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Introduction

1 The story of automata theory (in the large, i.e.
Eilenberg-Schützenberger machines) is all about states, ations
(command letters), alphabets, transitions and multiplicities (outputs).

2 In this review, we will see several sets of states
1 (Free) monoid on the alphabet X “ tx0, x1u

2 Numeral symbols on base b (i.e. X “ b “ t0, ¨ ¨ ¨ , b ´ 1u)
3 (If times permits), the free group (on X )

2 / 86



The free monoid tx0, x1u˚.

skip slide PNCDE

1X˚

x0

x2
0

x3
0x1x2

0

x1x0

x0x1x0x2
1x0

x1

x0x1

x2
0x1x1x0x1

x2
1

x0x2
1x3

1
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Numeral symbols 8 “ t0, ¨ ¨ ¨ , 7u

0

1

2

3

4

5

6

7

1|1

9|4

4|9

3|2

1 1 9 4 3
3 9

7 4
2 3

7

8
1 4 9 2

11 8

3 1

39 8

7 4

74 8

2 9

23 8

7 2
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Free Group, here Γpa, bq.
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Factorizations

Last year (CAP10), H. Nakamura began his talk by some stringology i.e. the fact
that any string (word) on the alphabet Σ “ tX ,Y u could be written

w “ X h1Y X h2Y ¨ ¨ ¨ Y X hd Y | X h8 . (1)

Doing this, save the last factor X h8 , we obtain a factorization into blocs of the
form X hY . We will later write this set X ˚Y “ Y ` X Y ` X 2Y ` ..., the (free)
monoid they generate pX ˚Y q˚ “ 1 ` pX ˚Y q`. The set of all words, therefore, is

pX ` Y q˚ “ pX ˚Y q˚X ˚ “ pX ˚Y q`X ˚ ` X ˚, (2)

an instance of Lazard elimination theorem (discussed last year).

Factorization (1) can be computed by the following (boolean or N-) automaton

A B

Y

X

X

Y

all words first factor
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A simple transition system: flow charts or flow diagrams

P

B

C

M

D

L

3

10

10

10

4 9

4

5

10

Directed graph weighted by numbers which can be lengths, time (durations),
costs, fuel consumption, probabilities. This graph is equivalent to a square matrix.
Coefficients are taken in different semirings (i.e. rings without the “minus”
operation, as tropical or [min,+]) according to the type of computations to be
done. Tropical semirings were so called by MPS school because they were founded
by the Hungarian-born Brazilian mathematician and computer scientist Imre
Simon. Evaluation is done by multiplications in series and addition in parallel.
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Weighted (or multiplicity) automata: the forefathers

Samuel Eilenberg, Automata,
Languages, and Machines (Vol. A &
B) Acad. Press, New York, (1974)

Marcel-Paul Schützenberger, On the
definition of a family of automata,
Inf. and Contr., 4 (1961)
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Multiplicity Automaton (Eilenberg, Schützenberger)

1

2 3

4

5

a|α1

b|α2

b|α3

a|α9

c |α5

c |α7

a|α8

c |α4

λ1

λ2

γ1

γ2

Example: Evaluate 2.bccabc.
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Multiplicity automaton (linear representation) & behaviour

Linear representation

Due to the left-to-right word reading, it is

λ “
`

λ2 λ1 0 0 0
˘

, γ “
`

0 0 γ1 0 γ2
˘T

µpaq “

¨

˚

˚

˚

˚

˝

0 α1 0 0 0
α9 0 0 0 0
0 0 0 0 0
0 0 0 0 α8

0 0 0 0 0

˛

‹

‹

‹

‹

‚

µpbq “

¨

˚

˚

˚

˚

˝

0 0 0 α2 0
0 0 α3 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

˛

‹

‹

‹

‹

‚

µpcq “

¨

˚

˚

˚

˚

˝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 α5

0 0 0 0 α7

0 α4 0 0 0

˛

‹

‹

‹

‹

‚

(3)
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Multiplicities.

1 Multiplicities are taken within a semiring R. Each time you change R,
you change your universe.

2 If R “ B, you get the theory of languages, if R “ N, you are able to
count the paths for example.

3 If R is commutative, you have the theory of rational series and if R is
a field, you get a way to compute within Sweedler’s duals.

4 If the multiplicities are probabilities, you get stochastic automata.
5 But R does not need to be commutative

1 If R “ kxΓy for some alphabet Γ, you get transducers
2 R can be a semiring of operators, this opens the door to application of

rational identities to the plane of transition matrices.
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Linear representation & Behaviour

Remark

For a right-to-left word reading, data have to be transposed.

