Thirty-six entangled officers of Euler:

Quantum solution of a classically impossible combinatorial problem

Karol Życzkowski
Jagiellonian University (Cracow)
Polish Academy of Sciences (Warsaw)
in collaboration with

S. A. Rather, A. Lakshminarayan (Chennai), A. Burchardt (Amsterdam), W. Bruzda (Cracow),
G. Rajchel-Mieldzioć (Barcelona)

Combinatorics and Arithmetic for Physics, Paris,
November 15, $2023=1900+\mathbf{1 2 1}+2$

Pure states in a finite dimensional Hilbert space \mathcal{H}_{N}

Qubit = quantum bit; $N=2$

$$
|\psi\rangle=\cos \frac{\vartheta}{2}|1\rangle+e^{i \phi} \sin \frac{\vartheta}{2}|0\rangle
$$

Bloch sphere of $N=2$ pure states (isotropic)

Space of pure states for an arbitrary N :
a complex projective space $\mathbb{C} P^{N-1}$ of $2 N-2$ real dimensions.
This space is isotropic! All states are 'equal'!
There are no states with extremal properties !

situation changes if

some structure is imposed to the system

Then all quantum states are equal,
but some are more equal then others...
a simple example
a composed two-qubit system: $\quad \mathcal{H}_{2} \otimes \mathcal{H}_{2}$
geometric perspective - Segre embedding: $\mathbb{C} P^{1} \times \mathbb{C} P^{1} \subset \mathbb{C} P^{3}$.
separable states are distinguished
so are maximally entangled Bell states, e.g. $\left|\psi_{+}\right\rangle=(|00\rangle+|11\rangle) / \sqrt{2}$
as they are more equal then other states...
In such a case the search for states with extremal properties is justified:
Bell states are the most entangled two-qubit states, (most distant from the set $\mathbb{C} P^{1} \times \mathbb{C} P^{1}$ of separable states),
useful for several applications in quantum technologies...

Classical Combinatorial Designs

Latin Squares and Greaco-Latin Squares are well known subjects considered in recreational mathematics.

A Latin square of size d is given by d copies of d symbols arranged in a square such that each its row and each column contains different symbols.
cards example of order $d=3$:

A Greaco-Latin square of size d (also called two orthogonal Latin squares consists of two Latin squares, (one written with Greek letters one with Latin), such that all d^{2} pairs of symbols are different
example of size $d=3$ studied by Euler

αA	βB	γC
γB	αC	βA
βC	γA	αB

Combinatorial design: a constellation of elements of a finite set arranged with certain symmetry and balance are related to statistics and planning of experiments

Mutually orthogonal Latin Squares (MOLS)

A classical example:

Take 4 aces, 4 kings, 4 queens and 4 jacks and arrange them into an 4×4 array, such that
a) - in every row and column there is only a single card of each suit
b) - in every row and column there is only a single card of each rank

Mutually orthogonal Latin Squares (MOLS)

A classical example:

Take 4 aces, 4 kings, 4 queens and 4 jacks and arrange them into an 4×4 array, such that
a) - in every row and column there is only a single card of each suit
b) - in every row and column there is only a single card of each rank

Two mutually orthogonal Latin squares of size $d=4$ Graeco-Latin square!

Mutually orthogonal Latin Squares (MOLS)

\&) $d=2$. There are no orthogonal Latin Square
(for 2 aces and 2 kings the problem has no solution)
๑) $d=3,4,5$ (and any power of prime) \Longrightarrow there exist $(d-1)$ MOLS.
©) $d=6$. Only a single Latin Square exists (No OLS!).
Euler's problem: 36 officers of six different ranks from six different units come for a military parade. Arrange them in a square such that in each row / each column all uniforms are different.

\%	5	5	?	?	?
8	\%	\%	?	?	?
${ }^{6}$	\%	8	?	?	?
?	?	?	?	?	?
?	?	?	?	?	?
?	?	?	?	?	?

No solution exists! (1779 conjecture by Euler), proof (121 years later) Gaston Tarry Le Probléme de 36 Officiers, Compte Rendu (1900).

