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APPLIED CATEGORY THEORY 2021
Computer Laboratory, University of Cambridge • 12-16 July 2021

Latest Updates

11 June. In-person registration now open (limited availability.)
21 April. Online registration now open.

The 4th International Conference on Applied Category Theory will take place at the Computer Laboratory of the University of Cambridge
on 12-16 July 2021, preceded by the Adjoint School 2021 on 5-9 July. This conference follows previous events at MIT, Oxford and Leiden.

The conference will be a hybrid event, with physical attendees present in Cambridge, and other participants taking part online. Due to the
need for physical distancing, the number of in-person registrations will be limited, so please don't book your travel or accommodation
until your registration is confirmed.

Applied category theory is a topic of interest for a growing community of researchers, interested in studying many different kinds of
systems using category-theoretic tools. These systems are found across computer science, mathematics, and physics, as well as in social
science, linguistics, cognition, and neuroscience. The background and experience of our members is as varied as the systems being
studied. The goal of Applied Category Theory is to bring researchers in the field together, disseminate the latest results, and facilitate
further development of the field.

We accept contributions across the pure-applied spectrum, from pure mathematical research, to case studies describing successful
application of category-theoretic tools in industry. However, submissions at the most mathematical end should take care to explain how
this work could be applied to a subject outside of pure category theory itself, while submissions at the most applied end should contain a
clear explanation of the category theory involved.

To accommodate the publishing conventions of different fields, we accept submissions of both original research papers, and also work
accepted/submitted/published elsewhere. Accepted original research papers will be invited for publication in a proceedings volume. The
keynote addresses will be drawn from the best accepted papers. The conference will include an industry showcase event.

Important Dates

All dates are in 2021, and all deadlines are Anywhere-on-Earth on the given date.

Submission Deadline: Monday 10 May Wednesday 12 May
Author Notification: Monday 7 June
Financial Support Application Deadline: Monday 7 June Tuesday 8 June
Financial Support Notification: Tuesday 8 June Wednesday 9 June
Priority Physical Registration Opens: Wednesday 9 June
Ordinary Physical Registration Opens: Friday 11 June
Adjoint School: Monday 5 to Friday 9 July
Main Conference: Monday 12 to Friday 16 July

Registration

The organizers are committed to ensuring a fantastic experience for both online and in-person participants. If you are giving a
presentation at ACT 2021, you can do this either online or in-person.

Online participation. Registration for online participation is free, and is now open at the following link.

Registration Form for Online Participation

Physical participation. Registration for physical participation is now closed. If you do not have a registration, please do not show up in
person at the conference. Due to the need for physical distancing the number of tickets has been precisely controlled.

Programme

Talks will be given live by speakers, either online or in-person. All talks will be visible by both online and in-person participants. With the
permission of the speakers, talks will be made available on YouTube after the conference.

Distinguished Presentation (D) 40 minutes
Ordinary Presentation 20 minutes
Speaker is in Cambridge (C)

Time
(BST) Monday 12 July Tuesday 13 July Wednesday 14 July Thursday 15 July Friday 16 July

0900–
0930 TEA BREAK TEA BREAK TEA BREAK TEA BREAK TEA BREAK

0930-
1100

Chair: Jamie Vicary (C) Chair: Andrew Pitts (C) Chair: Chris Heunen Chair: Jules Hedges (C) Chair: Richard Blute

WELCOME
Konstantinos Meichanetzidis, Robin Lorenz,
Anna Pearson, Alexis Toumi, Giovanni de
Felice, Dimitri Kartsaklis, Bob Coecke,
"QNLP: Compositional Models of Meaning
on a Quantum Computer" (D)

Emma Chollet, Bryce Clarke,
Michael Johnson, Maurine
Songa, Vincent Wang, Gioele
Zardini, "Limits and colimits in
a category of lenses" (D, C)

Nicolas Behr, Joachim Kock, "Tracelet
Hopf algebras and decomposition
spaces" (D)

Xiaodong Jia, Bert Lindenhovius,
Michael Mislove, Vladimir
Zamdzhiev, "Commutative Monads
for Probabilistic Programming
Languages" (D)Nihil Shah, "Restricting Power:

The Pebble-Relation Comonad
in Finite Model Theory" (D, C)

Soichiro Fujii, Yuni Iwamasa, Kei Kimura,
"Quantaloidal approach to constraint
satisfaction"

Matthew Di Meglio,
"Coequalisers under the lens"

Antonin Delpeuch, Jamie Vicary, "The
word problem for braided monoidal
categories is unknot-hard"

Tobias Fritz, Tomáš Gonda, Paolo
Perrone, "De Finetti's Theorem in
Categorical Probability"

John van de Wetering, "A
categorical construction of the
real unit interval" (C)

Matt Wilson, Augustin Vanrietvelde, "A
categorical framework for the expression of
composable constraints: routed categories"

Fosco Loregian, Fabrizio
Genovese, Daniele Palombi, "A
Categorical Semantics for
Bounded Petri Nets"

Zoltan A. Kocsis, Benjamin Merlin
Bumpus, "Treewidth via Spined
Categories"

Razin A. Shaikh, Lia Yeh, Benjamin
Rodatz, Bob Coecke, "Composing
Conversational Negation" (C)

1100–
1130 TEA BREAK TEA BREAK TEA BREAK TEA BREAK TEA BREAK

1130-
1300

Chair: Vladimir Zamdzhiev Chair: Jules Hedges (C) Chair: Ben MacAdam Chair: Bob Coecke Chair: Fabrizio Romano Genovese

Titouan Carette, Marc de Visme,
Simon Perdrix, "Graphical
Language with Delayed Trace:
Picturing Quantum Computing
with Finite Memory" (D)

Andrew Pitts, S. C. Steenkamp,
"Constructing Initial Algebras Using
Inflationary Iteration" (D, C)

Geoff Cruttwell, Bruno
Gavranovic, Neil Ghani, Paul
Wilson, Fabio Zanasi,
"Categorical Foundations of
Gradient-Based Learning" (D,
C)

Cole Comfort, Aleks Kissinger, "A
Graphical Calculus for Lagrangian
Relations" (D, C)

Chad Nester, "Situated Transition
Systems"

Elena Di Lavore, Alessandro
Gianola, Mario Román, Nicoletta
Sabadini, Pawel Sobocinski, "A
Canonical Algebra of Open
Transition Systems (Extended
Abstract)"

George Kaye, Dan R. Ghica,
"Rewriting Graphically with
Cartesian Traced Categories"
(C)

Tomáš Jakl, Anuj Dawar, Luca Reggio,
"Lovász-Type Theorems and Game
Comonads" (C)

Dan Shiebler, Bruno
Gavranovic, Paul Wilson,
"Category Theory in Machine
Learning"

Miriam Backens, Aleks Kissinger, Hector
Miller-Bakewell, John van de Wetering,
Sal Wolffs, "The ZH-calculus:
completeness and extensions" (C)

Joe Moeller, "Noncommutative
network models"

Paul Wilson, Fabio Zanasi, "The
Cost of Compositionality: A
High-Performance
Implementation of String
Diagram Composition" (C)

Rowan Poklewski-Koziell, "A note on
Frobenius-Eilenberg-Moore objects in
dagger 2-categories"

Dan Shiebler, "Functorial
Manifold Learning"

Alexis Toumi, Richie Yeung, Giovanni de
Felice, "Diagrammatic Differentiation for
Quantum Machine Learning"

Gunnar Fløystad, "Profunctors
between posets and Alexander
duality"

1300–
1400 LUNCH BREAK LUNCH BREAK LUNCH BREAK LUNCH BREAK LUNCH BREAK

1400-
1530

Chair: David I. Spivak Chair: Dorette Pronk Chair: Geoffrey Cruttwell Chair: Martti Karvonen Chair: Daniel Cicala

Sean Tull, "A Categorical
Semantics of Fuzzy Concepts in
Conceptual Spaces" (D)

Sophie Libkind, Andrew Baas, Evan
Patterson, James Fairbanks, "Operadic
Modeling of Dynamical Systems:
Mathematics and Computation" (D)

Matteo Capucci, Neil Ghani,
Jérémy Ledent, Fredrik Nordvall
Forsberg, "Translating
Extensive Form Games to Open
Games with Agency" (D, C)

Jason Parker, Pieter Hofstra, Philip Scott,
"Polymorphic automorphisms and the
Picard group" (D)

Tslil Clingman, Brendan Fong,
David Spivak, "Graphical Regular
Logic: the complete 2-dimensional
picture" (D)

Toby St Clere Smithe,
"Polynomial Life: the Structure
of Adaptive Systems"

John Foley, Spencer Breiner, Eswaran
Subrahmanian, John Dusel, "Operads for
complex system design specification,
analysis and synthesis"

Hans Riess, Paige Randall
North, Robert Ghrist, "Network
Sheaves Valued in Categories of
Adjunctions and their
Laplacians"

Christian Williams, Michael Stay, "Native
Type Theory"

Guillaume Boisseau, Pawel
Sobociński, "String Diagrammatic
Electrical Circuit Theory" (C)

Matteo Capucci, Bruno
Gavranovic, Jules Hedges, Eigil
Rischel, "Towards foundations
of categorical cybernetics" (C)

Jean-Simon Lemay, "Jacobians and
Gradients for Cartesian Differential
Categories"

Jérémie Koenig, "Grounding
Game Semantics in Categorical
Algebra"

Robin Cockett, Priyaa Varshinee
Srinivasan, "Exponential modalities and
complementarity"

Brendan Fong, Alberto Speranzon,
David I. Spivak, "Temporal
Landscapes: A Graphical Logic of
Behavior"

1530-
1600 TEA BREAK TEA BREAK TEA BREAK TEA BREAK TEA BREAK

1600-
1730

Chair: Jamie Vicary (C) Chair: Brendan Fong Chair: Kohei Kishida Chair: Kohei Kishida Chair: Jade Master

INDUSTRY SESSION

Bob Coecke, Cambridge
Quantum Computing

Brendan Fong, Topos Institute

Dan Ghica, Huawei Research &
Innovation

Jelle Herold, Statebox

Philip Wadler, University of
Edinburgh and IOHK

Ryan Wisnesky, Conexus

ADJOINT SCHOOL SESSION

"Categorical and computational aspects of
C-sets"

"The ubiquity of enriched profunctor nuclei"

"Double categories in applied category
theory"

"Extensions of coalgebraic dynamic logic"

POSTER SESSION Alexis Toumi, Alex Koziell-Pipe,
"Functorial Language Models"

Michael Lambert, "Characterizing
Double Categories of Relations"

DRINKS RECEPTION

Lachlan McPheat, Gijs Wijnholds,
Mehrnoosh Sadrzadeh, Adriana Correia,
Alexis Toumi, "Anaphora and Ellipsis in
Lambek Calculus with a Relevant
Modality: Syntax and Semantics" (C)

Victoria Noquez, Larry Moss, "The
Sierpinski Carpet as a Final
Coalgebra"

David Spivak, "Learners' languages"
Anne Broadbent, Martti Karvonen,
"Categorical composable
cryptography"

Information for online participants

Online participation will be via Zoom. If you want to participate online, please make sure to register (see Registration section above.)

Information for in-person participants

Current UK government projections indicate that physical conference participation will be allowed for the conference dates.
However, there of course remains a possibility that circumstances may change, and the organizers may reluctantly decide
to cancel the physical confence due to circumstances related to the pandemic. If the physical conference is cancelled, any
money paid for registration would be refunded. However, the organizers will not be liable for any other costs that physical
participants may have, such as travel or accommodation. If you are not willing to take this risk, we suggest you plan to
participate online.

The physical conference will take place at the Computer Laboratory (also known as the Department of Computer Science and Technology)
at the University of Cambridge, shown on the following map. The department is situated about 1.5 miles to the west of the city, and it
takes about 30 minutes to walk there from the city centre. Buses can be unreliable, so walking or cycling is the usual mode of transport
around the city; there are plenty of cycle hire places that can be found on Google Maps. If you need a taxi, Uber operates in the city, and
Camcab is a traditional taxi firm which can be contacted on 01223 704704. There is a nice cycle path which is an ideal way to walk or
cycle between the department and the city centre, illustrated on the map below.

Accommodation in Cambridge can be booked through the usual websites. In particular we recommend http://www.universityrooms.com
as a source of good-value accommodation, and suggest Fitzwilliam College as a low-priced option which is conveniently located close to
both the conference location and the city centre.

Internet access is available at the conference venue through the Eduroam service. The best way to set this up is by using the Eduroam
configuration tool, available for a wide range of devices.

The physical conference will be organized in a COVID-safe way. In particular, participants will be expected to observe social distancing,
the number of participants will be restricted, seating in the lecture theatre will be well-spaced, coffee and lunch breaks will be outdoors
where possible, and masks will be required while not eating or drinking, including for in-person speakers during their lecture.

Accepted Presentations

The following 50 submissions have been accepted for presentation at ACT 2021. A full programme is available below. The suffix "(D)"
indicates the submission has been selected for a distinguished presentation, while the suffix "(C)" denotes that it will be presented in
person in Cambridge. The submissions are ordered according to their original submission number.

