the main result we apply and develop the LVE machinery,
which, in contrast with traditional constructive methods, is not
based on cluster expansions nor involves small/large field
conditions.

» Like Feynman's perturbative expansion, the LVE allows the
computation of connected quantities at a glance: log(forests)
= trees.

» The LVE is an explicit repacking of infinitely many subsets of
pieces of Feynman amplitudes.

» The convergence of the LVE implies analyticity in the domain
uniform in N and Borel summability of the usual perturbation
series.



Main steps of LVE

1. The divergence of the standard perturbation theory is caused
by the too-singular growth of the interaction potential at large
fields. Therefore, we derive an effective action S(M),
providing
polynomial interaction ====> Log-type interaction.

2. Taylor expansion
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3. Replication of fields, by introducing a degenerate Gaussian
measure, so

4. Application of the BKAR forest formula + taking the log by
reducing the sum over forests to the sum over trees.

5. Derivation of the bounds for the LVE tree amplitudes.



Log-type action and the analyticity
In the LVE the log-type action has the form

S(M) = log(1 + iV AM),
and its derivatives, appearing after Gaussian integration look like
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Variational Perturbation Theory

[Seznec, Zinn-Justin (1979); Halliday, Suranyi (1980); Feynman,
Kleinert (1986); Guida, Konishi, Suzuki (1996);...]
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For instance, one can try to find a(g, V) by requiring

8alN(g, a) =0



New effective action
Starting with the partition function
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Integrating out initial fields, rescaling, etc., we obtain effective
action
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How to compute log Z

The effective action provides a way to generate convergent
expansion for the partition function

Z=K[\N a]z /du {NS(A)]n

To compute the logarithm we apply the forest/tree expansion:
forests ====> log ====> trees
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Theorem 8 (Brydges-Kennedy-Abdesselam-Rivasseau). Let ¢ : R
sufficiently derivable function. Then:
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and |E(F)| is the number of edges in the forest F.



BKAR forest formula
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The first term corresponds to the empty forest (|E(F)| = 0) and the second one to the full
forest (|E(F)| =1).
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Preparing the application of the forest formula
Starting with

Z = K[\, N,a]i:(:) (=1)” /dM(A) {NS(A)]H,
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we generate replicas replacing (for the order n) the integral over
the single N x N matrix A by an integral over an n-tuple of such
N x N matrices A; , 1 <i<n.

with a degenerate covariance Cj; = 1, Vi, .
/dMC(A)AiabAjcd = Cjj 0ad0bc

Aj|apb is the matrix element in the row a and column b of the
matrix A;.

dpc(A) = du(A) 6(Ar — Az) - ... 8(Ap_1 — Ay)



Application of the forest formula

Now we replace the covariance Cjj =1 by Cji(x) = xj;, (x5 = xji)
evaluated at x;; = 1 for i # j, and Cji(x) =1, Vi, and can apply
the BKAR formula
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Then, we treat derivatives with respect to xj;, as

8ij (/dMC(X)(A)F(A)> = /duc(x)(A) [8(?4 88 ] F(A)




Derivatives of the effective action and corner operators

First derivative
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LVE for log Z

Therefore, the logarithm of Z can be expressed, as

log Z :|OgK[)‘7 N, a] + Z ATP‘: N] )
LVE tree
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LVE trees
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Bounds for the corner operators
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Bounds again

Let 2 = xv/\e'®, x > 0 and @ = pe’g.
By taking x large, we can ensure that
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There are not so many LVE trees with many leaves!
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How many trees have more than «|V/(T)| leaves?

Lemma
The number of trees with |V (T)| vertices and a|V(T)| or more
leaves with 1/2 < o < 1, | T>| is bounded by
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Bound for trees € T~

Lemma
For -5 <0< % and a = gg, the sum of absolute values of
amplitudes of the trees T> is smaller than the sum of an

absolutely convergent series,
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Bound for trees € T~

Lemma
For —% <0< % and a = 28, the sum of absolute values of
amplitudes of the trees T~ is smaller than the sum of an

absolutely convergent series,
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Result
Let's define a cardioid domain of the coupling constant A,
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then

Theorem
For any A € X, where X is defined as

X = CU{)\G(C‘)\;AO y¢\<3—”},
the free energy
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of the quartic matrix model, is analytic uniformly in N.



Outlook

Loop Vertex Expansion was successfully applied to many problems
related to quartic models:
» J. Magnen and V. Rivasseau, “Constructive ? field theory
without tears,” (2008)

» T. Delepouve and V. Rivasseau, “Constructive Tensor Field
Theory: The T3 Model,” (2014)

» V. Lahoche, “Constructive Tensorial Group Field Theory I:
The U(1) T} Model,” (2015)

» R. Gurau, “The 1/N Expansion of Tensor Models Beyond
Perturbation Theory,” (2014)

> D. Benedetti, R. Gurau, H. Keppler, and D. Lettera, " The
small-N series in the zero-dimensional O(N ) model:
constructive expansions and transseries.”, (2022).
It might be interesting to try to extend these results with the
Variational Loop Vertex expansion.