36 officers of Euler revisited

introductory exercise
Step i) Place six rooks on a chessboard of size six, in such a way that no figure attacks any other:

36 officers of Euler，step two

Step ii）Take six pieces of five other figures and place them onto the board in an analogous（rooks－like）way：

业	魩	萛	\pm	1	$\underline{\text { E }}$
I	\pm	\＃	雩	＊	1
断	当	\pm	2	$\underline{1}$	1
1	睦	星	Σ	4	断
1	厚	皆	鳞	1	（
\％	1	1	$\underline{\text { E }}$	留	

Latin Square of order six

36 officers of Euler，step three．．．

Step iii）Color them into six colors， so that all colors，in each row and column are different．．．

当		（	a	1	1
I	1	？	－		1
曹	\％	？		$\underline{1}$	1
，	1		？	者	㤟
2		－	䒼	\pm	Q

Place the remaining four figures，two of them in cyan and two in green， so that all the rules of Euler are fulfilled

36 officers of Euler，step three \Rightarrow no go ！

Step iii）Color them into six colors，$d=6=2 * 3$ ， so that all colors，in each row and column are different．．．

噌	Why	\pm	5	2	E
星	1	\％	d	4）	4
䒼	（10）	$?$	？	$\underline{8}$	$\underline{3}$
4	1	？	？	曾	㤟
易	3	它	粒	4	¢
18	4	1	易	W3y	db

Place the remaining four figures，two of them in cyan and two in green，so that all the rules of Euler are fulfilled－this is not doable！G．Tarry

Quantum Combinatorial Designs

Vicary, Musto (2016): a square of order d consisting d^{2} states $\left|\psi_{i j}\right\rangle \in \mathcal{H}_{d}$ is called Quantum Latin if each of its rows and columns forms an ortogonal basis, $\left\langle\psi_{i j} \mid \psi_{i k}\right\rangle=\left\langle\psi_{j i} \mid \psi_{k i}\right\rangle=\delta_{j k}, i=1, \ldots, d$.
Example of order $d=4: \quad Q L S(4)=\left|\begin{array}{cccc}|1\rangle & |2\rangle & |3\rangle & |4\rangle \\ |4\rangle & |3\rangle & |2\rangle & |1\rangle \\ \left|\chi_{-}\right\rangle & \left|\xi_{-}\right\rangle & \left|\xi_{+}\right\rangle & \left|\chi_{+}\right\rangle \\ \left|\chi_{+}\right\rangle & \left|\xi_{+}\right\rangle & \left|\xi_{-}\right\rangle & \left|\chi_{-}\right\rangle\end{array}\right|$,
where $\left|\chi_{ \pm}\right\rangle=\frac{1}{\sqrt{2}}(|2\rangle \pm|3\rangle), \quad\left|\xi_{+}\right\rangle=\frac{1}{\sqrt{5}}(i|1\rangle+2|4\rangle)$ and $\left|\xi_{-}\right\rangle=\frac{1}{\sqrt{5}}(2|1\rangle+i|4\rangle)$ denote superposition states, and give 2 column bases +2 row bases $=4$ orthogonal bases in \mathcal{H}_{4}

Standard combinatorics: discrete set of symbols, $1,2, \ldots, d$,

+ permutation group
generalized 'Quantum' combinatorics: continuous family

$$
\text { of states }|\psi\rangle \in \mathcal{H}_{d}+\text { unitary group } U(d)
$$

Gerhard Zauner, Ph.D. Thesis, Wien 1999.

Quantum Orthogonal Latin Squares (QOLS)

C) Classical OLS consists of d^{2} pairs of d symbols such that
a) all d^{2} pairs of symbols are different,
b, c) there is no repetition of any symbol in each row and each column
Q) Quantum OLS is formed by d^{2} bipartite states

$$
\left|\psi_{i j}\right\rangle \in \mathcal{H}_{d} \otimes \mathcal{H}_{d}=\mathcal{H}_{A} \otimes \mathcal{H}_{B} \quad \text { such that }
$$

a)' all d^{2} states are mutually orthogonal, $\left\langle\psi_{i j} \mid \psi_{k \ell}\right\rangle=\delta_{i k} \delta_{j \ell}$,
b)', c)' all rows and columns satisfy partial trace relations
$\operatorname{Tr}_{B}\left(\sum_{k=0}^{d-1}\left|\psi_{i k}\right\rangle\left\langle\psi_{j k}\right|\right)=\delta_{i j} \mathbb{I}_{d}$, the average colour is 'white'
$\operatorname{Tr}_{B}\left(\sum_{k=0}^{d-1}\left|\psi_{k i}\right\rangle\left\langle\psi_{k j}\right|\right)=\delta_{i j} \mathbb{I}_{d}$, in each row and column... and dual conditions for Tr_{A}.
a 'classical' $d=3$ example of QOLS:

$\|A \boldsymbol{\wedge}\rangle$	$\|K \boldsymbol{\phi}\rangle$	$\|Q \diamond\rangle$
$\|K \diamond\rangle$	$\|Q \mathbf{\phi}\rangle$	$\|A \boldsymbol{\phi}\rangle$
$\|Q \boldsymbol{Q}\rangle$	$\|A \diamond\rangle$	$\|K \boldsymbol{\uparrow}\rangle$

is based on product states, e.g. $|K \boldsymbol{\beta}\rangle=|K\rangle \otimes|\boldsymbol{\phi}\rangle$.
To get genuinely Quantum OLS one needs to introduce entanglement

Composed systems \& entangled quantum states

bi-partite systems: $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$

- separable pure states: $|\psi\rangle=\left|\phi_{A}\right\rangle \otimes\left|\phi_{B}\right\rangle$
- entangled pure states: all states not of the above product form.

Two-qubit system: $2 \times 2=4$
Maximally entangled Bell state $\left|\varphi^{+}\right\rangle:=(|00\rangle+|11\rangle)=(|A \mathbf{p}\rangle+|K \boldsymbol{\&}\rangle)$ useful for several applications in quantum technologies...

Maximally Entangled states of a $d \times d$ system

Any pure state from $\mathcal{H}_{d} \otimes \mathcal{H}_{d}$ can be written as

$$
|\psi\rangle=\sum_{i j} C_{i j}|i\rangle \otimes|j\rangle, \text { where }|\psi|^{2}=\operatorname{Tr} C C^{\dagger}=1
$$

A state $|\psi\rangle$ is maximally entangled if its partial trace is maximally mixed,

$$
\sigma=\operatorname{Tr}_{B}|\psi\rangle\langle\psi|=C C^{\dagger}=\mathbb{1}_{d} / d
$$

which is the case if the rescaled matrix $U=\sqrt{d} C$ of size d is unitary.

Absolutely maximally entangled state (AME)

Definition. A pure state of an even number N of qudits is called absolutely maximally entangled, $\operatorname{AME}(\mathbf{N}, \mathbf{d})$ if for any choice of $N / 2$ subsystems traced out the reduced state is maximally mixed.
Scott (2004), Facchi + (2008), Helwig+ (2012), Arnaud + (2013)
An AME state of four parties A, B, C, D with d levels each,

$$
|\psi\rangle=\sum_{i, j, l, m=1}^{d} T_{i j l m}|i, j, l, m\rangle
$$

It is maximally entangled with respect to all three partitions: $A B \mid C D$ and $A C \mid B D$ and $A D \mid B C$.
Let $\rho_{A B C D}=|\psi\rangle\langle\psi|$. Hence its three reductions are maximally mixed, $\rho_{A B}=\operatorname{Tr}_{C D} \rho_{A B C D}=\rho_{A C}=\operatorname{Tr}_{B D} \rho_{A B C D}=\rho_{A D}=\operatorname{Tr}_{B C} \rho_{A B C D}=\mathbb{1}_{d^{2}} / d^{2}$ Thus matrices $U_{\mu, \nu}$ of order d^{2} obtained by reshaping the tensor $T_{i j k l}$ are unitary for three reorderings:
a) $\mu, \nu=i j, I m$,
b) $\mu, \nu=i m, j l$,
c) $\mu, \nu=i l, j m$.

Such a tensor T is called perfect, Pastawski et al. (2015), and a matrix U two-unitary Goyeneche et al. (2015)

AME states and Quantum OLS

Theorem. Existence of QOLS(d) is equivalent to AME states of 4 systems with d levels each.
each field of a QOLS(d) encodes four data: two digits from one to d determine address of a square, two other data its content.

Let $\left\{\left|\phi_{i j}\right\rangle \in \mathcal{H}_{d}\right\}_{i, j=1}^{d}$ form a $\operatorname{QOLS}(\mathrm{d})$.
Then 4-partite state $\left|\Psi_{4}\right\rangle:=\sum_{i, j=1}^{d}|i, j\rangle \otimes\left|\phi_{i j}\right\rangle=\sum_{i, j, k, \ell=1}^{d} t_{i j k \ell}|i, j, k, \ell\rangle$ forms the state $|A M E(4, d)\rangle$ while $t_{i j k \ell}$ forms a perfect tensor as reshaped into a matrix $U_{\mu \nu}$ is unitary for all pairs of indices;

$$
\mu=(i, j) ; \mu=(i, k) ; \mu=(i, \ell)
$$

Maximal entanglement of a four-party state $\left|\Psi_{4}\right\rangle=|\Psi\rangle_{A B C D}$ with respect to all three partitions: $\quad A B \mid C D$ and $A C \mid B D$ and $A D \mid B C$ is equivalent to the fact that d^{2} bi-partite states $\left|\phi_{i j}\right\rangle$ form a quantum ortogonal Latin square.