Dan Shiebler, "Functorial Manifold Learning"
David Spivak, "Learners' languages"
Jean-Simon Lemay, "Jacobians and Gradients for Cartesian Differential Categories"
John van de Wetering, "A categorical construction of the real unit interval" (C)
Miriam Backens, Aleks Kissinger, Hector Miller-Bakewell, John van de Wetering and Sal Wolffs, "The ZH-calculus: completeness and
extensions" (C)
Fosco Loregian, Fabrizio Genovese and Daniele Palombi, "A Categorical Semantics for Bounded Petri Nets"
Rowan Poklewski-Koziell, "A note on Frobenius-Eilenberg-Moore objects in dagger 2-categories"
Geoff Cruttwell, Bruno Gavranovic, Neil Ghani, Paul Wilson and Fabio Zanasi, "Categorical Foundations of Gradient-Based Learning"
(D, C)
Anne Broadbent and Martti Karvonen, "Categorical composable cryptography"
Antonin Delpeuch and Jamie Vicary, "The word problem for braided monoidal categories is unknot-hard"
Dan Shiebler, Bruno Gavranovic and Paul Wilson, "Category Theory in Machine Learning"
Andrew Pitts and S. C. Steenkamp, "Constructing Initial Algebras Using Inflationary Iteration" (D, C)
Chad Nester, "Situated Transition Systems"
Xiaodong Jia, Bert Lindenhovius, Michael Mislove and Vladimir Zamdzhiev, "Commutative Monads for Probabilistic Programming
Languages" (D)
Christian Williams and Michael Stay, "Native Type Theory"
Tobias Fritz, Tomáš Gonda and Paolo Perrone, "De Finetti's Theorem in Categorical Probability"
Elena Di Lavore, Alessandro Gianola, Mario Román, Nicoletta Sabadini and Pawel Sobocinski, "A Canonical Algebra of Open
Transition Systems (Extended Abstract)"
Zoltan A. Kocsis and Benjamin Merlin Bumpus, "Treewidth via Spined Categories"
John Foley, Spencer Breiner, Eswaran Subrahmanian and John Dusel, "Operads for complex system design specification, analysis
and synthesis"
Toby St Clere Smithe, "Polynomial Life: the Structure of Adaptive Systems"
Matthew Di Meglio, "Coequalisers under the lens"
Emma Chollet, Bryce Clarke, Michael Johnson, Maurine Songa, Vincent Wang and Gioele Zardini, "Limits and colimits in a category
of lenses" (D, C)
Titouan Carette, Marc de Visme and Simon Perdrix, "Graphical Language with Delayed Trace: Picturing Quantum Computing with
Finite Memory" (D)
Konstantinos Meichanetzidis, Robin Lorenz, Anna Pearson, Alexis Toumi, Giovanni de Felice, Dimitri Kartsaklis and Bob Coecke,
"QNLP: Compositional Models of Meaning on a Quantum Computer" (D)
Nihil Shah, "Restricting Power: The Pebble-Relation Comonad in Finite Model Theory" (D, C)
Gunnar Fløystad, "Profunctors between posets, and Alexander duality"
Lachlan McPheat, Gijs Wijnholds, Mehrnoosh Sadrzadeh, Adriana Correia and Alexis Toumi, "Anaphora and Ellipsis in Lambek
Calculus with a Relevant Modality: Syntax and Semantics" (C)
Alexis Toumi, Richie Yeung and Giovanni de Felice, "Diagrammatic Differentiation for Quantum Machine Learning"
Alexis Toumi and Alex Koziell-Pipe, "Functorial Language Models"
Tslil Clingman, Brendan Fong and David Spivak, "Graphical Regular Logic: the complete 2-dimensional picture" (D)
Tomáš Jakl, Anuj Dawar and Luca Reggio, "Lovász-Type Theorems and Game Comonads" (C)
Jason Parker, Pieter Hofstra and Philip Scott, "Polymorphic automorphisms and the Picard group" (D)
Joe Moeller, "Noncommutative network models"
Guillaume Boisseau and Pawel Sobocinski, "String Diagrammatic Electrical Circuit Theory" (C)
Sophie Libkind, Andrew Baas, Evan Patterson and James Fairbanks, "Operadic Modeling of Dynamical Systems: Mathematics and
Computation" (D)
Robin Cockett and Priyaa Varshinee Srinivasan, "Exponential modalities and complementarity"
Matteo Capucci, Neil Ghani, Jérémy Ledent and Fredrik Nordvall Forsberg, "Translating Extensive Form Games to Open Games with
Agency" (D, C)
Matteo Capucci, Bruno Gavranovic, Jules Hedges and Eigil Rischel, "Towards foundations of categorical cybernetics" (C)
Victoria Noquez and Larry Moss, "The Sierpinski Carpet as a Final Coalgebra"
George Kaye and Dan R. Ghica, "Rewriting Graphically with Cartesian Traced Categories" (C)
Paul Wilson and Fabio Zanasi, "The Cost of Compositionality: A High-Performance Implementation of String Diagram Composition"
(C)
Brendan Fong, Alberto Speranzon and David I. Spivak, "Temporal Landscapes: A Graphical Logic of Behavior"
Hans Riess, Paige Randall North and Robert Ghrist, "Network Sheaves Valued in Categories of Adjunctions and their Laplacians"
Michael Lambert, "Characterizing Double Categories of Relations"
Soichiro Fujii, Yuni Iwamasa and Kei Kimura, "Quantaloidal approach to constraint satisfaction"
Sean Tull, "A Categorical Semantics of Fuzzy Concepts in Conceptual Spaces" (D)
Nicolas Behr and Joachim Kock, "Tracelet Hopf algebras and decomposition spaces" (D)
Cole Comfort and Aleks Kissinger, "A Graphical Calculus for Lagrangian Relations" (D, C)
Matt Wilson and Augustin Vanrietvelde, "A categorical framework for the expression of composable constraints: routed categories"
Razin A. Shaikh, Lia Yeh, Benjamin Rodatz and Bob Coecke, "Composing Conversational Negation" (C)
Jérémie Koenig, "Grounding Game Semantics in Categorical Algebra"

Accepted Posters

The following posters will be presented at the poster presentation session on Wednesday afternoon, in the form of lightning talks of a
single slide. Italics indicate the person presenting the poster.

Abel Sagodi, "Conceptualizing explanations through category theory"
Owen Lynch, James Fairbanks and Evan Patterson, "Graphical Semantic Modeling with Semagrams.jl"
Henry Kvinge, Brett Jefferson, Cliff Joslyn and Emilie Purvine, "Sheaves as a Framework for Understanding and Interpreting Model
Fit"
Maria Dimarogkona, Mark Addis and Petros Stefaneas, "Syntax, Semantics and the Formalisation of Social Science Theories"
Davide Trotta, Matteo Spadetto and Valeria de Paiva, "The Gödel fibration"
Tim Hosgood and David I. Spivak, "Dirichlet polynomials and entropy"
Daniel Luckhardt and Matt Insall, "Norms on Categories"
Elena Di Lavore, Wilmer Leal and Valeria de Paiva, "Dialectica Petri nets"
Jonas Frey and Colin Zwanziger, "Elementary (1,2)-cosmoses and labeled linear logic"
Stelios Tsampas and Christian Williams, "The riddle of the mathematical operational semantics of the lambda-calculus"
Joshua Tan and Aleksandar Petrov, "A type system of digital institutions"

Financial Support

Financial support applications have now closed.

Some financial support is available to support attendance by junior researchers who would like to attend the conference in person. To
apply for this, send an email to Lukas Heidemann at lukas.heidemann@cs.ox.ac.uk from an academic email address, with subject line
"ACT 2021 Financial Support Application".

In your email, please give the following information: your name and affiliation; an estimate of the total cost for you to attend; the
amount you are requesting; whether or not you have had a paper accepted to the conference (and if so, its submission number); and
whether you have secured or applied for partial funding from another source (if so, this will strengthen your application). Also, please
give a brief statement about why you believe that COVID restrictions will not prevent you from attending (e.g. "I live in the UK, and
current government projections indicate no restrictions on conference travel and participation in July".)

You will be informed about the result of your application on Tuesday 8 June Wednesday 9 June. Successful applicants for financial support
will be eligible for the Priority Physical Registration period, which opens on Wednesday 9 June.

Submissions

Submission via EasyChair is now closed.

There are two submission tracks, both of which will be reviewed against the same standards of quality. Submission of work-in-progress is
encouraged, but it must be more substantial than a research proposal.

Proceedings Track. Original contributions of high-quality work consisting of an extended summary, up to 12 pages excluding
bibliography, that provides evidence of results of genuine interest, and with enough detail to allow the program committee to assess
the merits of the work. Full proofs of mathematical statements are not necessarily required. Accepted submissions in this track will
be invited for publication in a proceedings volume. Submissions to this track must be prepared with LaTeX, using the EPTCS style
files available at http://style.eptcs.org. Additional appendices beyond the page limit are permitted but may not be read by
reviewers, and will not be included in the proceedings.
Non-Proceedings Track. Submissions presenting high-quality work submitted or published elsewhere, or for which publication in the
proceedings is not desired by the authors, may be submitted to this track, provided the work is recent and relevant to the
conference. The work may be of any length, but the program committee members may only look at the first 3 pages of the
submission, so you should ensure that these pages contain sufficient evidence of the quality and rigour of your work.

Since ACT is an interdisciplinary conference, we use two tracks to accommodate the publishing conventions of different disciplines. For
example, those from a Computer Science background may prefer the Proceedings Track, while those from a Mathematics, Physics or
other background may prefer the Non-Proceedings Track. However, authors from any background are free to choose the track that they
prefer, and submissions may be moved from the Proceedings Track to the Non-Proceedings Track at any time at the request of the
authors.

Adjoint School

Applications for the Adjoint School 2021 are now closed.

The Adjoint School is an annual collaborative research event, in which junior researchers work on cutting-edge topics in applied category
theory, guided by expert mentors. Traditionally, after a four month reading course, the participants meet at the venue of the ACT
conference for a week of in-person research collaborator. Due to the pandemic, this year the research week will be held online. The
students will share the results of their research in a special session during the ACT conference.

For more information see the official school website.

Statement of Values

The organizers hope that the Applied Category Theory community can be a positive force in the world. To help us achieve this, we have
drafted a Statement of Values, which we ask all participants to uphold.

Sponsors

 

 

 

Programme Committee

Richard Blute, University of Ottawa
Spencer Breiner, NIST
Daniel Cicala, University of New Haven
Robin Cockett, University of Calgary
Bob Coecke, Cambridge Quantum Computing
Geoffrey Cruttwell, Mount Allison University
Valeria de Paiva, Samsung Research America and University of Birmingham
Brendan Fong, Massachusetts Institute of Technology
Jonas Frey, Carnegie Mellon University
Tobias Fritz, Perimeter Institute for Theoretical Physics
Fabrizio Romano Genovese, Statebox
Helle Hvid Hansen, University of Groningen
Jules Hedges, University of Strathclyde
Chris Heunen, University of Edinburgh
Alex Hoffnung, Bridgewater
Martti Karvonen, University of Ottawa
Kohei Kishida, University of Illinois, Urbana-Champaign (chair)
Martha Lewis, University of Bristol
Bert Lindenhovius, Johannes Kepler University Linz
Ben MacAdam, University of Calgary
Dan Marsden, University of Oxford
Jade Master, University of California, Riverside
Joe Moeller, NIST
Koko Muroya, Kyoto University
Simona Paoli, University of Leicester
Daniela Petrisan, Université de Paris, IRIF
Mehrnoosh Sadrzadeh, University College London
Peter Selinger, Dalhousie University
Michael Shulman, University of San Diego
David Spivak, MIT and Topos Institute
Joshua Tan, University of Oxford
Dmitry Vagner
Jamie Vicary, University of Cambridge
John van de Wetering, Radboud University Nijmegen
Vladimir Zamdzhiev, Inria, LORIA, Université de Lorraine
Maaike Zwart

Local Organizers

Lukas Heidemann
University of Oxford  

Nick Hu
University of Oxford  

Ioannis Markakis
University of Cambridge  

Alex Rice
University of Cambridge  

Calin Tataru
University of Cambridge

Jamie Vicary
University of Cambridge

Steering Committee

John Baez, University of California Riverside and Centre for Quantum Technologies
Bob Coecke, Cambridge Quantum Computing
Dorette Pronk, Dalhousie University
David Spivak, Topos Institute

Tracelet Hopf algebras and decomposition spaces 
Joint work with Joachim Kock (UA Barcelona) 

ACT 2021, University of Cambridge, July 15, 2021

Angle-Right In joint work with Joachim Kock (UAB Barcelona & U Copenhagen) [1], we provided a formalization of the concept
of tracelet Hopf algebras utilizing the at the time (very) recent developments of decomposition spaces in
combinatorics [2] and free decomposition spaces [3].

Angle-Right In a long series of works by I. Gálvez-Carrillo, J. Kock, and A. Tonks (c.f. [2] and references theroein),
decomposition spaces have been demonstrated to provide a fundamental principle for reasoning in objective
combinatorics fashion, especially about algebraic structures such as incidence (co-/bi-)algerbas.

Angle-Right Slogan: “Decomposition is often easier than composition” — decomposition spaces are capable in particular of
modeling generalizations of associative composition operations!

Angle-Right Aside: 2-Segal spaces = decomposition spaces (but not much more on the former in this talk — see the excellent
recent review article [4] though!)

¹ N. Behr and J. Kock. “Tracelet Hopf Algebras and Decomposition Spaces (Extended Abstract)”. In: Proceedings of ACT 2021. Vol. 372. EPTCS. 2022, pp. 323–337. doi: 10.4204/EPTCS.372.23.
² I. Gálvez-Carrillo, J. Kock, and A. Tonks. Decomposition Spaces in Combinatorics. Oct. 2024. doi: 10.48550/arXiv.1612.09225. arXiv: 1612.09225.
³ P. Hackney and J. Kock. Free Decomposition Spaces. May 2024. doi: 10.48550/arXiv.2210.11192. arXiv: 2210.11192 [math].
⁴ B. Cooper and M. B. Young. Hall Algebras via 2-Segal Spaces. 2024. doi: 10.48550/ARXIV.2409.19384.

https://doi.org/10.4204/EPTCS.372.23
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APPLIED CATEGORY THEORY 2021
Computer Laboratory, University of Cambridge • 12-16 July 2021

Latest Updates

11 June. In-person registration now open (limited availability.)
21 April. Online registration now open.

The 4th International Conference on Applied Category Theory will take place at the Computer Laboratory of the University of Cambridge
on 12-16 July 2021, preceded by the Adjoint School 2021 on 5-9 July. This conference follows previous events at MIT, Oxford and Leiden.

