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Character table of the symmetric group Sn

• Given n a positive integer, Sn the symmetric group.
• A representation of Sn is a homomorphism ρ : Sn → GL(V ), with ρ(σ) an invertible
square matrix of size dimV × dimV .
• Irreducible representations of Sn are labeled by partitions λ of n: dimVλ = f (λ).
• A partition λ of n, denoted λ ⊢ n

n = 8, λ = (1, 2, 2, 3) (1)

• Character of an irrep ρλ:

χλ(σ) = Tr(ρλ(σ)) (2)
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Characters and character table of Sn

• Character are central functions: χλ(σ) = χλ(γσγ−1) depends only on the conjugacy
class of the element σ.
• Conjugacy classes of Sn labeled by partitions of n:

Cµ = {ρ ∈ Sn| ρ of cycle type µ}

n = 10 , σ = (123)(456)(7)(89)(10)
σ of cycle type µ = (1, 1, 2, 3, 3) = (12, 21, 32) ⊢ n = 10 (3)

• Characters are stable on a class Cλ

χµ(σ) = χµ
λ ∈ Z , ∀σ ∈ Cλ (4)

• The character table (χµ
λ)µ,λ of Sn

→Rows labeled by irreps.: µ
→Columns labeled by conjugacy classes: λ
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Character table of Sn: Examples

Character table of S2

[2] [1,1] Sum
[2] 1 1 2
[1,1] −1 1 0
Sum 0 2 2

(5)
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Character table of Sn: Examples

Character table of S3

[3] [2,1] [1,1,1] Sum
[3] 1 1 1 3
[2,1] −1 0 2 1
[1,1,1] 1 −1 1 1
Sum 1 0 4 5

(5)
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Character table of Sn: Examples

Character table of S4

[4] [3,1] [2,2] [2,1,1] [1,1,1,1] Sum
[4] 1 1 1 1 1 5

[3,1] −1 0 −1 1 3 2
[2,2] 0 −1 2 0 2 3

[2,1,1] 1 0 −1 −1 3 2
[1,1,1,1] −1 1 1 −1 1 1
Sum 10 0 1 0 2 13

(5)

Joseph Ben Geloun (LIPN, USPN) Conmplexity in character tables of Sn 6 / 30



Problems in combinatorics and computational complexity theory

For any function f : {0, 1}∗ → N

→Find a combinatorial description (Combin.)

→Find the complexity class of deciding the positivity (Deciding> 0)
→Find the complexity class of computing it (Computing)
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Problems in the character table of Sn

Combin. Deciding >= 0 Comput.
characters Murnaghan-Nakayama PP-complete (bin) GapP-complete (bin)
(λ, µ) 7→ χµ

λ [’37;’41] [Ikenmeyer et al; 2022] [Ikenmeyer et al; 2022]
#P-hard (bin.)
[Hepler, 94]

row sum Stanley’s 12th Pb ?? GapP (un.)
µ 7→

∑
λ⊢n χ

µ
λ ??

column sum |{σ ∈ Sn|σ2 = hλ}| NP (un.) #P (un.)
λ 7→

∑
µ⊢n χ

µ
λ Schur-Frobenius [Ikemeyer et al]

total sum |
⊔

λ⊢n{σ ∈ Sn|σ2 = hλ}| ?? ??
n 7→

∑
µ,λ⊢n χ

µ
λ Schur-Frobenius

Table: Problems in the character table of Sn and their complexity class.
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Variant problems: Normalized central characters

• Lifting the Pb to the group algebra: C[Sn], a =
∑

σ∈Sn
aσσ ∈ C[Sn]

• Central elements

Tλ =
∑
σ∈Cλ

σ (6)

• Table of normalized character evaluated on central elements

χ̂µ
λ =

1

dimVµ
χµ(Tλ) =

|Cλ|
dimVµ

χµ
λ (7)

[JBG, Ramgoolam, arxiv:2406.17613[hep-th]]:
• Column sum of (χ̂µ

λ)µ,λ: λ 7→
∑

µ χ̂µ
λ.