No Quantum OLS of order $d=2$

There are no classical OLS of size $d=2$
There are no quantum OLS of size $d=2$ either!

Even using entangled states (more than a single figure in one chess field) it is not possible to find a 2×2 square of four states which satisfies QOLS conditions a'), b'), c').

Higuchi, Sudbery (2001) proved that there are no AME states of 4 qubits \Longrightarrow no QOLS(2)!

Higher dimensions: AME $(4,3)$ state of four qutrits

A Greaco-Latin square of size $d=3$
each symbol encodes 4 digits: (c,r,f,s) = column, row, figure, suit

αA	βB	γC				
γB	αC	βA				
βC	$\gamma \boldsymbol{A}$	αB	$=$	$A \boldsymbol{\wedge}$	$K \boldsymbol{\&}$	$Q \diamond$
:---	:---	:---				
$K \diamond$	$Q \boldsymbol{\wedge}$	$A \boldsymbol{\&}$				
$Q \boldsymbol{\&}$	$A \diamond$	$K \boldsymbol{\uparrow}$	$=$	0,0	1,2	2,1
:---	:---	:---				
1,1	2,0	0,2				
2,2	0,1	1,0				

yields an AME state of 4 qutrits:

$$
\begin{aligned}
\left|\Psi_{3}^{4}\right\rangle= & |0000\rangle+|0112\rangle+|0221\rangle+ \\
& |1011\rangle+|1120\rangle+|1202\rangle+ \\
& |2022\rangle+|2101\rangle+|2210\rangle .
\end{aligned}
$$

Corresponding Quantum Code: $|0\rangle \rightarrow|\tilde{0}\rangle:=|000\rangle+|112\rangle+|221\rangle$
$|1\rangle \rightarrow|\tilde{1}\rangle:=|011\rangle+|120\rangle+|202\rangle$
$|2\rangle \rightarrow|\tilde{2}\rangle:=|022\rangle+|101\rangle+|210\rangle$

Existence of Absolutely maximally entangled states

The case: $N=4$ subsystems with $d=6$ levels each
(corresponding to 36 officers of Euler) up till 2021

In hunt for an $|\operatorname{AME}(4,6)\rangle$ state of 4 quhex

To find the state
$|A M E(4,6)\rangle=\left(U_{A B} \otimes \mathbb{I}_{C D}\right)\left|\Psi_{A C \mid B D}^{+}\right\rangle=\sum_{i, j, k, \ell=1}^{6} t_{i j k \ell}|i, j, k, \ell\rangle$
we look for a 2-unitary matrix $U_{A B} \in U(36)$, which remains unitary after reorderings, maximizes the entangling power $e_{p}(U)$

(average entanglement of $U_{A B}\left|\psi_{A}\right\rangle \otimes\left|\psi_{B}\right\rangle$)
and leads to a perfect tensor $t_{i j k \ell}$ used for models of bulk/boundary duality

Optimization over the space $U(36)$ of dimension $36^{2}-1=1295$ is not easy...

No classical OLS(6). But a quantum solution exists !

Quantum solution of 36 entangled officers of Euler. Size of the figures represents moduli of superpositions, Is field $c 2$ equal to $a 5$?

Quantum solution of 36 entangled officers of Euler. Size of the figures represents moduli of superpositions, index k denotes the complex phase $\exp (i \pi k / 20)$, e.g. field c2) denotes $|\lambda\rangle-|\boldsymbol{\lambda}\rangle$ and is orthogonal to a5).