The conference will be a hybrid event, with physical attendees present in Cambridge, and other participants taking part online. Due to the
need for physical distancing, the number of in-person registrations will be limited, so please don't book your travel or accommodation
until your registration is confirmed.

Applied category theory is a topic of interest for a growing community of researchers, interested in studying many different kinds of
systems using category-theoretic tools. These systems are found across computer science, mathematics, and physics, as well as in social
science, linguistics, cognition, and neuroscience. The background and experience of our members is as varied as the systems being
studied. The goal of Applied Category Theory is to bring researchers in the field together, disseminate the latest results, and facilitate
further development of the field.

We accept contributions across the pure-applied spectrum, from pure mathematical research, to case studies describing successful
application of category-theoretic tools in industry. However, submissions at the most mathematical end should take care to explain how
this work could be applied to a subject outside of pure category theory itself, while submissions at the most applied end should contain a
clear explanation of the category theory involved.

To accommodate the publishing conventions of different fields, we accept submissions of both original research papers, and also work
accepted/submitted/published elsewhere. Accepted original research papers will be invited for publication in a proceedings volume. The
keynote addresses will be drawn from the best accepted papers. The conference will include an industry showcase event.

Important Dates

All dates are in 2021, and all deadlines are Anywhere-on-Earth on the given date.

Submission Deadline: Monday 10 May Wednesday 12 May
Author Notification: Monday 7 June
Financial Support Application Deadline: Monday 7 June Tuesday 8 June
Financial Support Notification: Tuesday 8 June Wednesday 9 June
Priority Physical Registration Opens: Wednesday 9 June
Ordinary Physical Registration Opens: Friday 11 June
Adjoint School: Monday 5 to Friday 9 July
Main Conference: Monday 12 to Friday 16 July

Registration

The organizers are committed to ensuring a fantastic experience for both online and in-person participants. If you are giving a
presentation at ACT 2021, you can do this either online or in-person.

Online participation. Registration for online participation is free, and is now open at the following link.

Registration Form for Online Participation

Physical participation. Registration for physical participation is now closed. If you do not have a registration, please do not show up in
person at the conference. Due to the need for physical distancing the number of tickets has been precisely controlled.

Programme

Talks will be given live by speakers, either online or in-person. All talks will be visible by both online and in-person participants. With the
permission of the speakers, talks will be made available on YouTube after the conference.

Distinguished Presentation (D) 40 minutes
Ordinary Presentation 20 minutes
Speaker is in Cambridge (C)

Time
(BST) Monday 12 July Tuesday 13 July Wednesday 14 July Thursday 15 July Friday 16 July

0900–
0930 TEA BREAK TEA BREAK TEA BREAK TEA BREAK TEA BREAK

0930-
1100

Chair: Jamie Vicary (C) Chair: Andrew Pitts (C) Chair: Chris Heunen Chair: Jules Hedges (C) Chair: Richard Blute

WELCOME
Konstantinos Meichanetzidis, Robin Lorenz,
Anna Pearson, Alexis Toumi, Giovanni de
Felice, Dimitri Kartsaklis, Bob Coecke,
"QNLP: Compositional Models of Meaning
on a Quantum Computer" (D)

Emma Chollet, Bryce Clarke,
Michael Johnson, Maurine
Songa, Vincent Wang, Gioele
Zardini, "Limits and colimits in
a category of lenses" (D, C)

Nicolas Behr, Joachim Kock, "Tracelet
Hopf algebras and decomposition
spaces" (D)

Xiaodong Jia, Bert Lindenhovius,
Michael Mislove, Vladimir
Zamdzhiev, "Commutative Monads
for Probabilistic Programming
Languages" (D)Nihil Shah, "Restricting Power:

The Pebble-Relation Comonad
in Finite Model Theory" (D, C)

Soichiro Fujii, Yuni Iwamasa, Kei Kimura,
"Quantaloidal approach to constraint
satisfaction"

Matthew Di Meglio,
"Coequalisers under the lens"

Antonin Delpeuch, Jamie Vicary, "The
word problem for braided monoidal
categories is unknot-hard"

Tobias Fritz, Tomáš Gonda, Paolo
Perrone, "De Finetti's Theorem in
Categorical Probability"

John van de Wetering, "A
categorical construction of the
real unit interval" (C)

Matt Wilson, Augustin Vanrietvelde, "A
categorical framework for the expression of
composable constraints: routed categories"

Fosco Loregian, Fabrizio
Genovese, Daniele Palombi, "A
Categorical Semantics for
Bounded Petri Nets"

Zoltan A. Kocsis, Benjamin Merlin
Bumpus, "Treewidth via Spined
Categories"

Razin A. Shaikh, Lia Yeh, Benjamin
Rodatz, Bob Coecke, "Composing
Conversational Negation" (C)

1100–
1130 TEA BREAK TEA BREAK TEA BREAK TEA BREAK TEA BREAK

1130-
1300

Chair: Vladimir Zamdzhiev Chair: Jules Hedges (C) Chair: Ben MacAdam Chair: Bob Coecke Chair: Fabrizio Romano Genovese

Titouan Carette, Marc de Visme,
Simon Perdrix, "Graphical
Language with Delayed Trace:
Picturing Quantum Computing
with Finite Memory" (D)

Andrew Pitts, S. C. Steenkamp,
"Constructing Initial Algebras Using
Inflationary Iteration" (D, C)

Geoff Cruttwell, Bruno
Gavranovic, Neil Ghani, Paul
Wilson, Fabio Zanasi,
"Categorical Foundations of
Gradient-Based Learning" (D,
C)

Cole Comfort, Aleks Kissinger, "A
Graphical Calculus for Lagrangian
Relations" (D, C)

Chad Nester, "Situated Transition
Systems"

Elena Di Lavore, Alessandro
Gianola, Mario Román, Nicoletta
Sabadini, Pawel Sobocinski, "A
Canonical Algebra of Open
Transition Systems (Extended
Abstract)"

George Kaye, Dan R. Ghica,
"Rewriting Graphically with
Cartesian Traced Categories"
(C)

Tomáš Jakl, Anuj Dawar, Luca Reggio,
"Lovász-Type Theorems and Game
Comonads" (C)

Dan Shiebler, Bruno
Gavranovic, Paul Wilson,
"Category Theory in Machine
Learning"

Miriam Backens, Aleks Kissinger, Hector
Miller-Bakewell, John van de Wetering,
Sal Wolffs, "The ZH-calculus:
completeness and extensions" (C)

Joe Moeller, "Noncommutative
network models"

Paul Wilson, Fabio Zanasi, "The
Cost of Compositionality: A
High-Performance
Implementation of String
Diagram Composition" (C)

Rowan Poklewski-Koziell, "A note on
Frobenius-Eilenberg-Moore objects in
dagger 2-categories"

Dan Shiebler, "Functorial
Manifold Learning"

Alexis Toumi, Richie Yeung, Giovanni de
Felice, "Diagrammatic Differentiation for
Quantum Machine Learning"

Gunnar Fløystad, "Profunctors
between posets and Alexander
duality"

1300–
1400 LUNCH BREAK LUNCH BREAK LUNCH BREAK LUNCH BREAK LUNCH BREAK

1400-
1530

Chair: David I. Spivak Chair: Dorette Pronk Chair: Geoffrey Cruttwell Chair: Martti Karvonen Chair: Daniel Cicala

Sean Tull, "A Categorical
Semantics of Fuzzy Concepts in
Conceptual Spaces" (D)

Sophie Libkind, Andrew Baas, Evan
Patterson, James Fairbanks, "Operadic
Modeling of Dynamical Systems:
Mathematics and Computation" (D)

Matteo Capucci, Neil Ghani,
Jérémy Ledent, Fredrik Nordvall
Forsberg, "Translating
Extensive Form Games to Open
Games with Agency" (D, C)

Jason Parker, Pieter Hofstra, Philip Scott,
"Polymorphic automorphisms and the
Picard group" (D)

Tslil Clingman, Brendan Fong,
David Spivak, "Graphical Regular
Logic: the complete 2-dimensional
picture" (D)

Toby St Clere Smithe,
"Polynomial Life: the Structure
of Adaptive Systems"

John Foley, Spencer Breiner, Eswaran
Subrahmanian, John Dusel, "Operads for
complex system design specification,
analysis and synthesis"

Hans Riess, Paige Randall
North, Robert Ghrist, "Network
Sheaves Valued in Categories of
Adjunctions and their
Laplacians"

Christian Williams, Michael Stay, "Native
Type Theory"

Guillaume Boisseau, Pawel
Sobociński, "String Diagrammatic
Electrical Circuit Theory" (C)

Matteo Capucci, Bruno
Gavranovic, Jules Hedges, Eigil
Rischel, "Towards foundations
of categorical cybernetics" (C)

Jean-Simon Lemay, "Jacobians and
Gradients for Cartesian Differential
Categories"

Jérémie Koenig, "Grounding
Game Semantics in Categorical
Algebra"

Robin Cockett, Priyaa Varshinee
Srinivasan, "Exponential modalities and
complementarity"

Brendan Fong, Alberto Speranzon,
David I. Spivak, "Temporal
Landscapes: A Graphical Logic of
Behavior"

1530-
1600 TEA BREAK TEA BREAK TEA BREAK TEA BREAK TEA BREAK

1600-
1730

Chair: Jamie Vicary (C) Chair: Brendan Fong Chair: Kohei Kishida Chair: Kohei Kishida Chair: Jade Master

INDUSTRY SESSION

Bob Coecke, Cambridge
Quantum Computing

Brendan Fong, Topos Institute

Dan Ghica, Huawei Research &
Innovation

Jelle Herold, Statebox

Philip Wadler, University of
Edinburgh and IOHK

Ryan Wisnesky, Conexus

ADJOINT SCHOOL SESSION

"Categorical and computational aspects of
C-sets"

"The ubiquity of enriched profunctor nuclei"

"Double categories in applied category
theory"

"Extensions of coalgebraic dynamic logic"

POSTER SESSION Alexis Toumi, Alex Koziell-Pipe,
"Functorial Language Models"

Michael Lambert, "Characterizing
Double Categories of Relations"

DRINKS RECEPTION

Lachlan McPheat, Gijs Wijnholds,
Mehrnoosh Sadrzadeh, Adriana Correia,
Alexis Toumi, "Anaphora and Ellipsis in
Lambek Calculus with a Relevant
Modality: Syntax and Semantics" (C)

Victoria Noquez, Larry Moss, "The
Sierpinski Carpet as a Final
Coalgebra"

David Spivak, "Learners' languages"
Anne Broadbent, Martti Karvonen,
"Categorical composable
cryptography"

Information for online participants

Online participation will be via Zoom. If you want to participate online, please make sure to register (see Registration section above.)

Information for in-person participants

Current UK government projections indicate that physical conference participation will be allowed for the conference dates.
However, there of course remains a possibility that circumstances may change, and the organizers may reluctantly decide
to cancel the physical confence due to circumstances related to the pandemic. If the physical conference is cancelled, any
money paid for registration would be refunded. However, the organizers will not be liable for any other costs that physical
participants may have, such as travel or accommodation. If you are not willing to take this risk, we suggest you plan to
participate online.

The physical conference will take place at the Computer Laboratory (also known as the Department of Computer Science and Technology)
at the University of Cambridge, shown on the following map. The department is situated about 1.5 miles to the west of the city, and it
takes about 30 minutes to walk there from the city centre. Buses can be unreliable, so walking or cycling is the usual mode of transport
around the city; there are plenty of cycle hire places that can be found on Google Maps. If you need a taxi, Uber operates in the city, and
Camcab is a traditional taxi firm which can be contacted on 01223 704704. There is a nice cycle path which is an ideal way to walk or
cycle between the department and the city centre, illustrated on the map below.

Accommodation in Cambridge can be booked through the usual websites. In particular we recommend http://www.universityrooms.com
as a source of good-value accommodation, and suggest Fitzwilliam College as a low-priced option which is conveniently located close to
both the conference location and the city centre.

Internet access is available at the conference venue through the Eduroam service. The best way to set this up is by using the Eduroam
configuration tool, available for a wide range of devices.

The physical conference will be organized in a COVID-safe way. In particular, participants will be expected to observe social distancing,
the number of participants will be restricted, seating in the lecture theatre will be well-spaced, coffee and lunch breaks will be outdoors
where possible, and masks will be required while not eating or drinking, including for in-person speakers during their lecture.

Accepted Presentations

The following 50 submissions have been accepted for presentation at ACT 2021. A full programme is available below. The suffix "(D)"
indicates the submission has been selected for a distinguished presentation, while the suffix "(C)" denotes that it will be presented in
person in Cambridge. The submissions are ordered according to their original submission number.