→Find the combinatorial construction
→Find the complexity class of that function
→Find the complexity class of deciding the positivity of the function.
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Combinatorial Topological String Theory (CTST)

• Dijkgraaf-Witten TQFT theory based on finite group G = Sn

[Padellaro, Radhakrishnan and Ramgoolam [J. Phys. A 57 (2024) 6, 065202] CTST for a
finite group G ]

• The group algebra C(G) and its centre Z(C(G))

• Two basis of Z(C(G)):
→Tµ =

∑
σ∈Cµ

σ, where Cµ is a conjugacy class labeled by µ

TµTν =
∑
λ

C λ
µν Tλ (8)

→Representation basis PR = dR
|G |

∑
σ∈G χR(σ)σ, for R ⊢ n an irrep

PRPR′ = δRR′PR (9)
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Combinatorial Topological String Theory

• Creation handle operator Π =
∑

R
|G |2

d2
R
PR :

1

|G |δ(PR) =
d2
R

|G |2 ⇒ 1

|G |δ(Π
h) =

∑
R

( |G |
dR

)2h−2

(10)
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• Creation handle operator Π =
∑

R
|G |2

d2
R
PR :

1

|G |δ(PR) =
d2
R

|G |2 ⇒ 1

|G |δ(Π
h) =

∑
R

( |G |
dR

)2h−2

(10)

• The partition function of a manifold of genus h

ZG
h =

1

|G |δ(Π
h) = (11)
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Combinatorial Topological String Theory

• Boundary creation operator:

ZG
h=0;Tµ1

,Tµ2
,...,Tµb

=
1

|G |δ(Tµ1Tµ2 . . .Tµb ) =

Tµ1 Tµb

=
∑
R

d2
R

|G |2
χR(Tµ1)

dR

χR(Tµ2)

dR
. . .

χR(Tµb )

dR
(12)

• Computing the genus h partition function with b boundaries:

ZG
h;Tµ1

,Tµ2
,...,Tµb

=
1

|G |δ(Π
hTµ1Tµ2 . . .Tµb )

=
∑
R

( |G |
dR

)2h−2χR(Tµ1)

dR

χR(Tµ2)

dR
. . .

χR(Tµb )

dR
(13)
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Column sum of normalized central characters

• Reduction: h = 1, b = 1 (torus with one hole)

ZG
h=1;Tλ

=
∑
R

χR(Tλ)

dR

= Column sum at fixed λ of the table
(
χ̂R
λ

)
R,λ

= [λ 7→
∑
R

χ̂R
λ] (14)

→Asking computational questions around the character table is asking is the same on
ZG .
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Define a “combinatorial construction”

COMBINATORIAL 

A construction/definition that uses only finite sets and enumeration procedures.

Warning: f ∈ N, f ≥ 1,

f =
∣∣∣{1, 2, . . . , f }∣∣∣

f is its own combinatorial construction (15)

⇒ LOW BLOW !

Joseph Ben Geloun (LIPN, USPN) Conmplexity in character tables of Sn 16 / 30



Define a “combinatorial construction”

COMBINATORIAL 

A construction/definition that uses only finite sets and enumeration procedures.

Warning: f ∈ N, f ≥ 1,

f =
∣∣∣{1, 2, . . . , f }∣∣∣

f is its own combinatorial construction (15)

⇒ LOW BLOW !

Joseph Ben Geloun (LIPN, USPN) Conmplexity in character tables of Sn 16 / 30



Define a “combinatorial construction”

COMBINATORIAL 

A construction/definition that uses only finite sets and enumeration procedures.

Warning: f ∈ N, f ≥ 1,

f =
∣∣∣{1, 2, . . . , f }∣∣∣

f is its own combinatorial construction (15)

⇒ LOW BLOW !

Joseph Ben Geloun (LIPN, USPN) Conmplexity in character tables of Sn 16 / 30



Column sum of normalized characters: Construction

• Master identity

Proposition (Column sums in the table of normalized central characters)

For any λ ⊢ n, ∑
R⊢n

χ̂R
λ =

∑
µ⊢n

C µ
µλ (16)

Idea of the proof:
→µ ⊢ n, Tµ =

∑
σ∈Cµ

σ,

(17)
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Column sum of normalized characters: Construction

• Master identity

Proposition (Column sums in the table of normalized central characters)

For any λ ⊢ n, ∑
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ρ

C ρ
µν |Cλ|δρλ (17)

δ(TµTνTλ) = C λ
µν |Cλ|;

expand the δ(TµTνTλ) := Cµνλ in irreps to obtain some identities with χ̂R
λ.
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Column sum of normalized characters: Combinatorial construction

• Combinatorial construction of the column sum

C µ
νλ =

1

|Cµ|
δ(TµTνTλ) =

1

|Cµ|
∑
σ∈Cµ

δ(σTνTλ)