Full solution of the problem of 36 entangled officers of Euler encoded in the chessboard of size 6 looks like this．．． （each state $\left|\psi_{i j}\right\rangle$ determines a single row of a 2－unitary matrix U_{36} ）

$$
\left|\psi_{55}\right\rangle=c \omega^{16}|21\rangle+c \omega^{11}|54\rangle=c \omega^{16}|\eta\rangle+c \omega^{11}|\mathbf{k}\rangle
$$

$$
\text { where } \omega=\exp (i \pi k / 20), \text { and } a^{2}+b^{2}=c^{2}=1 / 2
$$

while the ratio of the two sizes of the figures is equals to the

$$
\text { golden mean, } b / a=(1+\sqrt{5}) / 2=\varphi
$$

It is easy to check that this constellation satisfies the desired conditions
\mathbf{a}^{\prime} ）， \mathbf{b}^{\prime} ）， \mathbf{c}^{\prime} ）specified above and it deservs an appelation golden square．

$$
\begin{aligned}
& \left.\left.\left|\psi_{01}\right\rangle=c|00\rangle+b|43\rangle+a \omega^{7}|53\rangle=c \mid \text { 籴 }\right\rangle+b \mid \text { 宣 }\right\rangle+a \omega^{7}|\mathbf{c}\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left|\psi_{10}\right\rangle=c \omega^{10}|23\rangle+c \omega^{10}|50\rangle=c \omega^{10}| \rangle+c \omega^{10}| \rangle\right\rangle \\
& \left.\left.\left|\psi_{11}\right\rangle=c \omega^{6}|33\rangle+c|40\rangle=c \omega^{6} \mid \text { 重 }\right\rangle+c \mid \text { 宣 }\right\rangle \\
& \left.\left.\left.\left|\psi_{12}\right\rangle=a \omega^{2}|04\rangle+b \omega^{5}|14\rangle+c \omega^{7}|41\rangle=a \omega^{2} \mid \text { 曲 }\right\rangle+b \omega^{5} \mid \text { 豈 }\right\rangle+c \omega^{7} \mid \text { 曾 }\right\rangle
\end{aligned}
$$

Four states on background of the same colour form a basis and are orthogonal ! The board of size 6 with 36 fields is divided into 9 groups of 4 two-qubit orthogonal states. $9 * 4=6 * 6$

Entangling Power

$$
e_{p}(U)=\frac{1}{E(S)}(E(U)+E(U S)-E(S)) \in[0,1]
$$

$$
E(U)=1-\left(\sum_{j=1}^{d^{2}} \lambda_{j}^{2}\right) / d^{4}
$$

$$
g_{t}(U)=\frac{1}{2 E(S)}(E(U)-E(U S)+E(S)) \in\left[0, \frac{1}{2}\right]
$$

$$
S\left(\left|\phi_{A}\right\rangle \otimes\left|\phi_{B}\right\rangle\right)=\left|\phi_{B}\right\rangle \otimes\left|\phi_{A}\right\rangle
$$

$U \in \mathcal{U}_{d^{2}}$ is 2-unitary $\Leftrightarrow E(U)=E(S U)=E(S) \Leftrightarrow e_{p}(U)=1, g_{t}(U)=\frac{1}{2}$

Area of interest, near corner

Numerical Search

$$
\begin{aligned}
& U_{0} \mapsto U_{0}^{\mathrm{R}} \mapsto\left(U_{0}^{\mathrm{R}}\right)^{\Gamma}:=U_{0}^{\Gamma \mathrm{R}} \mapsto U_{1} \\
& e_{p}(\tilde{P})=\frac{314}{315} \simeq .9968 \\
& e_{p}(\tilde{P}) \rightarrow \frac{419}{420} \simeq .9976 \\
& e_{p}\left(\widetilde{P_{S}}\right)=\frac{104}{105} \simeq .9905
\end{aligned} e_{p}\left(e_{p}\left(\widetilde{P_{S}} e^{i H \varepsilon}\right) \rightarrow .9991, \rightarrow 1 .\right.
$$

$$
\tilde{P}=\left|\begin{array}{llllll}
11 & 22 & 33 & 44 & 55 & 66 \\
23 & 14 & 45 & 36 & 61 & 52 \\
32 & 41 & 64 & 53 & 16 & 25 \\
46 & 35 & 51 & 62 & 24 & 13 \\
54 & 63 & 26 & 15 & 42 & 31 \\
65 & 56 & 12 & 21 & 33 & 44
\end{array}\right|=
$$

A	$K \mathbf{4}$	Q	$J *$	10 ²	9*
K	A	J \%	Q*	9	10\%
$Q \pm$	J	9	10*	A*	K *
J*	$Q *$	104	9	$K \vee$	A
10 V	9	K*	$A *$	J	Q
$9 \boldsymbol{2}$	10*	A*	K	Q	J