Dan Shiebler, "Functorial Manifold Learning"
David Spivak, "Learners' languages"
Jean-Simon Lemay, "Jacobians and Gradients for Cartesian Differential Categories"
John van de Wetering, "A categorical construction of the real unit interval" (C)
Miriam Backens, Aleks Kissinger, Hector Miller-Bakewell, John van de Wetering and Sal Wolffs, "The ZH-calculus: completeness and
extensions" (C)
Fosco Loregian, Fabrizio Genovese and Daniele Palombi, "A Categorical Semantics for Bounded Petri Nets"
Rowan Poklewski-Koziell, "A note on Frobenius-Eilenberg-Moore objects in dagger 2-categories"
Geoff Cruttwell, Bruno Gavranovic, Neil Ghani, Paul Wilson and Fabio Zanasi, "Categorical Foundations of Gradient-Based Learning"
(D, C)
Anne Broadbent and Martti Karvonen, "Categorical composable cryptography"
Antonin Delpeuch and Jamie Vicary, "The word problem for braided monoidal categories is unknot-hard"
Dan Shiebler, Bruno Gavranovic and Paul Wilson, "Category Theory in Machine Learning"
Andrew Pitts and S. C. Steenkamp, "Constructing Initial Algebras Using Inflationary Iteration" (D, C)
Chad Nester, "Situated Transition Systems"
Xiaodong Jia, Bert Lindenhovius, Michael Mislove and Vladimir Zamdzhiev, "Commutative Monads for Probabilistic Programming
Languages" (D)
Christian Williams and Michael Stay, "Native Type Theory"
Tobias Fritz, Tomáš Gonda and Paolo Perrone, "De Finetti's Theorem in Categorical Probability"
Elena Di Lavore, Alessandro Gianola, Mario Román, Nicoletta Sabadini and Pawel Sobocinski, "A Canonical Algebra of Open
Transition Systems (Extended Abstract)"
Zoltan A. Kocsis and Benjamin Merlin Bumpus, "Treewidth via Spined Categories"
John Foley, Spencer Breiner, Eswaran Subrahmanian and John Dusel, "Operads for complex system design specification, analysis
and synthesis"
Toby St Clere Smithe, "Polynomial Life: the Structure of Adaptive Systems"
Matthew Di Meglio, "Coequalisers under the lens"
Emma Chollet, Bryce Clarke, Michael Johnson, Maurine Songa, Vincent Wang and Gioele Zardini, "Limits and colimits in a category
of lenses" (D, C)
Titouan Carette, Marc de Visme and Simon Perdrix, "Graphical Language with Delayed Trace: Picturing Quantum Computing with
Finite Memory" (D)
Konstantinos Meichanetzidis, Robin Lorenz, Anna Pearson, Alexis Toumi, Giovanni de Felice, Dimitri Kartsaklis and Bob Coecke,
"QNLP: Compositional Models of Meaning on a Quantum Computer" (D)
Nihil Shah, "Restricting Power: The Pebble-Relation Comonad in Finite Model Theory" (D, C)
Gunnar Fløystad, "Profunctors between posets, and Alexander duality"
Lachlan McPheat, Gijs Wijnholds, Mehrnoosh Sadrzadeh, Adriana Correia and Alexis Toumi, "Anaphora and Ellipsis in Lambek
Calculus with a Relevant Modality: Syntax and Semantics" (C)
Alexis Toumi, Richie Yeung and Giovanni de Felice, "Diagrammatic Differentiation for Quantum Machine Learning"
Alexis Toumi and Alex Koziell-Pipe, "Functorial Language Models"
Tslil Clingman, Brendan Fong and David Spivak, "Graphical Regular Logic: the complete 2-dimensional picture" (D)
Tomáš Jakl, Anuj Dawar and Luca Reggio, "Lovász-Type Theorems and Game Comonads" (C)
Jason Parker, Pieter Hofstra and Philip Scott, "Polymorphic automorphisms and the Picard group" (D)
Joe Moeller, "Noncommutative network models"
Guillaume Boisseau and Pawel Sobocinski, "String Diagrammatic Electrical Circuit Theory" (C)
Sophie Libkind, Andrew Baas, Evan Patterson and James Fairbanks, "Operadic Modeling of Dynamical Systems: Mathematics and
Computation" (D)
Robin Cockett and Priyaa Varshinee Srinivasan, "Exponential modalities and complementarity"
Matteo Capucci, Neil Ghani, Jérémy Ledent and Fredrik Nordvall Forsberg, "Translating Extensive Form Games to Open Games with
Agency" (D, C)
Matteo Capucci, Bruno Gavranovic, Jules Hedges and Eigil Rischel, "Towards foundations of categorical cybernetics" (C)
Victoria Noquez and Larry Moss, "The Sierpinski Carpet as a Final Coalgebra"
George Kaye and Dan R. Ghica, "Rewriting Graphically with Cartesian Traced Categories" (C)
Paul Wilson and Fabio Zanasi, "The Cost of Compositionality: A High-Performance Implementation of String Diagram Composition"
(C)
Brendan Fong, Alberto Speranzon and David I. Spivak, "Temporal Landscapes: A Graphical Logic of Behavior"
Hans Riess, Paige Randall North and Robert Ghrist, "Network Sheaves Valued in Categories of Adjunctions and their Laplacians"
Michael Lambert, "Characterizing Double Categories of Relations"
Soichiro Fujii, Yuni Iwamasa and Kei Kimura, "Quantaloidal approach to constraint satisfaction"
Sean Tull, "A Categorical Semantics of Fuzzy Concepts in Conceptual Spaces" (D)
Nicolas Behr and Joachim Kock, "Tracelet Hopf algebras and decomposition spaces" (D)
Cole Comfort and Aleks Kissinger, "A Graphical Calculus for Lagrangian Relations" (D, C)
Matt Wilson and Augustin Vanrietvelde, "A categorical framework for the expression of composable constraints: routed categories"
Razin A. Shaikh, Lia Yeh, Benjamin Rodatz and Bob Coecke, "Composing Conversational Negation" (C)
Jérémie Koenig, "Grounding Game Semantics in Categorical Algebra"

Accepted Posters

The following posters will be presented at the poster presentation session on Wednesday afternoon, in the form of lightning talks of a
single slide. Italics indicate the person presenting the poster.

Abel Sagodi, "Conceptualizing explanations through category theory"
Owen Lynch, James Fairbanks and Evan Patterson, "Graphical Semantic Modeling with Semagrams.jl"
Henry Kvinge, Brett Jefferson, Cliff Joslyn and Emilie Purvine, "Sheaves as a Framework for Understanding and Interpreting Model
Fit"
Maria Dimarogkona, Mark Addis and Petros Stefaneas, "Syntax, Semantics and the Formalisation of Social Science Theories"
Davide Trotta, Matteo Spadetto and Valeria de Paiva, "The Gödel fibration"
Tim Hosgood and David I. Spivak, "Dirichlet polynomials and entropy"
Daniel Luckhardt and Matt Insall, "Norms on Categories"
Elena Di Lavore, Wilmer Leal and Valeria de Paiva, "Dialectica Petri nets"
Jonas Frey and Colin Zwanziger, "Elementary (1,2)-cosmoses and labeled linear logic"
Stelios Tsampas and Christian Williams, "The riddle of the mathematical operational semantics of the lambda-calculus"
Joshua Tan and Aleksandar Petrov, "A type system of digital institutions"

Financial Support

Financial support applications have now closed.

Some financial support is available to support attendance by junior researchers who would like to attend the conference in person. To
apply for this, send an email to Lukas Heidemann at lukas.heidemann@cs.ox.ac.uk from an academic email address, with subject line
"ACT 2021 Financial Support Application".

In your email, please give the following information: your name and affiliation; an estimate of the total cost for you to attend; the
amount you are requesting; whether or not you have had a paper accepted to the conference (and if so, its submission number); and
whether you have secured or applied for partial funding from another source (if so, this will strengthen your application). Also, please
give a brief statement about why you believe that COVID restrictions will not prevent you from attending (e.g. "I live in the UK, and
current government projections indicate no restrictions on conference travel and participation in July".)

You will be informed about the result of your application on Tuesday 8 June Wednesday 9 June. Successful applicants for financial support
will be eligible for the Priority Physical Registration period, which opens on Wednesday 9 June.

Submissions

Submission via EasyChair is now closed.

There are two submission tracks, both of which will be reviewed against the same standards of quality. Submission of work-in-progress is
encouraged, but it must be more substantial than a research proposal.

Proceedings Track. Original contributions of high-quality work consisting of an extended summary, up to 12 pages excluding
bibliography, that provides evidence of results of genuine interest, and with enough detail to allow the program committee to assess
the merits of the work. Full proofs of mathematical statements are not necessarily required. Accepted submissions in this track will
be invited for publication in a proceedings volume. Submissions to this track must be prepared with LaTeX, using the EPTCS style
files available at http://style.eptcs.org. Additional appendices beyond the page limit are permitted but may not be read by
reviewers, and will not be included in the proceedings.
Non-Proceedings Track. Submissions presenting high-quality work submitted or published elsewhere, or for which publication in the
proceedings is not desired by the authors, may be submitted to this track, provided the work is recent and relevant to the
conference. The work may be of any length, but the program committee members may only look at the first 3 pages of the
submission, so you should ensure that these pages contain sufficient evidence of the quality and rigour of your work.

Since ACT is an interdisciplinary conference, we use two tracks to accommodate the publishing conventions of different disciplines. For
example, those from a Computer Science background may prefer the Proceedings Track, while those from a Mathematics, Physics or
other background may prefer the Non-Proceedings Track. However, authors from any background are free to choose the track that they
prefer, and submissions may be moved from the Proceedings Track to the Non-Proceedings Track at any time at the request of the
authors.

Adjoint School

Applications for the Adjoint School 2021 are now closed.

The Adjoint School is an annual collaborative research event, in which junior researchers work on cutting-edge topics in applied category
theory, guided by expert mentors. Traditionally, after a four month reading course, the participants meet at the venue of the ACT
conference for a week of in-person research collaborator. Due to the pandemic, this year the research week will be held online. The
students will share the results of their research in a special session during the ACT conference.

For more information see the official school website.

Statement of Values

The organizers hope that the Applied Category Theory community can be a positive force in the world. To help us achieve this, we have
drafted a Statement of Values, which we ask all participants to uphold.

Sponsors

 

 

 

Programme Committee

Richard Blute, University of Ottawa
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Daniel Cicala, University of New Haven
Robin Cockett, University of Calgary
Bob Coecke, Cambridge Quantum Computing
Geoffrey Cruttwell, Mount Allison University
Valeria de Paiva, Samsung Research America and University of Birmingham
Brendan Fong, Massachusetts Institute of Technology
Jonas Frey, Carnegie Mellon University
Tobias Fritz, Perimeter Institute for Theoretical Physics
Fabrizio Romano Genovese, Statebox
Helle Hvid Hansen, University of Groningen
Jules Hedges, University of Strathclyde
Chris Heunen, University of Edinburgh
Alex Hoffnung, Bridgewater
Martti Karvonen, University of Ottawa
Kohei Kishida, University of Illinois, Urbana-Champaign (chair)
Martha Lewis, University of Bristol
Bert Lindenhovius, Johannes Kepler University Linz
Ben MacAdam, University of Calgary
Dan Marsden, University of Oxford
Jade Master, University of California, Riverside
Joe Moeller, NIST
Koko Muroya, Kyoto University
Simona Paoli, University of Leicester
Daniela Petrisan, Université de Paris, IRIF
Mehrnoosh Sadrzadeh, University College London
Peter Selinger, Dalhousie University
Michael Shulman, University of San Diego
David Spivak, MIT and Topos Institute
Joshua Tan, University of Oxford
Dmitry Vagner
Jamie Vicary, University of Cambridge
John van de Wetering, Radboud University Nijmegen
Vladimir Zamdzhiev, Inria, LORIA, Université de Lorraine
Maaike Zwart

Local Organizers

Lukas Heidemann
University of Oxford  

Nick Hu
University of Oxford  

Ioannis Markakis
University of Cambridge  

Alex Rice
University of Cambridge  

Calin Tataru
University of Cambridge

Jamie Vicary
University of Cambridge

Steering Committee

John Baez, University of California Riverside and Centre for Quantum Technologies
Bob Coecke, Cambridge Quantum Computing
Dorette Pronk, Dalhousie University
David Spivak, Topos Institute

Tracelet Hopf algebras and decomposition spaces 
Joint work with Joachim Kock (UA Barcelona) 

ACT 2021, University of Cambridge, July 15, 2021

Angle-Right In joint work with Joachim Kock (UAB Barcelona & U Copenhagen) [1], we provided a formalization of the concept
of tracelet Hopf algebras utilizing the at the time (very) recent developments of decomposition spaces in
combinatorics [2] and free decomposition spaces [3].

Angle-Right In a long series of works by I. Gálvez-Carrillo, J. Kock, and A. Tonks (c.f. [2] and references theroein),
decomposition spaces have been demonstrated to provide a fundamental principle for reasoning in objective
combinatorics fashion, especially about algebraic structures such as incidence (co-/bi-)algerbas.

Angle-Right Slogan: “Decomposition is often easier than composition” — decomposition spaces are capable in particular of
modeling generalizations of associative composition operations!

Angle-Right Aside: 2-Segal spaces = decomposition spaces (but not much more on the former in this talk — see the excellent
recent review article [4] though!)
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Overview

Angle-Right Important conceptional observation: originally, incidence coalgebras were constructed for 1-Segal spaces (e.g., for
posets); but it is easy to find combinatorial structures that naturally give rise to incidence coalgebras, but are only
2-Segal spaces!

Angle-Right The simplest way to define 2-Segal spaces is as a presheaf 𝑆 ∶ �𝑜𝑝 →Grp that takes active-inert pushouts to
pullbacks (more details later in this talk).

Angle-Right Interesting technical point: in all of the decomposition space framework, algebraic structures are considered with
groupoid coefficients. Concretely, homotopy slices of groupoids Grpd/𝑋1

will provide the basis for the algebraic
constructions (with 𝑋1 playing the role of the combinatorial structure in question).

Angle-Right Slogan ([2], Sec. 1.2):

incidence coalgebra of X• ∶= comonoid object in the symmetric monoidal 2-category LIN

Important technical ingredient here: LIN — symmetric monoidal 2-category of groupoid slices and linear
functors ([2], App. A.3). Globally, this relies upon homotopy theory of groupoids

Angle-Right Conceptually, the decomposition space axioms precisely guarantee incidence coalgrba coassociativity abd
counitality.
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The simplex category � (“topologists’ Delta”)

Definition ([2], Appendix B.1)

The simplex category � has
Angle-Right finite non-empty standard ordinals [𝑛] = {0 ≤ 1≤…≤𝑛} as objects,
Angle-Right monotone (i.e., order-preserving) maps as morphisms.