Non commutative series

Series are functions X ˚ Ñ R where R is a semiring (i.e. a ring without the
“minus” operation as example the tropical semiring). We have different ways to
consider a series, namely:
Math: Functions, elements of a dual (total, restricted, Sweedler’s &c.)
Computer Sci.: Behaviour of a system (automaton, transducer, grammar &c.)

Physics: Non comm. diff. equations, evaluation of paths, normal orderings &c.

Behaviour of a “word machine”, the series BpMq.

xBpMq|wy “ λµpwq γ “
ÿ

i,j
states

λpiq
´

ÿ

weightppq

¯

loooooooomoooooooon

weight of all paths i○ Ñ j○
with label w

γpjq (4)
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Operations and definitions on series (R semiring).

Addition, Scaling: As for functions because RxxX yy “ RX˚

(viewed as
R-R modules)
Concatenation: f .gpwq “

ř

w“uv f puqgpvq

Polynomials: Series s.t. supppf q “ twuf pwq“0 is finite.
The set of polynomials will be denoted RxX y.
Pairing: xS |Py “

ř

wPX˚ SpwqPpwq (S series, P polynomial)
Summation:

ř

iPI Si summable iff f or all w P X ˚, i ÞÑ xSi |wy is finitely
supported. In particular, we have

ÿ

iPI

Si :“
ÿ

wPX˚

p
ÿ

iPI

xSi |wyq w

Remark: This notion is exactly the one of limit of the net of partial sums

p
ř

iPF Si qFĂfinite I with respect to the sup-lattice of finite subsets of I , topology

being the product of discrete topologies on R (see [12] “summable”).
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Operations and definitions on series (R semiring)/2

Star: For all series S s.t. xS |1X˚y “ 0, the family pSnqně0 is summable
and we set S˚ :“

ř

ně0 Sn “ 1 ` S ` S2 ` ¨ ¨ ¨ (if R is a ring, we have
S˚ “ p1 ´ Sq´1) and the plus-notation S` :“

ř

ně0 Sn “ S ` S2 ` ¨ ¨ ¨

(again, if R is a ring we have S` “ S .p1 ´ Sq´1 “ p1 ´ Sq´1.S).
Shifts: xu´1S |wy “ xS |uwy and xSu´1|wy “ xS |wuy.

Let M be the automaton (p, q, r , a, b, c can be operators).

A B

y |r

x |p x |q

a

b c

I “
`

a 0
˘

T “

ˆ

p.x r .y
0 q.x

˙

F “

ˆ

b
c

˙

T ˚ “

ˆ

pp.xq˚ pp.xq˚.r .y .pq.xq˚

0 pq.xq˚

˙

BpMq “ I .T ˚.F “ a.pp.xq˚.b ` a.pp.xq˚.r .y .pq.xq˚.b
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Rational series (Sweedler’s duals & Schützenberger’s shifts)

skip slide

Theorem A (k field, X finite).

Let S P kxxX yy TFAE
i) The family pSu´1quPX˚ is of finite rank.
ii) The family pu´1SquPX˚ is of finite rank.
iii) The family pu´1Sv ´1qu,vPX˚ is of finite rank.
iv) It exists n P N, λ P k1ˆn, µ : X ˚ Ñ knˆn (a multiplicative morphism)
and γ P knˆ1 such that, for all w P X ˚

pS ,wq “ λµpwqγ (5)

v) The series S is in the closure of kxX y for p`, conc ,˚ q within kxxX yy.

Definition

A series which fulfills one of the conditions of Theorem A will be called
rational. The set of these series will be denoted by k ratxxX yy. In the theory
of Hopf algebras it is Sweedler’s dual of kxX y.
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Sweedler’s duals & Kleene-Schützenberger’s Theorem.

Remarks
1 (i Ø iii) needs k to be a field.

2 (iv) needs X to be finite, (iv Ø v) is known as the theorem of
Kleene-Schützenberger (M.P. Schützenberger, On the definition of a
family of automata, Inf. and Contr., 4 (1961), 245-270.)

3 For the sake of Combinatorial Physics (where the alphabets can be
infinite), (iv) has been extended to infinite alphabets and replaced by

iv’) The series S is in the rational closure of kX (linear series) within
kxxX yy.

4 When k is a ring, the rational closure of a subset P Ă kxxX yy is
exactly the inverse-closed subalgebra of kxxX yy generated by P.