= δ(σ∗
µTνTλ) (18)

δ(σ∗
µTνTλ) =

∑
τ∈Cλ

∑
σ∈Cν

δ(σ∗
µστ)

= number of pairs (σ, τ) ∈ Cν × Cλ such that σ∗
µστ = id (19)
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Column sum of normalized central characters: Construction II

• Counting some permutations within conjugacy classes

Fact(µ; ν, λ) = {(σ, τ) ∈ Cν × Cλ |σ∗
µσ τ = id} → C µ

νλ (20)

Theorem

Given λ ⊢ n, we have∑
R⊢n

χ̂R
λ =

∣∣⋃
µ

Fact(µ;µ, λ)
∣∣∣ =: |Fact(λ)| (21)

→Number of pairs (σ, τ) ∈ Cµ × Cλ such that σ∗
µστ = id for all µ ⊢ n.

→Analogue of the counting of Schur-Frobenius
∑

µ χµ
λ = |{σ ∈ Sn| σ∗

λσ
2 = id}|
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Connections with other countings

Fact(µ; ν, λ) = {(σ, τ) ∈ Cν × Cλ |σ∗
µσ τ = id} → C µ

νλ (22)

• Make the sum more symmetric:

Fact(µ, ν, λ) = {(ρ, σ, τ) ∈ Cµ × Cν × Cλ | ρσ τ = id} = Cµνλ = |Cµ|C µ
νλ (23)

• Related to permutation factorizations (Hurwitz problem, Cayley graph, sorting
algorithms, etc...). [Irving, arXiv:math/0610735]
• Related to combinatorial maps or ribbon graphs...
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Counting of surfaces

• Combinatorial maps or ribbon graphs [Landó, Svonkin]
→A triple (σ1, σ2, σ3) ∈ S3

n such that σ1σ2σ3 = id
→σ3 = (σ1σ2)

−1 determines the boundary components or faces of the map.

• Column sum of normalized central characters:
→ In our case: (ρ, σ) with face determined by τ = (ρσ)−1

∑
R⊢n

χ̂R
λ =

∑
µ⊢n

1

|Cµ|
|Fact(µ, µ, λ)

∣∣∣ = ∑
µ⊢n

1

|Cµ|
∑

ρ,σ∈Cµ

δ(ρστλ) (24)

Number of all bipartite ribbon graphs with type ([ρ] = [σ] = µ, [τ ] = λ) each counted
with weight 1/|Cµ|.

• Learn a few facts:
→ if µ = [2∗, 1∗], genus of all surfaces is 0;
→ if µ = [3k3 , 2k2 , 1k1 ], genus of all surfaces grows like h = 1

2
(k3 − k1 + 1).
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Combinatorics vs Complexity

• Combinatorial construction and Computational Complexity Theory:

→How difficult is it to construct a solution?

→ In Computer Science, ”simple/difficult” roughly means ”polynomial/exponential time
(or more)” in the input size.
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Computational Complexity Theory

• Turing machines
→A Turing machine (TM) is a theoretical/abstract model of computation (think of a
simple computer that performs basic operations). A TM is powerful enough to simulate
any algorithm.
→A Deterministic TM always outputs the same answer for a given input.
→A Non-Deterministic TM, where for a given input, one gets a set of possible answers.
→ If the TM completes a computation on a given input x , the output is given in time
fM(|x |), called the complexity of the computation of x .

• Complexity classes
→P is the set of decision problems that can be answered in polynomial time on a
deterministic Turing machine (TM).
→NP is the set of decision problems that can be answered in polynomial time on a
non-deterministic TM. It is also the set of decision problems that can be checked in
polynomial time on a deterministic TM.
→#P is the set of functions f : {0, 1}∗ → N such that the decision problem ”Is there x
such that f (x) > 0?” is in NP.
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Deciding the positivity

Theorem

The problem “Given λ, is
∑

R⊢n χ̂R
λ > 0 ?” is in NP.

Proof: a problem L is NP if given an entry x , and a certificate y of size polynomial in |x |,
and there is a deterministic TM that checks the solution (x , y) in polynomial time of |x |.