Angle-Right The morphisms of � are generated by the following classes of maps:
Angle-Double-Right coface maps — injections 𝜕𝑖 ∶ [𝑛−1]→ [𝑛] that skip the value 𝑖;
Angle-Double-Right codegeneracy maps — surjections 𝜎𝑖 ∶ [𝑛+1]→ [𝑛] that repeat the value 𝑖.

Angle-Right These generators satisfy some obvious relations (called cosimplicial identities).

[0] [1] [2] ⋯
𝜕1

𝜕0
𝜎0

𝜕2

𝜕0
𝜕1

𝜎1

𝜎0



D
ec
om

po
si
tio

n
Sp

ac
es

in
Co

m
bi
na

to
ric

s
—

N.
Be

hr

5/33

Generating maps for � and active/inert maps

[𝑛] [𝑛+1]

•0

•0 •1

•1 •2

•2 •3

⋮ ⋮

•𝑛 •𝑛+1

𝜕1 [𝑛+1] [𝑛]

•0

•1 •0

•2 •1

•3 •2

⋮ ⋮

•𝑛+1 •𝑛

𝜎1 [𝑚] [𝑛]

•0

•0 •1

•1 •2

•2 •3

⋮ ⋮

•𝑚 •𝑛

𝛼

[𝑚] [𝑛]

•0

•1 •0

•2 •1

•2

⋮ •4

•𝑚

•𝑚+1

⋮

•𝑛

𝜄

⋮

injections surjections active maps inert maps
𝑎(0) = 0 ∧ 𝑎(𝑚) = 𝑛 𝑎(𝑖+1) = 𝑎(𝑖)+1
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Active-inert factorization system on � ([3], Sec. 1.1.1)

Angle-Right The simplex category � has an active-inert factorization system, i.e., every map of � factors uniquely as an active
map followed by an inert map, with
Angle-Double-Right active maps — 𝑔 ∶ [𝑘]→|[𝑚] such that 𝑔(0) = 0 and 𝑔(𝑘) =𝑚 (“endpoint-preserving”)
Angle-Double-Right inert maps — 𝑓 ∶ [𝑚]↣ [𝑛] such that 𝑓(𝑖+1) = 𝑓(𝑖)+1 for 0≤ 𝑖 ≤𝑚−1 (“distance-preserving”)

Angle-Right In terms of generating maps of �, one finds that all generators are active maps, except for the outer coface maps,
which are inert maps:

[0] [1] [2] ⋯
𝜕1

𝜕0
𝜎0𝜎0

𝜕2

𝜕0
𝜕1

𝜎0
𝜎1𝜎1

𝜎0𝜕1

Angle-Right Restriction of � to inert maps (= blue arrows in the above diagram) defines a subcategory �𝑖𝑛𝑒𝑟𝑡 and an embedding
𝑗 ∶ �𝑖𝑛𝑒𝑟𝑡 → � (which will play a crucial rôle in the construction of free decomposition spaces).
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Simplicial groupoids

Angle-Right groupoid — small category in which all the arrows are invertible (heuristic interpretation: “sets with built-in
symmetries”); map of groupoids — a functor between groupoids
⇝ category Grpd of groupoids and groupoid maps

Angle-Right homotopy of groupoid maps — a natural transformation of groupoid functors

Angle-Right simplicial groupoid — a functor of the form 𝑋 ∶ �𝑜𝑝 →Grpd, with � the simplex category of non-empty finite
standard ordinals [𝑛] = {0 ≤ 1≤…≤𝑛} and monotone maps.

Angle-Right Via the generators-and-relations description of �, the previous yields (keeping in mind the op-ing) a diagram as
below, where active maps (“end-point-preserving” maps) are denoted as →|, and inert maps (“distance-preserving”
maps) are denoted as ↣:

𝑋0 𝑋1 𝑋2 𝑋3 ⋯𝑠0𝑑0

𝑑1 𝑠0
𝑠1
𝑠0

𝑑1

𝑑2

𝑑0

𝑠1
𝑠0

𝑠2
𝑠1
𝑠0

𝑑1

𝑑3
𝑑2
𝑑1
𝑑0

𝑠1

𝑠2

𝑠0

A face map 𝑑𝑖 (a degeneracy map 𝑠𝑖) deletes (repeats) the 𝑖-th vertex, and the generators satisfy the relations

𝑑𝑖𝑠𝑖 = 𝑑𝑖+1𝑠𝑖 = 1, 𝑑𝑖𝑑𝑗 = 𝑑𝑗−1𝑑𝑖 , 𝑑𝑗+1𝑠𝑖 = 𝑠𝑖𝑑𝑗 , 𝑑𝑖𝑠𝑗 = 𝑠𝑗−1𝑑𝑖 , 𝑠𝑗𝑠𝑖 = 𝑠𝑖𝑠𝑗−1 (𝑖 < 𝑗).
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Example: nerve of a category

Angle-Right 𝑋0 — objects of the category
Angle-Right 𝑋1 — morphisms of the category
Angle-Right 𝑋𝑛≥2 — length 𝑛 sequences of composable morphisms (and their composites)

𝑥1 𝑥1

𝑥2 𝑥0

𝑥1

𝑥2 𝑥0

𝑥2 𝑥0

𝑔 𝑓

𝑑0

𝑔

𝑑2

𝑓

𝑔∘𝑓

𝑑1

𝑔∘𝑓

𝑥

𝑥 𝑦 𝑥

𝑦 𝑦

𝑦 𝑥

𝑓

𝑓

𝑖𝑑𝑥

𝑓∘𝑖𝑑𝑥𝑠0

𝑠1

𝑖𝑑𝑦 𝑓

𝑖𝑑𝑦∘𝑓

face maps 𝑑𝑖 ∶ 𝑋2 →𝑋1 degeneracy maps 𝑠𝑖 ∶ 𝑋1 →𝑋2
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Decomposition spaces [5]
Definition
A simplicial groupoid 𝑋• ∶�

𝑜𝑝 →Grpd is a decomposition space if it maps active-inert pushouts to pullbacks.

𝑋•
⎛⎜⎜

⎝

[𝑛′] [𝑛]

[𝑚′] [𝑚]

⌟ ⎞⎟⎟

⎠

=

𝑋𝑛′ 𝑋𝑛

𝑋𝑚′ 𝑋𝑚

⌟

Definition (Equivalent form)

A simplicial groupoid 𝑋• ∶�
𝑜𝑝 →Grpd is a decomposition space if the following commutative squares are all homotopy

pullbacks (for all 𝑛 > 1 and 0< 𝑖 < 𝑛):

𝑋𝑛+1 𝑋𝑛

𝑋𝑛 𝑋𝑛−1

𝑑𝑛+1

𝑑𝑖 𝑑𝑖

𝑑𝑛

𝑋𝑛+1 𝑋𝑛

𝑋𝑛 𝑋𝑛−1

𝑑0

𝑑𝑖+1 𝑑𝑖

𝑑0

Example: For 𝑛 = 2, the equations imply that a 3-simplex can be reconstructed (up to homotopy equivalences) by gluing
two 2-simplices along a 1-simplex (i.e., the long edge of one along a short edge of the other).

⁵ I. Gálvez-Carrillo, J. Kock, and A. Tonks. “Decomposition Spaces, Incidence Algebras and Möbius Inversion I: Basic Theory”. In: Advances in Mathematics 331 (June 2018), pp. 952–1015. doi:
10.1016/j.aim.2018.03.016.

https://doi.org/10.1016/j.aim.2018.03.016
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Decomposition space example

Schmitt’s Hopf algebra of graphs [2]
Angle-Right Let 𝑋 be the simplicial groupoid with 𝑋𝑘 the

groupoid of directed multi-graphs with an
ordered 𝑘-part vertex-induced partition (with
parts possibly empty, and 𝑋0 the 1-element
groupoid containing only the empty graph).

Angle-Right The decomposition space axiom is given by the
pullback diagram on the right:
Angle-Double-Right horizontal maps join the last two layers
Angle-Double-Right vertical maps forget the first layer
Angle-Double-Right the diagram expresses the fact that the triple

partition (top right) can be reconstructed by the
information contained in the cospan

Angle-Right This is not an example of a 1-Segal space, since a
graph with a two-part partition cannot be
reconstructed from knowing only the two parts
(cf. [2], Sec. 1.1.5)

10 IMMA GÁLVEZ-CARRILLO, JOACHIM KOCK, AND ANDREW TONKS

We define a simplicial groupoid X by taking X1 to be the groupoid of graphs
(admitting multiple edges and loops), and more generally letting Xk be the groupoid
of graphs with an ordered partition of the vertex set into k parts (possibly empty).
In particular, X0 is the contractible groupoid consisting only of the empty graph.

These groupoids form a simplicial object: the outer face maps delete the first or
last part of the graph, and the inner face maps join adjacent parts. The degeneracy
maps insert an empty part. The simplicial identities are readily checked.

It is clear that X is not a Segal space: for the Segal square (2)

X2
❴
✤

d0 !!

d2
""

X1

d1
""

X1
d0

!! X0

to be a pullback would mean that a graph with a two-part partition could be re-
constructed uniquely from knowing the two parts individually. But this is not true,
because the two parts individually contain no information about the edges going
between them.

One can check that it is a decomposition space: that the square

X2

d0
""

X3
✤
❴

d2##

d0
""

X1 X2d1
##

is a pullback is to say that a graph with a three-part partition (∈ X3) can be recon-
structed uniquely from a pair of elements in X2 with common image in X1 (under
the indicated face maps). The following picture represents elements corresponding
to each other in the four groupoids.

∈ X1 ∈ X2

∈ X2 ∈ X3

d2

d1

d0 d0

The horizontal maps join the last two parts of the partition. The vertical maps
forget the first part. Clearly the diagram commutes. To reconstruct the graph with
a three-part partition (upper right-hand corner), most of the information is already
available in the upper left-hand corner, namely the underlying graph and all the
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CULF functors and the category of decomposition spaces

Definition (CULF functors, [2], Sec. 1.5.1)
A simplicial map 𝐹 ∶ 𝑌 →𝑋 is CULF (“conservative and having unique lifting of factorizations”) if it is Cartesian on active
maps.

Angle-Right If 𝑋 is a decomposition space and 𝐹 ∶ 𝑌 →𝑋 a CULF map, then 𝑌 is a decomposition space, too.
Angle-Right This motivates to define the ∞-category Decomp of decomposition spaces and CULF maps.
Angle-Right Crucially, the incidence coalgebra constructions are (covariantly) functorial in CULF maps.
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CULF functors and the category of decomposition spaces

Definition (CULF functors, [2], Sec. 1.5.1)
A simplicial map 𝐹 ∶ 𝑌 →𝑋 is CULF (“conservative and having unique lifting of factorizations”) if it is Cartesian on active
maps.

Angle-Right If 𝑋 is a decomposition space and 𝐹 ∶ 𝑌 →𝑋 a CULF map, then 𝑌 is a decomposition space, too.
Angle-Right This motivates to define the ∞-category Decomp of decomposition spaces and CULF maps.
Angle-Right Crucially, the incidence coalgebra constructions are (covariantly) functorial in CULF maps.

For the special case of decomposition spaces of the form 𝑆 ∶ �𝑜𝑝 → Set (but conjectured also to be true for generic
decomposition spaces), one has the following result:

Theorem ([3], Thm. 4.5)
For every decomposition space 𝒟 ∶ �𝑜𝑝 → Set, there exists an equivalence of categories

Decomp/𝒟 ≃ Psh(𝑡𝑤𝒟) ,

where 𝑡𝑤𝒟 denoted the twisted arrow category of 𝒟.

⇒ This opens up the possibility to use techniques from topos theory to study decomposition space constructions:
defining new decomposition spaces from old (using the internal language of topoi), investigating notions such as
subobject classifiers in the combinatorial setting, …
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Motivation

Angle-Right Key conceptual point: most interesting examples suffer from/feature some form of algebraic structure on
isomorphism classes of combinatorial objects; the decomposition space framework thus aims to formulate
algebraic structures in a “representative-independent” fashion

Angle-Right Another interesting technical point concerns objective combinatorics vs. “concrete” combinatorics: many results at
the objective level are available without any finiteness constraints (i.e., in the form of bijective proofs), but in
order to recover results from traditional combinatorics, one requires notions of finiteness of the underlying groupoids
and compatible notions of cardinalities

Angle-Right There are very subtle issues regarding finiteness notions. For instance, there is a variant of the numerical
convolution algebra which only works for finite categories; albeit this seems to be a rather strong restriction, these
cases are very important in practice (as, for instance, they cover the Hall algebras as numerical convolution
algebras for the Waldhausen 𝑆• construction; in that case, one needs homological finiteness conditions, i.e., that
𝐸𝑥𝑡0 and 𝐸𝑥𝑡1 are finite).
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Slices of simplicial groupoids and fundamental equivalence; [2], App. A.2

Definition
For every groupoid 𝐵 ∈Grpd, let Grpd/𝐵 denote the homotopy slice category over 𝐵, with objects groupoid maps
𝑓 ∶ 𝑋 →𝐵, and morphisms triangles such as below, where 𝛼 ∶ 𝑓≅̇𝑓′ ∘ℎ is a homotopy equivalence (i.e., a natural
isomorphism):

𝑋 𝑋 ′

𝐵

ℎ

𝑓 𝑓 ′
𝛼

Note: For 1 the terminal groupoid, we have that Grpd/1 ≃Grpd.