5 In the vein of (v) expressions like ab˚ or identities like
pab˚q˚a˚ “ pa ` bq˚ (Lazard’s elimination) will be called rational.
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Sweedler’s duals & Kleene-Schüzenberger’s Theorem./2

6 For the needs of CS, an analogue of Theorem A has been proved for k
a commutative semiring (see [15, 11, 13]) where “is of finite rank” is
replaced mutatis mutandis by “is contained in a shift-invariant
submodule of finite type”.

7 Contrariwise to the case when k is a field, the property of being a
submodule of finite type is not hereditary (as soon as we only have a
ring). It can then happen that the module generated by the shifts of
a rational series be not of finite type. The case
k “ N, S “ a˚a˚ “

ř

ně0pn ` 1qan is typical: when one computes
the shifts on the series S “ a˚a˚ “

ř

ně0 pn ` 1qan (considered as a
function), we get a shift-invariant module of infinite type whereas,
following Eilenberg [9], when we perform them on its rational
expression a˚a˚, we get a FS automaton.

8 This theorem is linked to the following subjects: Representative
functions on X ˚ (see Eiichi Abe [1], Chari & Pressley [3]), Sweedler’s
duals [7] &c.
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From theory to practice: Schützenberger’s calculus

From series to automata

Starting from a series S , one has a way to construct an automaton
(finite-stated iff the series is rational) providing that we know how to
compute on shifts and one-letter-shifts will be sufficient due to the formula
u´1v ´1S “ pvuq´1S .

Calculus on rational expressions

In the following, x is a letter, E ,F are rational expressions (i.e. expressions
built from letters by scalings, concatenations and stars)

1 x´1 is (left and right) linear

2 x´1pE .F q “ x´1pE q.F ` xE |1X˚yx´1pF q

3 x´1pE ˚q “ x´1pE q.E ˚
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Examples

With p2aq˚p3bq˚ ; X “ ta, bu

p2aq˚p3bq˚ p3bq˚

a|2

b|3

b|3

1

1

1

With pt2x0x1q˚ ; X “ tx0, x1u (by shifts, unbalanced)

pt2x0x1q˚ x1pt2x0x1q˚

x0|t2

x1|1

1

1
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With pt2x0x1q˚ ; X “ tx0, x1u (balanced)

pt2x0x1q˚ tx1pt2x0x1q˚

x0|t

x1|t

1

1
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From theory to practice: construction starting from S .

States u´1S (constructed step by step)

Edges We shift every state by letters (length) level by level (knowing
that x´1pu´1Sq “ puxq´1S). Two cases:
Returning state: The state is a linear combination of the already
created ones i.e. x´1pu´1Sq “

ř

vPF αpux , vqv ´1S (with F finite),
then we set the edges

u´1S
x |αv
ÝÑ v ´1S

The created state is new: Then

u´1S
x |1

ÝÑ x´1pu´1Sq

Input S with the weight 1

Outputs All states T with weight xT |1X˚y
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Words and paths

Powers of a (generic) transfer matrix

1 2

a12

a21

a11 a22 T “

ˆ

a11 a12
a21 a22

˙

T 2 “

ˆ

a211 ` a12a21 a11a12 ` a12a22
a21a11 ` a22a21 a222 ` a21a12

˙

T n “

ˆ
ř

n-paths 1 Ñ 1
ř

n-paths 1 Ñ 2
ř

n-paths 2 Ñ 1
ř

n-paths 2 Ñ 2

˙

Star notation and Mc Naughton-Yamada formulae.

We set T ` :“
ř

ně1 T n, T ˚ :“ 1 ` T ` “ 1 ` T ` T 2 ` ¨ ¨ ¨ “
ř

ně0 T n.
This matrix T ˚ is the (unique) solution R P kxxaijyy of the self-reproducing
equations

R “ I ` TR “ I ` RT
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Mac Naughton-Yamada (with multiplicities) formulae.

Expressions

With T “

ˆ

a11 a12
a21 a22

˙

we have T ˚ “

ˆ

A11 A12

A21 A22

˙

with (6)

A11 “ pa11 ` a12a˚
22a21q˚ A12 “ A11a12a˚

22 (or “ a˚
11a12A22)

A21 “ A22a21a˚
11 (or “ a˚

22a21A11) A22 “ pa22 ` a21a˚
11a12q˚

(7)

Applications of “word machines”.