$\tilde{P}_{s}=$	$\begin{array}{llllll}11 & 22 & 33 & 44 & 55 & 66\end{array}$	$=$	A	K	Q	J	10*	9*
	$\begin{array}{lllllll}23 & 14 & 45 & 36 & 61 & 52\end{array}$		K	A V	J \%	Q*	9	10\%
	$\begin{array}{lllllll}32 & 41 & 64 & 53 & 16 & 25\end{array}$		Q	J ¢	9	10*	A*	K \%
	$\begin{array}{lllllll}46 & 35 & 51 & 62 & 24 & 13\end{array}$		J*	Q *	104	9	K	A
	$\begin{array}{lllllll}64 & 56 & 26 & 15 & 43 & 31\end{array}$		9	10*	K*	A *	J	Q
	$\begin{array}{lllllll}55 & 63 & 12 & 21 & 42 & 34\end{array}$		10\%	$9 *$	$A \bullet$	K	$J ¢$	Qv

Numerical Cleaning

$$
\left(U_{6}^{(1)} \otimes U_{6}^{(2)}\right) U_{36}\left(U_{6}^{(4)} \otimes U_{6}^{(3)}\right)
$$

$$
\left(\begin{array}{c}
\left.T_{6} \otimes T_{2}^{\otimes 3}\right) U_{36}\left(T_{2}^{\otimes 3} \otimes T_{2}^{\otimes 3}\right) \\
\begin{array}{ccccccccc}
0.75 & 0 & 0 & 0 & 0 & 0 & 0.25 & 0 \\
0 & 0.25 & 0 & 0 & 0 & 0 & 0 & 0.25 \\
0 & 0 & 0.25 & 0 & 0.25 & 0 & 0 & 0 \\
0 & 0 & 0 & 0.75 & 0 & 0.25 & 0 & 0 \\
0 & 0 & 0.25 & 0 & 0.25 & 0 & 0 & 0 \\
0 & 0 & 0 & 0.25 & 0 & 0.75 & 0 & 0 \\
0.25 & 0 & 0 & 0 & 0 & 0 & 0.75 & 0 \\
0 & 0.25 & 0 & 0 & 0 & 0 & 0 & 0.25
\end{array}
\end{array}\right.
$$

Solution Found

block form of U

block form of U^{R}

block form of $\left(U^{R}\right)^{\Gamma}$

Solution Found

$(1,1)$	$(2,2)$	$(1,2)$	$(2,1)$		$(1,3)$	$(2,4)$	$(1,4)$	$(2,3)$
$a \omega^{10}$	a	$b w^{15}$	$b w^{5}$	$(6,3)$	$a \omega^{2}$	$a \omega^{14}$	$b \omega$	$b \omega^{5}$
		c	c	$(1,1)$			$c \omega^{5}$	c ω^{19}
c	c			$(5,6)$	$c \omega^{17}$	$c \omega^{19}$		
$b \omega^{10}$	b	$a \omega^{5}$	$a \omega^{15}$	$(4,2)$	$b \omega^{14}$	$b \omega^{6}$	$a \omega^{3}$	$a \omega^{7}$
$(3,1)$	$(4,2)$	$(3,2)$	$(4,1)$		$(3,3)$	$(4,4)$	$(3,4)$	$(4,3)$
$a \omega^{4}$	$a \omega^{10}$	$b \omega^{17}$	$b \omega^{7}$	$(4,5)$	a	a	$b \omega^{15}$	$b \omega^{15}$
		$c \omega^{2}$	$c \omega^{2}$	$(3,2)$			c	$c \omega^{10}$
c ω^{10}	$c \omega^{6}$			$(2,4)$	c	$c \omega^{10}$		
$b \omega^{7}$	$b \omega^{13}$	$a \omega^{10}$	a	$(5,3)$	b	b	$a \omega^{5}$	$a \omega^{5}$
$(5,1)$	$(6,2)$	$(5,2)$	$(6,1)$		$(5,3)$	$(6,4)$	$(5,4)$	$(6,3)$
$a \omega^{3}$	$a \omega^{7}$	b	b	$(1,4)$	$a \omega^{12}$	$a \omega^{14}$	$b \omega^{15}$	$b \omega$
		c	c ω^{10}	$(2,1)$			$c \omega^{14}$	$c \omega^{10}$
$c \omega^{13}$	$c \omega^{7}$			$(3,5)$	$c \omega^{7}$	$c \omega^{19}$		
$b \omega^{9}$	$b \omega^{13}$	$a \omega^{16}$	$a \omega^{16}$	$(6,6)$	$b \omega^{14}$	$b \omega^{16}$	$a \omega^{7}$	$a \omega^{13}$