Theorem (Fundamental equivalence; [2], Thm. A.2.3)

For a fixed groupoid 𝐵 ∈Grpd, there exists a canonical equivalence

Grpd/𝐵 ≃Grpd𝐵

between the homotopy slice category Grpd/𝐵 of groupoids over 𝐵, and the category Grpd𝐵 of 𝐵-indexed families of
groupoids. This equivalence is given by taking homotopy fibers and via the Grothendieck construction.
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Linear functors (I); [2], App. A.3

For every map of groupoids 𝑓 ∶ 𝐵 ′ →𝐵, letting 𝑓∗ ∶Grpd/𝐵 →Grpd/𝐵 ′ denote the functor defined by taking homotopy
pullback along 𝑓, and 𝑓! ∶Grpd/𝐵 ′ →Grpd/𝐵 the functor defined by postcomposition with 𝑓, one obtains the following
homotopy adjunction:

𝑓∗(𝐴) 𝐴 𝐴 ′ 𝑓!(𝐴
′)

Grpd/𝐵 Grpd/𝐵 ′

𝐵 ′ 𝐵 𝐵 ′ 𝐵

𝑓∗(𝑔) 𝑔 𝑔′ 𝑓!(𝑔
′)∶=𝑓∘𝑔′

𝑓∗

𝑓!

𝑓 𝑓

⊣

Lemma (Beck-Chevalley)
For any homotopy pullback square as below,

𝐻 𝐹

𝐺 𝐵

𝑝

𝑞

⌟

𝑓

𝑔

the functors 𝑝!𝑞
∗,𝑔∗𝑓! ∶Grpd/𝐺 →Grpd/𝐹 are naturally homotopy equivalent.
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Linear functors (II); [2], App. A.3

Definition
Any span 𝐴 𝑟←−𝐺

𝑓
−→𝐵 of groupoid maps yields a functor

𝑓!𝑟
∗ ∶Grpd/𝐴 →Grpd/𝐵 .

Angle-Right A functor homotopy equivalent to one arising from a span is called linear.
Angle-Right By the Beck-Chevalley lemma, compositions of linear functors are linear.
Angle-Right Let LIN denote the monoidal 2-category of all slice categories Grpd/𝐵 and linear functors between them, and with

monoidal product defined as
Grpd/𝐴⊗Grpd/𝐵 ∶=Grpd/𝐴×𝐵 .

Angle-Right The neutral object for ⊗ is Grpd/1 ≃Grpd (=̂ ground field in homotopy linear algebra).

Angle-Right Grpd𝐵 is the linear dual of Grpd/𝐵, since Grpd𝐵 ≃ LIN(Grpd/𝐵,Grpd).

Angle-Right There exists a canonical pairing Grpd/𝐵×Grpd𝐵 →Grpd:

⟨⌜𝑡⌝,ℎ𝑠⟩ = 𝐻𝑜𝑚Grpd(𝑠, 𝑡) ={
Ω𝑠(𝐵) (𝑠 ≅ 𝑡)
∅ (𝑠 ≇ 𝑡)

with:
⌜𝑡⌝ ∶ 1→𝐵 ∶ 1↦ 𝑡 ∈ 𝐵
ℎ𝑠 ∶= 𝐻𝑜𝑚Grpd(𝑠,−) ∶ 𝐵 →Grpd

Here, Ω𝑠(𝐵) is the loop groupoid of 𝐵 at object 𝑠, given by homotopy pullback of ⌜𝑠⌝ ∶ 1→𝐵 along itself.
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Finiteness notions for groupoids

Definition (Connectedness and discreteness)

Angle-Right A groupoid 𝐺 is connected if obj(𝐺) is non-empty and 𝐻𝑜𝑚𝐺(𝑥,𝑦) is non-empty for all 𝑦,𝑧 ∈ 𝐺.
Angle-Right A component 𝐺 is a maximally connected sub-groipoid, denoted [𝑥] or 𝐺[𝑥] for 𝑥 in the component.
Angle-Right 𝜋0(𝐺) is defined as the set of components of 𝐺.
Angle-Right 𝜋1(𝐺,𝑥) ∶= 𝐴𝑢𝑡𝐺(𝑥) =𝐻𝑜𝑚𝐺(𝑥,𝑥) (automorphism group of 𝑥).

Angle-Right A groupoid 𝐺 is homotopy discrete if 𝜋1(𝐺,𝑥) is trivial for all 𝑥, and contractible (i.e., homotopy equivalent to the
terminal groupoid 1) if it is connected and homotopy discrete.

Definition (Finiteness)

Angle-Right A groupoid 𝐺 is locally finite if 𝜋1(𝐺,𝑥) for every 𝑥.
Angle-Right It is (homotopy) finite if in addition 𝜋0(𝐺) is finite.
Angle-Right We denote by grpd the category of finite groupoids.
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Cardinality of groupoids; [2], App. A.4

Angle-Right The cardinality |𝐵| of a finite groupoid 𝐵 is defined as

|𝐵| ∶= ∑
[𝑥]∈𝜋0(𝐵)

1
|𝜋1(𝐵,𝑥)|

= ∑
[𝑥]∈𝜋0(𝐵)

1
|𝐴𝑢𝑡𝐵(𝑥)|

∈Q

Angle-Right For any function 𝑞 ∶ 𝜋0(𝐵)→ Q, we introduce the notation

∫
𝑥∈𝐵

𝑞(𝑥) ∶= ∑
[𝑥]∈𝜋0(𝐵)

𝑞(𝑥)
|𝜋1(𝐵,𝑥)|

.
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Cardinality of finite linear functors; [2], App. A.4

Lemma ([2], Prop. A.1.3)
Any span 𝐴 𝑟←−𝐺

𝑓
−→𝐵 of locally finite groupoids 𝐴, 𝐺, 𝐵, and where 𝑟 has finite homotopy fibers induces a finite linear

functor Grpd/𝐴 →Grpd/𝐵 that extends to grpd/𝐴 → grpd/𝐵.

Angle-Right Let lin⃯⃯ ⃯⃯ ⃯⃯ be denote the category of slice categories grpd/𝐴 (for 𝐴 finite) and finite lienar functors.

Angle-Right global cardinality ‖‖ ∶ lin⃯⃯ ⃯⃯ ⃯⃯ → Vect is defined via

‖grpd/𝐴‖ ∶= Q𝜋0(𝐴)
with basis {𝛿𝑎}𝑎∈𝜋0(𝐴)

‖grpd/𝐴 → grpd/𝐵‖ ∶= (Q𝜋0(𝐴)
→Q𝜋0(𝐵)

) ∶ 𝛿𝑎 ↦ ∑
[𝑏]∈𝜋0(𝐵)

|𝐵[𝑏]||𝐺𝑎,𝑏|𝛿𝑏 =∫
𝑏∈𝐵

|𝐺𝑎,𝑏|𝛿𝑏

Here, 𝐺𝑎,𝑏 are the fibers of the map 𝐺 →𝐴×𝐵 induced by the span 𝐴 ←𝐺 →𝐵.
Angle-Right For any object 𝑝 ∶ 𝐺 →𝐵 in grpd/𝐵, one may define the local cardinality |𝑝| of 𝑝 as the global cardinality of the

linear finite functor 𝐿(𝑝) induced by the span 1←𝐺
𝑝
−→𝐵:

|𝑝| ∶= ‖𝐿(𝑝)‖ =∫
𝑏∈𝐵

|𝐺𝑏|𝛿𝑏

Angle-Right These notions may also be dualized to cardinalities for grpd𝑋 (cf. [2], A.4.5), requiring the notion of
profinite-dimensional vector spaces.
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Incidence coalgebras [2]

Angle-Right Taking homotopy pullback along a groupoid morphism 𝑓 ∶ 𝐵 ′ →𝐵 yields a functor

𝑓∗ ∶Grpd/𝐵 →Grpd/𝐵 ′

Angle-Right 𝑓∗ has a homotopy left adjoint 𝑓! defined by postcomposition,

𝑓! ∶Grpd/𝐵 ′ →Grpd/𝐵

Angle-Right A span of groupoid maps 𝐴 𝑟←−𝐺
𝑓
−→𝐵 thus induces a functor (referred to as linear)

𝑓!𝑟
∗ ∶Grpd/𝐴 →Grpd/𝐵

Definition
For a decomposition space 𝑋, the incidence coalgebra (Grpd/𝑋1

,Δ,𝜀) is defined via

𝑋1
𝑑1←−𝑋2

(𝑑2,𝑑0)−−−−→𝑋1×𝑋1 𝑋1
𝑠0←−𝑋0

𝑧−→1
Δ ∶= (𝑑2,𝑑0)! ∘𝑑

∗
1 𝜀 ∶= (𝑠0)! ∘𝑧

∗
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Incidence coalgebras [2]

Angle-Right This construction is intended to generalize the incidence coalgebra of posets, with the idea that (for 𝑓 ∈𝑋1)

Δ(𝑓) = ∑
𝜎∈𝑋2

𝑑1(𝜎)=𝑓

𝑑2(𝜎)⊗𝑑0(𝜎)

computes all ways how 𝑓 ∈𝑋1 can arise as the “long edge” of some 2-simplices 𝜎.

Angle-Right More precisely, for a basis element ⌜𝑡⌝ ∶ 1→𝑋1 of Grpd/𝑋1
(i.e., a functor that picks out a particular element 𝑡 ∈ 𝑋1),

Δ(⌜𝑡⌝) = (𝑑2,𝑑0)! ∘𝑑
∗
1(⌜𝑡⌝) =∫

(𝑎,𝑏)∈𝑋1×𝑋1
(𝑋2)𝑡𝑎,𝑏⌜𝑎⌝⊗⌜𝑏⌝ ∈Grpd/𝑋1

⊗Grpd/𝑋1

where (𝑋2)𝑡𝑎,𝑏 denotes the homotopy fiber of (𝑑1,𝑑2,𝑑0) ∶ 𝑋2 →𝑋1×𝑋1×𝑋1 over (𝑡,𝑎,𝑏).

Angle-Right Compare: in Schmitt’s construction, for a directed multigraph 𝐺 with vertex set 𝑉𝐺, and with 𝐺|𝑋 the restriction of
𝐺 to vertex set 𝑋 ⊆𝑉𝐺, denoting in a slight abuse of notations by 𝐺 also the isomorphism class of 𝐺, we find

Δ(𝐺) ∶= ∑
𝐴+𝐵=𝑉𝐺

𝐺|𝐴 ⊗𝐺|𝐵
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Coassociativity via decomposition space axioms

Angle-Right Originally, incidence coalgebras were constructed for 1-Segal space; but it is easy to find combinatorial structures
that naturally give rise to incidence coalgebras, but are only 2-Segal spaces

Angle-Right Reacap: a 2-Segal spaces is a functor 𝑆 ∶ �𝑜𝑝 →Grp that takes active-inert pushouts to pullbacks.
Angle-Right Parsing out the previous definition in detail, one may demonstrate [5] that one only needs to verify that the following

squares are pullbacks (for all 𝑛 ≥ 0 and 0≤ 𝑘 ≤ 𝑛):

𝑋𝑛+1 𝑋𝑛+2 𝑋𝑛+3

𝑋𝑛 𝑋𝑛+1 𝑋𝑛+2

𝑠𝑘+1

𝑑⊥

⌟

𝑑⊥

𝑑𝑘+2

⌟

𝑑⊥

𝑠𝑘 𝑑𝑘+1

𝑋𝑛+1 𝑋𝑛+2 𝑋𝑛+3

𝑋𝑛 𝑋𝑛+1 𝑋𝑛+2

𝑠𝑘

𝑑⊤

⌟

𝑑⊤

𝑑𝑘+1

⌟

𝑑⊤

𝑠𝑘 𝑑𝑘+1

Angle-Right An important special case are the following squares, which guarantee coassociativity of the incidence coalgebra:

𝑋2 𝑋3

𝑋1 𝑋2

𝑑⊥

𝑑2

⌟

𝑑⊥

𝑑1

𝑋2 𝑋3

𝑋1 𝑋2

𝑑⊤

𝑑1

⌟

𝑑⊤

𝑑1
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From objective to numerical coalgebras; [2], Sec. 1.2.8 & [5], Sec. 7

Conceptual challenge

The notions of decomposition spaces and incidence coalgebras are inherently objective, in the sense that they deal
directly with combinatorial objects rather than with vector spaces spanned by these objects and (co-)algebraic
structures thereon. In particular, while the theory at the objective level is well-posed without finiteness conditions, to
recover numerical results in “classical” combinatorics, one must require suitable finiteness conditions in order to apply
cardinality constructions to the objective theory.

Angle-Right A decomposition space 𝑋• ∶�
𝑜𝑝 →Grpd is locally finite if 𝑋1 is a locally finite groupoid (i.e., 𝜋1(𝑋,𝑥) = 𝐴𝑢𝑡𝑋(𝑥) is

finite for all 𝑥), and if in addition the maps 𝑋0
𝑠0−→𝑋1

𝑑1←−𝑋2 are (homotopy) finite (i.e., have finitie homotopy fibers).

Angle-Right For a locally finite decomposition space 𝑋•, the comultiplication and counit maps are finite linear functors, and
thus descend to slices of finite groupoids:

Δ ∶ grpd/𝑋1
→ grpd/𝑋1

⊗grpd/𝑋1
, 𝜀 ∶ grpd/𝑋1

→ grpd

⇒ Taking cardinality yields comultiplication and counit maps on vector spaces

|Δ| ∶ Q𝜋0(𝑋1)
→Q𝜋0(𝑋1)

⊗Q𝜋0(𝑋1)
, |𝜀| ∶ Q𝜋0(𝑋1)

→ Q

which form the coassociative and counital numerical coalgebra 𝐼𝑋 = (Q𝜋0(𝑋1)
,|Δ|,|𝜀|).
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,|Δ|,|𝜀|).
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From objective to numerical coalgebras; [2], Sec. 1.2.8 & [5], Sec. 7

Conceptual challenge

The notions of decomposition spaces and incidence coalgebras are inherently objective, in the sense that they deal
directly with combinatorial objects rather than with vector spaces spanned by these objects and (co-)algebraic
structures thereon. In particular, while the theory at the objective level is well-posed without finiteness conditions, to
recover numerical results in “classical” combinatorics, one must require suitable finiteness conditions in order to apply
cardinality constructions to the objective theory.