These expressions have many incarnations/applications. Among them

Sweedler’s duals (and explicit/combinatorial computations
within them)

NCDE and, in particular, Hyper- (and Poly-) logarithms (today)

Noncommutative geometry

Geometrization of the Collatz conjecture (today)
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Remarks

1 If the multiplicities of slide 13 are taken in some Σ ˆ kxΓy (resp.
Σ ˆ Γ), we have a finite-state (resp. letter-to-letter) transducer.

2 Σ (resp. Γ) is called (and understood as) input (resp. output)
alphabet.

3 If, in all loops, multiplicities belong to k`xxΓyy (i.e. series with no
constant term), it is always possible to compute the star of the
transfer matrix.

4 In a more general way, if multiplicities are taken in an augmented ring
pA, ϵq which is complete (i.e. Hausdorff and complete with the
topology defined by tpA`qnuně0) and aij P A` the generic matrix T
possesses a star (computable by formulas Eq. 7). This is the case of
many rings of formal series (krrX ss, krrMss).

5 One obtains rational identities by factoring the sets of paths differently
(see dual expressions of A12,A21 in formulas formulas Eq. 7).
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Application 1: Transducer

0

1

2

3

4

5

6

7

1|1

9|4

4|9

3|2

1 1 9 4 3
3 9

7 4
2 3

7

8
1 4 9 2

With this simple
transducer, we see
that “states” can
mean “cases”. Here
Σ “ Γ “ t0, ¨ ¨ ¨ 9u.
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Application 2: Difference and differential equations

1 We have seen the shifts which give rise to a calculus on rational
expressions, that we recall here

1 x´1 is (left and right) linear
2 x´1pE .F q “ x´1pE q.F ` xE |1X˚ yx´1pF q

3 x´1pE ˚q “ x´1pE q.E ˚

but not only, as transpose of right and left multiplication, they
operate on series and can be used to set difference equations.

2 In the same way, we can consider differential equations of the type

dpSq “ MS ; xS |1X˚y “ 1A (8)

where dpSq “
ř

wPX˚pxS |wyq1.w (term by term differentiation) and
M, the multiplier, is a series without constant term. The case when
M “

ř

xPX ux x (homogeneous of degree one) is of particular interest
and is used to better understand iterated integrals.
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Construction of a solution: Picard iterations.

1 In the case when pA, dq admits a section (then pA, d ,
ş

q), one can
construct a particular solution of

"

dpSq “ M.S with M P A`xxX yy

xS |1X˚y “ 1A
(9)

using Picard iterations.

S0 “ 1X˚ ; Sn`1 “ 1X˚ `

ż

M.Sn (10)

Then, it is not difficult to see that Sn admits a limit SPic which
satisfies (9).
The complete set of solutions of (9) is SPic .CxxX yy.
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Example of iterated integrals. return Lie group

2 For example, let us consider a perturbated version of the
polylogarithmic system (here Ω “ C∖ ps ´ 8,´1s Y r1,`8rq and
S P HpΩqxxx0, x1yy)

#

dpSq “

´

x0
z `

x1
1´z ` hpzq.rx0, x1s

¯

.S pNCDE -Per1q

Spz0q “ 1X˚ pInit. Cond .q
(11)

SPic
z0 pzq satisfies and can be computed by the following recursion

xS |wyrzs “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

1Ω if w “ 1X˚

şz
z0

xS |uyrssdss if w “ x0u
şz
z0

ds
1´s “ logp

1´z0
1´z q if w “ x1

xS |x0x1uyrzs `
şz
z0

xS |uyrss.hpsq ds if w “ x1x0u
şz
z0

xS |x1uyrss ds
1´s if w “ x1x1u

28 / 86



Computation by levels and from left to right.

1X˚

x0

x2
0

x3
0x1x2

0

x1x0

x0x1x0x2
1x0

x1

x0x1

x2
0x1x1x0x1

x2
1

x0x2
1x3

1
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(Very) quick review of Polylogarithms.

3 Here we consider Ω “ C∖ ps ´ 8,´1s Y r1,`8rq

4 Classical polylogarithms are defined, for k ě 1, |z | ă 1, by

´ logp1 ´ zq “ Li1 “
ÿ

ně1

zn

n1
; Li2 “

ÿ

ně1

zn

n2
; . . . ; Likpzq :“

ÿ

ně1

zn

nk

5 Multiple polylogarithms extend classical ones twofold, they are
indexed by words (i.e. lists) and satisfy the following system

#

dpSq “ p
x0
z `

x1
1´z q.S pNCDE q

lim zÑ0
zPΩ

Spzqe´x0logpzq “ 1HpΩqxxX yy pAsympt. Init. Cond .q
(12)

from the general theory (differential Galois group of NCDE + Lazard
elimination), this system has a unique solution over Ω which is
precisely Li (called G1 in [5]).
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Explicit construction of Li.