→The entry is λ = [λ1, λ2, . . . , λl ], its size |λ| depends on the way you encode it.
- |λ| ∼ n if Unary
- |λ| ∼ l log(maxi λi ) if Binary

→Use the combinatorial construction
∑

R⊢n χ̂R
λ = |Fact(λ)| and some one says that the

answer is yes:
- we request a certificate which is a tuple (ρ, σ, τ, µ, λ) which should be of size
polynomial in the size of λ
- check that ρ, σ ∈ Cµ, and τ ∈ Cλ in time polynomial in the size of λ
- check that ρστ = id in time polynomial in the size of λ
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Deciding the positivity

Lemma 1: Let ρ ∈ Sn and µ a partition of n. To check that ρ ∈ Cµ requires a polynomial
number of steps in the length of both ρ and µ.

Proof: A permutation ρ is a list [ρ(1), ρ(2), . . . , ρ(n)] of size n.
A partition µ of n is also a list [µ1, µ2, . . . , µl ] ⊢ n, each part does not exceed n.

To get the cycle structure of ρ we compute the orbits of ρ on the segment [[0, 1]].

The cardinalities of the orbits are computed when the orbits are constructed on the way.

Compare the cycle structure of ρ with µ. This does not exceed |µ| comparisons.

The number of steps is bounded from above by c · (|ρ|+ |µ|)c
′
.
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Deciding the positivity

Lemma 2: Given two permutations ρ, σ ∈ Sn composing ρσ requires a polynomial
number of steps in the length of the entry size.

Proof: A permutation ρ is a list [ρ(1), ρ(2), . . . , ρ(n)], so a list of size n. A second
permutation is another list, we simply construct a third list, reading ρ(i) and σ(ρ(i)).
This is linear in n.

Proof of Theorem 1:
→λ is partition of n so it is a list [λ1, λ2, . . . , λl ] ⊢ n; we use UNARY encoding, so the
size of this data is |λ| = n.
→We request a certificate which is a tuple (ρ, σ, τ, µ, λ) which should be of size
polynomial in |λ| = n in UNARY.
- check that ρ, σ ∈ Cµ, and τ ∈ Cλ in time polynomial in the size of λ. OK via Lemma 1.
- check that ρστ = id in time polynomial in the size of λ. OK via Lemma 2.

• What happens if we used BINARY encoding?
→Worst case: |λ| ∼ log n e.g. λ = [n]
→All permutations are of size n.
→CCl: The certificate is exponential in the size of λ, (violation of the conditions of
being polynomial in the size of the entry).
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Deciding the positivity

Corollary

The colum sum λ 7→
∑

R⊢n χ̂
R
λ is in #P.

Theorem

The problem “Given λ, is
∑

R⊢n χ̂R(Tλ) > 0 ?” is in P.

Proof:
→Fact: if λ corresponds to the cycle structure of a permutation which is even (resp.
odd), then there exists a µ such that Fact(µ, µ, λ) is not empty (resp. for all µ,
Fact(µ, µ, λ) = ∅ ).
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R
λ is in #P.

Theorem

The problem “Given λ, is
∑

R⊢n χ̂R(Tλ) > 0 ?” is in P.

Proof:
→Fact: if λ corresponds to the cycle structure of a permutation which is even (resp.
odd), then there exists a µ such that Fact(µ, µ, λ) is not empty (resp. for all µ,
Fact(µ, µ, λ) = ∅ ).

→The algorithm that answers the question is (0 = yes ; 1 = no )

ColumnSum
Entry λ = [ck11 , ck22 , . . . , ckLL ]

return
∑L

i=1 parity(ki ) (parity(ci ) + 1 mod 2) mod 2

Complexity ∈ O(L) = entry data size λ.
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Conclusion

• TQFT partition function over a (h = 1, b = 1)-surface ≡ the column sum
∑

R χ̂R
λ.

→Combinatorial constructions:
- Number of pairs (σ, τ) ∈ Cµ × Cλ such that σ∗

µστ = id for given σ∗
µ ∈ Cµ, and for all

µ ⊢ n.
- Number of possible factorizations σ∗

µσ = τ−1.
- Number of bipartite ribbon graphs with particular weights and given face structure.

→Complexity classes:
- The column sum of the table of normalized central characters is in class #P (unary
encoding).
- Deciding their positivity is in P (unary encoding).

• Future plans:
→ (Pb1) Is the column sum #P-Hard and therefore #P-complete?
- A connection with graph theory can be useful
- Counting Hamiltonian cycles are #P-complete. The ribbon graph picture may help.

→ (Pb2) Row sum of the (normalized) character table of Sn?
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