Angle-Right A decomposition space 𝑋• ∶�
𝑜𝑝 →Grpd is locally finite if 𝑋1 is a locally finite groupoid (i.e., 𝜋1(𝑋,𝑥) = 𝐴𝑢𝑡𝑋(𝑥) is

finite for all 𝑥), and if in addition the maps 𝑋0
𝑠0−→𝑋1

𝑑1←−𝑋2 are (homotopy) finite (i.e., have finitie homotopy fibers).

Angle-Right For a locally finite decomposition space 𝑋•, the comultiplication and counit maps are finite linear functors, and
thus descend to slices of finite groupoids:

Δ ∶ grpd/𝑋1
→ grpd/𝑋1

⊗grpd/𝑋1
, 𝜀 ∶ grpd/𝑋1

→ grpd

⇒ Taking cardinality yields comultiplication and counit maps on vector spaces

|Δ| ∶ Q𝜋0(𝑋1)
→ Q𝜋0(𝑋1)

⊗Q𝜋0(𝑋1)
, |𝜀| ∶ Q𝜋0(𝑋1)

→ Q

which form the coassociative and counital numerical coalgebra 𝐼𝑋 = (Q𝜋0(𝑋1)
,|Δ|,|𝜀|).
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Examples of objective and numerical coalgebras in combinatorics

Angle-Right q-combinatorics ([2], Sec. 2.3)
Angle-Right Faà di Bruno algebra ([2], Sec. 2.4)
Angle-Right “Operadic” examples (graphs, trees, …) ([2], Sec. 2.5)
Angle-Right current research topic: objective combinatorics for symmetric functions ([2], Sec. 2.6)

Angle-Right Free decomposition spaces ([2], Sec. 3.3.7) → many combinatorial coalgebras of deconcatenation type are
incidence coalgebras of free decomposition spaces!

Angle-Right Possibly also of interest: link between Möbius inversion and renormalization [6]

⁶ J. Kock. “From Möbius Inversion to Renormalisation”. In: Communications in Number Theory and Physics 14.1 (2020), pp. 171–198. doi: 10.4310/CNTP.2020.v14.n1.a3.

https://doi.org/10.4310/CNTP.2020.v14.n1.a3
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Incidence bialgabras via monoidal decomposition spaces; [2], Sec. 1.5.6

Recap: the appropriate notion of functors between decomposition spaces are CULF functors (cf. [2], Sec. 1.5)

Definition
A monoidal decomposition space is a decomposition space 𝑍 equipped with an associative unital monoid structure
given by CULF functors 𝑚 ∶ 𝑍 ×𝑍 →𝑍 and 𝑒 ∶ 1→𝑍.

Lemma
If 𝑍 is a monoidal decomposition space, then Grpd/𝑍1 carries the structure of a bialgebra, called incidence bialgebra.
Moreover, monoidal CULF functors induce bialgebra homomorphisms.

Example (Schmitt Hopf algebra of graphs)
Taking as a monoidal structure the one induced by taking disjoint union of graphs with partitions, one may verify that
this indeed yields a monoidal decomposition space (cf. [2], Sec. 1.5.10 for further details).



Free decomposition spaces

1 Decomposition spaces
2 Groupoid homotopy theory
3 Incidence (co-/bi-)algebras

4 Free decomposition spaces
5 Traceelet Decomposition Spaces
6 Conclusioon and outlook
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Free decomposition spaces [3]

Angle-Right The simplex category � has an active-inert factorization system, i.e., every map of � factors uniquely as an active
map followed by an inert map, with
Angle-Double-Right active maps — 𝑔 ∶ [𝑘]→|[𝑚] such that 𝑔(0) = 0 and 𝑔(𝑘) =𝑚 (“endpoint-preserving”)
Angle-Double-Right inert maps — 𝑓 ∶ [𝑚]↣ [𝑛] such that 𝑓(𝑖+1) = 𝑓(𝑖)+1 for 0≤ 𝑖 ≤𝑚−1 (“distance-preserving”)

Angle-Right In terms of generating maps of �, one finds that all generators are active maps, except for the outer coface maps,
which are inert maps:

[0] [1] [2] ⋯
𝜕1

𝜕0
𝜎0𝜎0

𝜕2

𝜕0
𝜕1

𝜎0
𝜎1𝜎1

𝜎0𝜕1

Angle-Right Restriction of � to inert maps (= blue arrows in the above diagram) defines a subcategory �𝑖𝑛𝑒𝑟𝑡 and an embedding
𝑗 ∶ �𝑖𝑛𝑒𝑟𝑡 → �.

Corollary (Free decomposition spaces are Möbius; [3], Cor. 2.3.3)

For any 𝐴 ∶ �𝑜𝑝
𝑖𝑛𝑒𝑟𝑡 →Grpd, the left Kan extension 𝑗!(𝐴) ∶ �

𝑜𝑝 →Grpd is a (Möbius) decomposition space, called the free
decomposition space associated to 𝐴.
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Long (!) list of examples of free decomposition spaces in combinatorics

Key insight:

Essentially all examples with monoidal structure of deconcatenation type are free decomposition spaces

Prototypical examples from [3]:
Angle-Right Quasi-symmetric functions (Secs. 5.1.4, 5.2.3, 5.3.3)
Angle-Right WQSym and FQSym (Sec. 5.1.5)
Angle-Right Parking functions (Sec. 5.1.6)
Angle-Right Noncrossing partitions (Sec. 5.2.1)
Angle-Right Dyck paths (Sec. 5.2.2; cf. also next slide)
Angle-Right Layered posets (Sec. 5.2.3)
Angle-Right Heap orders, scheduling, and sequential processes (Sec. 5.2.4)
Angle-Right Decomposition space of nondegenerate simplices (Sec. 5.3.2) → plays a crucial rôle in the construction of tracelet

decomposition spaces [1] (cf. last part of the talk!)



D
ec
om

po
si
tio

n
Sp

ac
es

in
Co

m
bi
na

to
ric

s
—

N.
Be

hr

27/33

Free decomposition space example: Dyck paths [3], Sec. 5.2.2

Angle-Right Dyck path — integer lattice path from (0,0) to (2ℓ,0) (for some ℓ ∈ N) taking only steps ⟋= (1,1) and ⟍= (1,−1)
Angle-Right height of a Dyck path — maximal second coordinate of the Dyck path
Angle-Right 𝐴𝑛 — set of Dyck paths of height 𝑛 (for 𝑛 ≥ 0)

Angle-Right top and bottom face maps 𝑑⊤,𝑑⊥ ∶ 𝐴𝑛+1 →𝐴𝑛 — clip the top-most/bottom-most level of the Dyck paths:

d→→↑ !

d↑
→↑ !

Then X := j!(A) has X1 the set of all Dyck paths (all lengths and all heights),
X2 is the set of all Dyck paths with a marked level, and more generally Xk is
the set of all Dyck paths with k ↑ 1 marked levels (which may coincide). The
inner face maps delete a level marking (without a!ecting the path), whereas
the outer face maps clip the path outside the outermost level. For example, the
outer face maps involved in the formula for comultiplication in the incidence
coalgebra, namely X1 X2 , are exemplified here:

d0→↑ !

d2

→↑ !

There is another way to assemble Dyck paths into a free decomposition space:
A baseline point of a Dyck path is one with second coordinate 0. Let An be the
set of Dyck paths (any length and height) with n↑ 1 baseline points (and A0

consists of the trivial Dyck path). Then X := j!(A) has in degree 1 the set of all
Dyck paths, and in degree 2 the set of all Dyck paths with a chosen baseline
point. The inner face maps forget baseline points, and the outer face maps delete
the portion before the first or after the last chosen baseline point. For example

d0→↑ !

d2

→↑ !

This construction is actually just an instance of the general word example,
namely where the alphabet is the set of irreducible Dyck paths (meaning Dyck
paths whose only baseline points are the start and the finish). The first con-
struction is not of this form, as can be seen by the fact that an element in X2

contains more information than its two layers.

5.2.3. Layered posets (and quasi-symmetric functions, II). An n-layered
poset is a poset P equipped with a monotone map to an ordinal n; the fibers
of this map are referred to as layers. Let An denote the set of (iso-classes of)
n-layered posets. We define face maps An↓1 An by deleting all elements
in layer n, respectively deleting all elements in layer 1 (and then shifting down
all layers to obtain an (n↑ 1)-layered poset. In the resulting free decomposition
space X := j!(A), we have X1 the set of all layered posets (for all n ↓ N) and
X2 the set of layered posets with an ordinal-sum splitting of the ordinal n into
a initial segment and a final segment. The resulting comultiplication is given by

”(P ) =
∑

a+b=n

P|a ↔ P|b,

24

Angle-Right The free decomposition space of Dyck paths 𝑋• ∶= 𝑗!(𝐴•) has
Angle-Double-Right 𝑋1 — set of all Dyck paths (i.e., all lengths and heights)
Angle-Double-Right 𝑋𝑘>1 — the set of all Dyck paths with 𝑘 marked levels (without affecting the path)

In particular, the inner face map 𝑑1 ∶ 𝑋2 →𝑋1 forgets the level marking, while the outer face maps 𝑑0,𝑑2 ∶ 𝑋2 →𝑋1
(involved in the coproduct definition) act as follows:

d→→↑ !

d↑
→↑ !

Then X := j!(A) has X1 the set of all Dyck paths (all lengths and all heights),
X2 is the set of all Dyck paths with a marked level, and more generally Xk is
the set of all Dyck paths with k ↑ 1 marked levels (which may coincide). The
inner face maps delete a level marking (without a!ecting the path), whereas
the outer face maps clip the path outside the outermost level. For example, the
outer face maps involved in the formula for comultiplication in the incidence
coalgebra, namely X1 X2 , are exemplified here:

d0→↑ !

d2

→↑ !

There is another way to assemble Dyck paths into a free decomposition space:
A baseline point of a Dyck path is one with second coordinate 0. Let An be the
set of Dyck paths (any length and height) with n↑ 1 baseline points (and A0

consists of the trivial Dyck path). Then X := j!(A) has in degree 1 the set of all
Dyck paths, and in degree 2 the set of all Dyck paths with a chosen baseline
point. The inner face maps forget baseline points, and the outer face maps delete
the portion before the first or after the last chosen baseline point. For example

d0→↑ !

d2

→↑ !

This construction is actually just an instance of the general word example,
namely where the alphabet is the set of irreducible Dyck paths (meaning Dyck
paths whose only baseline points are the start and the finish). The first con-
struction is not of this form, as can be seen by the fact that an element in X2

contains more information than its two layers.

5.2.3. Layered posets (and quasi-symmetric functions, II). An n-layered
poset is a poset P equipped with a monotone map to an ordinal n; the fibers
of this map are referred to as layers. Let An denote the set of (iso-classes of)
n-layered posets. We define face maps An↓1 An by deleting all elements
in layer n, respectively deleting all elements in layer 1 (and then shifting down
all layers to obtain an (n↑ 1)-layered poset. In the resulting free decomposition
space X := j!(A), we have X1 the set of all layered posets (for all n ↓ N) and
X2 the set of layered posets with an ordinal-sum splitting of the ordinal n into
a initial segment and a final segment. The resulting comultiplication is given by

”(P ) =
∑

a+b=n

P|a ↔ P|b,

24
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Free decomposition space example: Dyck paths [3], Sec. 5.2.2

Angle-Right Dyck path — integer lattice path from (0,0) to (2ℓ,0) (for some ℓ ∈ N) taking only steps ⟋= (1,1) and ⟍= (1,−1)
Angle-Right height of a Dyck path — maximal second coordinate of the Dyck path
Angle-Right 𝐴𝑛 — set of Dyck paths of height 𝑛 (for 𝑛 ≥ 0)
Angle-Right top and bottom face maps 𝑑⊤,𝑑⊥ ∶ 𝐴𝑛+1 →𝐴𝑛 — clip the top-most/bottom-most level of the Dyck paths:

d→→↑ !

d↑
→↑ !

Then X := j!(A) has X1 the set of all Dyck paths (all lengths and all heights),
X2 is the set of all Dyck paths with a marked level, and more generally Xk is
the set of all Dyck paths with k ↑ 1 marked levels (which may coincide). The
inner face maps delete a level marking (without a!ecting the path), whereas
the outer face maps clip the path outside the outermost level. For example, the
outer face maps involved in the formula for comultiplication in the incidence
coalgebra, namely X1 X2 , are exemplified here:

d0→↑ !

d2

→↑ !

There is another way to assemble Dyck paths into a free decomposition space:
A baseline point of a Dyck path is one with second coordinate 0. Let An be the
set of Dyck paths (any length and height) with n↑ 1 baseline points (and A0

consists of the trivial Dyck path). Then X := j!(A) has in degree 1 the set of all
Dyck paths, and in degree 2 the set of all Dyck paths with a chosen baseline
point. The inner face maps forget baseline points, and the outer face maps delete
the portion before the first or after the last chosen baseline point. For example

d0→↑ !

d2

→↑ !

This construction is actually just an instance of the general word example,
namely where the alphabet is the set of irreducible Dyck paths (meaning Dyck
paths whose only baseline points are the start and the finish). The first con-
struction is not of this form, as can be seen by the fact that an element in X2

contains more information than its two layers.