| $(1,5)$ | $(2,6)$ | $(1,6)$ | $(2,5)$ | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $a \omega$ | $a \omega^{19}$ | $b \omega^{14}$ | $b \omega^{16}$ | $(4,1)$ |
| $a \omega$ | $a \omega^{3}$ | $b \omega^{10}$ | $b \omega^{4}$ | $(3,4)$ |
| $b \omega^{4}$ | $b \omega^{18}$ | $a \omega^{3}$ | $a \omega^{9}$ | $(2,6)$ |
| $b \omega^{2}$ | $b \omega^{8}$ | $a \omega^{5}$ | $a \omega^{15}$ | $(5,5)$ |

$$
\begin{aligned}
& \text { AME }(4,6) \text { state } \\
& \frac{1}{6} \sum_{i j, k, \ell=1}^{d} t_{i, j, k, \ell}|i\rangle|j\rangle|k\rangle|\ell\rangle \\
& a=\frac{1}{\sqrt{2}(\omega+\bar{\omega})}=\frac{1}{\sqrt{5+\sqrt{5}}} \\
& b=\frac{1}{\sqrt{2}\left(\omega^{3}+\bar{\omega}^{3}\right)}=\sqrt{\frac{5+\sqrt{5}}{20}} \\
& c=\frac{1}{\sqrt{2}}
\end{aligned}
$$

$$
\omega=\exp (i \pi / 20)
$$

Pythagoras theorem

$a^{2}+b^{2}=c^{2}=\frac{1}{2}$

Golden ratio

$b / c=\varphi==\frac{1+\sqrt{5}}{2}$

Quantum Officers of Euler

｜K	｜A＊${ }^{\text {¢ }}$	$\|A\rangle$	$\|K \bullet\rangle$	$\begin{aligned} & \|10 \boldsymbol{*}\rangle \\ & \|9 \boldsymbol{k}\rangle \\ & \hline \end{aligned}$	$\begin{gathered} \|10 *\rangle \\ \|9 *\rangle \\ \hline \end{gathered}$	$\begin{gathered} \|10 *\rangle \\ \|9\rangle \\ \|9\rangle \end{gathered}$	$\begin{gathered} \|10\rangle\rangle \\ \|9 *\rangle \\ \hline \end{gathered}$	$\begin{gathered} \|Q \star\rangle \\ \|J \star\rangle \\ \hline \end{gathered}$	$\begin{aligned} & \|Q \vee\rangle \\ & \|J \vee\rangle \end{aligned}$	$\begin{gathered} \|Q \boldsymbol{\omega}\rangle \\ \left\lvert\, \begin{array}{c} J \boldsymbol{*}\rangle \\ \hline \end{array}\right. \end{gathered}$	$\begin{array}{\|l\|l\|} \hline\left\|Q^{*}\right\rangle \\ \|J *\rangle \\ \hline \end{array}$
	｜10＊	｜10＊		｜ a $^{\text {a }}$ ）	$\|Q *\rangle$	$\|Q\|$		｜A＊	${ }^{\mid A}$ \} \rangle	｜A ${ }_{\text {\％}}$ ）	｜A＊）
｜94＞			$\|9 \vee\rangle$	｜J＊${ }^{\text {\％}}$	｜J＊）		｜J＊\rangle	$\mid K$ ¢ ${ }^{\text {b }}$	｜K》）	（K ${ }_{\text {\％}}$ ）	$\|K *\rangle$
$\|Q \boldsymbol{*}\rangle$			$\mid Q \pm$		$\|A \bullet\rangle$	${ }^{\text {｜A＊）}}$ ）	｜A＊＊	｜10¢		｜10＊）	｜10¢ ${ }^{\text {／}}$
	$\|J *\rangle$	$\mid J$ ¢ ${ }^{\text {¢ }}$ ¢		$\|K\rangle$		｜K＊	｜K＊）		｜92 ${ }^{\text {¢ }}$	｜9¢	${ }^{94}$ ）
${ }^{\mid A *}{ }^{\text {¢ }}$ ）	｜A＊）	${ }^{\text {｜}}$ ¢ ${ }^{\text {¢ }}$ ）	｜A＊）	｜10＊）	104）	｜10＊）	｜10＊）	Q＊）	｜Q＊）	${ }^{Q+4}$	$\|Q \backslash\rangle$
$\|K \boldsymbol{*}\rangle$	｜K＊）	［K＊）	｜K＊	［9＊）	9 ${ }^{\text {¢ }}$＞	${ }^{\text {｜a＊}}$	｜9＊＊	｜J＊）	｜J＊）	｜$J \uparrow\rangle$	｜Jヤ｜
	｜10¢ ${ }^{\text {／}}$	｜9\＆゙〉		｜Q	Q ${ }^{\text {¢ }}$	$\|Q\rangle$		\mid｜${ }^{\mathbf{2}}$ ）	｜A＊	$\mid A$ ¢	｜K ¢ ${ }^{\text {¢ }}$
｜9 ${ }^{\text {¢ }}$				${ }^{\text {J }}$ ¢ ）	｜J＊${ }^{\text {¢ }}$		$\|J \cup\rangle$		｜K＊${ }^{\text {＊}}$		
$\|J\rangle\rangle$	$\|Q\rangle$	${ }^{\text {｜J\＆゙ }}{ }^{\|Q *\rangle}$		｜A＊）	｜A＊）	$\|A *\rangle$	A ${ }^{\text {¢ }}$	｜10\＆\％		｜10＊）	｜10＊）
				｜K ${ }^{\text {c }}$	［K＊）	［K＊）	$\|K \bullet\rangle$		｜9＊${ }^{\text {¢ }}$	［9＊）	｜9＊）