5.2.3. Layered posets (and quasi-symmetric functions, II). An n-layered
poset is a poset P equipped with a monotone map to an ordinal n; the fibers
of this map are referred to as layers. Let An denote the set of (iso-classes of)
n-layered posets. We define face maps An↓1 An by deleting all elements
in layer n, respectively deleting all elements in layer 1 (and then shifting down
all layers to obtain an (n↑ 1)-layered poset. In the resulting free decomposition
space X := j!(A), we have X1 the set of all layered posets (for all n ↓ N) and
X2 the set of layered posets with an ordinal-sum splitting of the ordinal n into
a initial segment and a final segment. The resulting comultiplication is given by

”(P ) =
∑

a+b=n

P|a ↔ P|b,

24

Angle-Right The free decomposition space of Dyck paths 𝑋• ∶= 𝑗!(𝐴•) has
Angle-Double-Right 𝑋1 — set of all Dyck paths (i.e., all lengths and heights)
Angle-Double-Right 𝑋𝑘>1 — the set of all Dyck paths with 𝑘 marked levels (without affecting the path)

In particular, the inner face map 𝑑1 ∶ 𝑋2 →𝑋1 forgets the level marking, while the outer face maps 𝑑0,𝑑2 ∶ 𝑋2 →𝑋1
(involved in the coproduct definition) act as follows:

d→→↑ !

d↑
→↑ !

Then X := j!(A) has X1 the set of all Dyck paths (all lengths and all heights),
X2 is the set of all Dyck paths with a marked level, and more generally Xk is
the set of all Dyck paths with k ↑ 1 marked levels (which may coincide). The
inner face maps delete a level marking (without a!ecting the path), whereas
the outer face maps clip the path outside the outermost level. For example, the
outer face maps involved in the formula for comultiplication in the incidence
coalgebra, namely X1 X2 , are exemplified here:

d0→↑ !

d2

→↑ !

There is another way to assemble Dyck paths into a free decomposition space:
A baseline point of a Dyck path is one with second coordinate 0. Let An be the
set of Dyck paths (any length and height) with n↑ 1 baseline points (and A0

consists of the trivial Dyck path). Then X := j!(A) has in degree 1 the set of all
Dyck paths, and in degree 2 the set of all Dyck paths with a chosen baseline
point. The inner face maps forget baseline points, and the outer face maps delete
the portion before the first or after the last chosen baseline point. For example

d0→↑ !

d2

→↑ !

This construction is actually just an instance of the general word example,
namely where the alphabet is the set of irreducible Dyck paths (meaning Dyck
paths whose only baseline points are the start and the finish). The first con-
struction is not of this form, as can be seen by the fact that an element in X2

contains more information than its two layers.

5.2.3. Layered posets (and quasi-symmetric functions, II). An n-layered
poset is a poset P equipped with a monotone map to an ordinal n; the fibers
of this map are referred to as layers. Let An denote the set of (iso-classes of)
n-layered posets. We define face maps An↓1 An by deleting all elements
in layer n, respectively deleting all elements in layer 1 (and then shifting down
all layers to obtain an (n↑ 1)-layered poset. In the resulting free decomposition
space X := j!(A), we have X1 the set of all layered posets (for all n ↓ N) and
X2 the set of layered posets with an ordinal-sum splitting of the ordinal n into
a initial segment and a final segment. The resulting comultiplication is given by

”(P ) =
∑

a+b=n

P|a ↔ P|b,

24
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Free decomposition space example: Dyck paths [3], Sec. 5.2.2

Angle-Right Dyck path — integer lattice path from (0,0) to (2ℓ,0) (for some ℓ ∈ N) taking only steps ⟋= (1,1) and ⟍= (1,−1)
Angle-Right height of a Dyck path — maximal second coordinate of the Dyck path
Angle-Right 𝐴𝑛 — set of Dyck paths of height 𝑛 (for 𝑛 ≥ 0)
Angle-Right top and bottom face maps 𝑑⊤,𝑑⊥ ∶ 𝐴𝑛+1 →𝐴𝑛 — clip the top-most/bottom-most level of the Dyck paths:

d→→↑ !

d↑
→↑ !

Then X := j!(A) has X1 the set of all Dyck paths (all lengths and all heights),
X2 is the set of all Dyck paths with a marked level, and more generally Xk is
the set of all Dyck paths with k ↑ 1 marked levels (which may coincide). The
inner face maps delete a level marking (without a!ecting the path), whereas
the outer face maps clip the path outside the outermost level. For example, the
outer face maps involved in the formula for comultiplication in the incidence
coalgebra, namely X1 X2 , are exemplified here:

d0→↑ !

d2

→↑ !

There is another way to assemble Dyck paths into a free decomposition space:
A baseline point of a Dyck path is one with second coordinate 0. Let An be the
set of Dyck paths (any length and height) with n↑ 1 baseline points (and A0

consists of the trivial Dyck path). Then X := j!(A) has in degree 1 the set of all
Dyck paths, and in degree 2 the set of all Dyck paths with a chosen baseline
point. The inner face maps forget baseline points, and the outer face maps delete
the portion before the first or after the last chosen baseline point. For example

d0→↑ !

d2

→↑ !

This construction is actually just an instance of the general word example,
namely where the alphabet is the set of irreducible Dyck paths (meaning Dyck
paths whose only baseline points are the start and the finish). The first con-
struction is not of this form, as can be seen by the fact that an element in X2

contains more information than its two layers.

5.2.3. Layered posets (and quasi-symmetric functions, II). An n-layered
poset is a poset P equipped with a monotone map to an ordinal n; the fibers
of this map are referred to as layers. Let An denote the set of (iso-classes of)
n-layered posets. We define face maps An↓1 An by deleting all elements
in layer n, respectively deleting all elements in layer 1 (and then shifting down
all layers to obtain an (n↑ 1)-layered poset. In the resulting free decomposition
space X := j!(A), we have X1 the set of all layered posets (for all n ↓ N) and
X2 the set of layered posets with an ordinal-sum splitting of the ordinal n into
a initial segment and a final segment. The resulting comultiplication is given by

”(P ) =
∑

a+b=n

P|a ↔ P|b,

24

Angle-Right The free decomposition space of Dyck paths 𝑋• ∶= 𝑗!(𝐴•) has
Angle-Double-Right 𝑋1 — set of all Dyck paths (i.e., all lengths and heights)
Angle-Double-Right 𝑋𝑘>1 — the set of all Dyck paths with 𝑘 marked levels (without affecting the path)

In particular, the inner face map 𝑑1 ∶ 𝑋2 →𝑋1 forgets the level marking, while the outer face maps 𝑑0,𝑑2 ∶ 𝑋2 →𝑋1
(involved in the coproduct definition) act as follows:

d→→↑ !

d↑
→↑ !

Then X := j!(A) has X1 the set of all Dyck paths (all lengths and all heights),
X2 is the set of all Dyck paths with a marked level, and more generally Xk is
the set of all Dyck paths with k ↑ 1 marked levels (which may coincide). The
inner face maps delete a level marking (without a!ecting the path), whereas
the outer face maps clip the path outside the outermost level. For example, the
outer face maps involved in the formula for comultiplication in the incidence
coalgebra, namely X1 X2 , are exemplified here:

d0→↑ !

d2

→↑ !

There is another way to assemble Dyck paths into a free decomposition space:
A baseline point of a Dyck path is one with second coordinate 0. Let An be the
set of Dyck paths (any length and height) with n↑ 1 baseline points (and A0

consists of the trivial Dyck path). Then X := j!(A) has in degree 1 the set of all
Dyck paths, and in degree 2 the set of all Dyck paths with a chosen baseline
point. The inner face maps forget baseline points, and the outer face maps delete
the portion before the first or after the last chosen baseline point. For example

d0→↑ !

d2

→↑ !

This construction is actually just an instance of the general word example,
namely where the alphabet is the set of irreducible Dyck paths (meaning Dyck
paths whose only baseline points are the start and the finish). The first con-
struction is not of this form, as can be seen by the fact that an element in X2

contains more information than its two layers.

5.2.3. Layered posets (and quasi-symmetric functions, II). An n-layered
poset is a poset P equipped with a monotone map to an ordinal n; the fibers
of this map are referred to as layers. Let An denote the set of (iso-classes of)
n-layered posets. We define face maps An↓1 An by deleting all elements
in layer n, respectively deleting all elements in layer 1 (and then shifting down
all layers to obtain an (n↑ 1)-layered poset. In the resulting free decomposition
space X := j!(A), we have X1 the set of all layered posets (for all n ↓ N) and
X2 the set of layered posets with an ordinal-sum splitting of the ordinal n into
a initial segment and a final segment. The resulting comultiplication is given by

”(P ) =
∑

a+b=n

P|a ↔ P|b,

24
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Joint work with Joachim Kock

Joint work with Joachim Kock (UAB Barcelona and U
Copenhagen).

The project is based upon two main ingredients:
Angle-Right Joachim’s long line of work on the theory of decomposition spaces (cf. e.g. [2,3,5])
Angle-Right my notion of tracelet theory [7]

First results of our collaboration were presented in [1].

⁷ N. Behr. “Tracelets and Tracelet Analysis of Compositional Rewriting Systems”. In: Proceedings of ACT 2019. Vol. 323. EPTCS. 2020, pp. 44–71. doi: 10.4204/EPTCS.323.4.

https://doi.org/10.4204/EPTCS.323.4
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A sketch of “dynamic combinatorics”

Nicolas Behr, CAP’20, IHÉS, December 3, 2020

X0

Angle-Right Consider a rewriting system over (undirected multi-)
graphs.

Angle-Right Starting from some graph 𝑋0, we may consider applying
a sequence of rewriting operations (here: edge
deletions and creations).

Angle-Right The diagram on the left captures the causal structure in
such a sequence. The blue part is called a tracelet.

Angle-Right Typical “dynamic combinatorics” questions:
Angle-Double-Right # of ways to create a triangle in 𝑛 steps?
Angle-Double-Right Dito up to sequential commutativity?
Angle-Double-Right # of ways 𝑛 rewrite steps can interact?
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A sketch of “dynamic combinatorics”

Nicolas Behr, CAP’20, IHÉS, December 3, 2020

X0

Angle-Right Consider a rewriting system over (undirected multi-)
graphs.

Angle-Right Starting from some graph 𝑋0, we may consider applying
a sequence of rewriting operations (here: edge
deletions and creations).

Angle-Right The diagram on the left captures the causal structure in
such a sequence. The blue part is called a tracelet.

Angle-Right Typical “dynamic combinatorics” questions:
Angle-Double-Right # of ways to create a triangle in 𝑛 steps?
Angle-Double-Right Dito up to sequential commutativity?
Angle-Double-Right # of ways 𝑛 rewrite steps can interact?
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Nicolas Behr, CAP’20, IHÉS, December 3, 2020

X0

Nicolas Behr, CAP’20, IHÉS, December 3, 2020

X1

Nicolas Behr, CAP’20, IHÉS, December 3, 2020

X2

Nicolas Behr, CAP’20, IHÉS, December 3, 2020

X3

Nicolas Behr, CAP’20, IHÉS, December 3, 2020

X4

(a) A rewriting sequence of length 5 (with edge creation/deletion rules, and where “wires” indicate matches).

Nicolas Behr, CAP’20, IHÉS, December 3, 2020

X0

(b) (equivalence)Tracelet and shift equivalence example. (c) Defining property of tracelets (here of length 3).

Figure: An illustration of graph rewriting sequences (top) and of the tracelet picture (bottom).
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Tracelet decomposition spaces [1]

Let 𝑋• ∶ Δ
𝑜𝑝 →Grpd be a simplicial groupoid with 𝑋0 trivial, and with

1-simplices 2-simplices 3-simplices
rules rule compositions nested rule compositions
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Tracelet decomposition spaces [1]

From adjacent …via the …to 3-simplices…
2-simplices… concurrency theorem…
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Tracelet decomposition spaces [1]

…via the …to 3-simplices… …to tracelets
2-simplices… concurrency theorem…
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Tracelet decomposition spaces [1]

Interpretation of the properties encoded in 3-simplices

Caveat:
In fact, the construction above presents for brevity merely the decomposition space of rewrite rules, which gives rise to a
categorification of the rule algebra. To obtain the actual tracelet decomposition space, one needs additional
refinements and constructions (essentially taking into account sequential commutativity and unitality), which amount to
taking a free decomposition space construction ([1].
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Conclusioon and outlook

Angle-Right Decomposition space theory provides a (vast!) generalization of the notion of incidence (co-)algebras to most
known combinatorial structures.

Angle-Right The framework is objective in nature — algebraic structures are defined utilizing the homotopy theory of groupoids
(with basis given by Grpd/𝑋1

or its linear dual Grpd𝑋1 , respectively.)

Angle-Right Given suitable finiteness conditions, objective algebraic structures give rise to numerical algebraic structure by a
process of taking cardinalities

Angle-Right The framework yields a powerful organizational principle of combinatorial structures, permitting to compare
structures via inherently bijective correspondences.

Angle-Right CULF maps of decomposition spaces are precisely the kind of functors that preserve coalgebraic structure, and as
such can serve as a construction principle for many combinatorially interesting examples of decomposition spaces.

Angle-Right The ∞-category Decomp of decomposition spaces and CULF maps has the important technical property that its
slice categories Decomp/𝒟 (for 𝒟 ∈ obj(Decomp)) are toposses, which yields another versatile methodology for
constructing and comparing decomposition spaces.
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Recent trends in decomposition space theory: BANFF 2024 workshop

5-day workshop on 2-Segal (aka decomposition) spaces¹ — many talk recordings available, and with a conference
proceedings volume forthcoming!

¹ https://www.birs.ca/events/2024/5-day-workshops/24w5266

https://www.birs.ca/events/2024/5-day-workshops/24w5266
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