$A / K \rightarrow A$
$D / J \rightarrow B$
$10 / 9 \rightarrow C$
$1 / 1 \rightarrow \alpha$
$\bullet / \vee \rightarrow \beta$
$\boldsymbol{\approx} / * \rightarrow \gamma$

$A \alpha$	$A \beta$	$C \gamma$	$C \alpha$	$B \beta$	$B \gamma$
$C \alpha$	$C \beta$	$B \gamma$	$B \alpha$	$A \beta$	$A \gamma$
$B \gamma$	$B \alpha$	$A \beta$	$A \gamma$	$C \alpha$	$C \beta$
$A \gamma$	$A \alpha$	$C \beta$	$C \gamma$	$B \alpha$	$B \beta$
$C \beta$	$C \gamma$	$B \alpha$	$B \beta$	$A \gamma$	$A \alpha$
$B \beta$	$B \gamma$	$A \alpha$	$A \beta$	$C \gamma$	$C \alpha$

Four dice in the golden $|A M E(4,6)\rangle$ state corresponding to 36 entangled officers of Euler. Any pair of dice is unbiased, although their outcome determines the state of the other two.

Concluding Remarks

Strongly entangled extremal multipartie quantum states can be useful for quantum error correction codes, multiuser quantum communication and other protocols.
Theorem. Absolutely maximally entangled states $|A M E(4,6)\rangle$ of 4 subsystems with 6 levels each do exist!
Rather, Burchardt, Bruzda, Rajchel, Lakshminarayan, K.Ż. preprint arXiv:2102.07787, April 2021. (121 years after Tarry) and Phys. Rev. Lett. (2022). This implies existence of
(1) solution of the quantum analogue of the 36 officers problem of Euler,
(2) optimal bi-partite unitary gate U_{36} with maximal entangling power
(3) perfect tensor $t_{i j k \ell}$ with 4 indices, each running from 1 to 6 , to be applied for tensor networks and bulk/boundary correspondence,
(9) nonadditive quantum error correction code $((3,6,2))_{6}$ which allows one to encode a single quhex in three quhexes
(2) distinguished point in $\mathbb{C} P^{36 \times 36-1} \supset \mathbb{C} P^{5} \times \mathbb{C} P^{5} \times \mathbb{C} P^{5} \times \mathbb{C} P^{5}$
\Longrightarrow such quantum states with extremal properties can be useful., a

an exscript from our preprint, arXiv: 14 April 2022

Thirty-six entangled officers ${ }^{1}$ of Euler, $\quad\left|\psi_{13}\right\rangle=(\mid$ 雷 $\rangle+\mid$ 糟 $\left.\rangle\right) / \sqrt{2}$

${ }^{1}$ It is sad to note that these Russian officers recently left their parade ground in Saint Petersburg, where they belong, and went a thousand miles South...

However, explicit analytical results described in this work strongly suggest that the officers might eventually suffer a transition into a highly entangled state.