Given a word w , we note |w |x1 the number of occurrences of x1 within w

xLi |wyrzs “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1Ω if w “ 1X˚

şz
0xLi |uyrss ds

1´s if w “ x1u
şz
1xLi |uyrssdss if w “ x0u and |u|x1 “ 0

şz
0xLi |uyrssdss if w “ x0u and |u|x1 ą 0

The third line of this recursion implies

αz
0pxn

0 q “
logpzqn

n!

one can check that (a) all the integrals (improper for the fourth line) are
well defined and (b) the series S “

ř

wPX˚ αz
0pwq w is Li (G1 in [1]).
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1X˚

x0

x2
0

x3
0x1x2

0

x1x0

x0x1x0x2
1x0

x1

x0x1

x2
0x1x1x0x1

x2
1

x0x2
1x3

1

Some coefficients with X “ tx0, x1u; u0pzq “ 1
z
; u1pzq “ 1

1´z
, t0 “ 0

xS|xn1 y “
p´logp1 ´ zqqn

n!
; xS|x0x1y “ Li2pzq

looomooon

cl.not.

“ Lix0x1 pzq “
ÿ

ně1

zn

n2

xS|x20 x1y “ Li3pzq
looomooon

cl.not.

“ Li
x2
0
x1

pzq “
ÿ

ně1

zn

n3
; xS|x1x0x1y “ Lix1x0x1 pzq “ Lir1,2spzq “

ÿ

n1ąn2ě1

zn1

n1n
2
2

xS|x0x
2
1 y “ Li

x0x
2
1

pzq “ Lir2,1spzq “
ÿ

n1ąn2ě1

zn1

n21n2
; xS|xn0 y “

lognpzq

n!
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Computation of integrators by transducer

The two cases of the transducer are given by the languages x˚
0 and

X ˚x1X ˚ and the generating series Li by the behaviour of the transducer

x˚
0 X ˚x1X ˚

x1|
şz
0 ˝ ds

1´s

x0|
şz
1 ˝ds

s

x0|
şz
0 ˝ds

s

x1|
şz
0 ˝ ds

1´s

Start

Out Out

T “

¨

˝

x0|
şz
1 ˝ds

s 0

x1|
şz
0 ˝ ds

1´s x0|
şz
0 ˝ds

s ` x1|
şz
0 ˝ ds

1´s

˛

‚

Alphabet : Σ “ tx0, x1u ˆ EndpW q » EndpW q.tx0, x1u with W Ă HpΩq (13)
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The space W .

1 We define H0 as the space of f P HpΩq admitting an analytic continuation
around zero. This space embeds naturally in HpΩq. Then we define W as
the algebra generated by H0pΩq and logpzq.

2 Due to the fact that f P W ∖ t0u ùñ f „0 αk .z
k for some k and αk “ 0, it

is an easy exercise to see that W is a free H0-module with basis
tlogn

pzquně0. We also remark that W is closed by all the integrators.
More precisely, with splitting H0 “ H`

0 ‘ C.1Ω w.r.t. the evaluation at zero
(i.e. H`

0 “ kerpδ0q) we see that

W “ W`

à

p‘ně0C. logn
pzqq

looooooooomooooooooon

Wr p“rightmost branchq

“ W`

à

Wr . (14)

1 the integrator
şz

1
, ˝ ds

s acts within Wr

2 W` is made of sums zp logq
pzq with p ě 1 so that the other

integrators (with lower bound 0) act in W`

3
şz

0
˝ ds
1´s sends Wr to W`.
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Computation of the behaviour/1

Linear representation

Due to the fact that the action is on the left (i.e. right-left reading of the
word), we have (with the alphabet EndpW q.tx0, x1u)

λ “
`

1 1
˘

γ “

ˆ

1Ω
0

˙

T “

¨

˝

şz
1 ˝ds

s .x0 0
şz
0 ˝ ds

1´s .x1
şz
0 ˝ds

s .x0 `
şz
0 ˝ ds

1´s .x1

˛

‚

Computation of the star/1

Applying formulas of Eq. (7), we get

T ˚ “

ˆ

a11 0
a21 a22

˙˚

“

ˆ

a˚
11 0

a˚
22a21a˚

11 a˚
22

˙
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Computation of the star/2

This star can be factored, considering that

T “

¨

˝

şz
1 ˝ds

s .x0 0
şz
0 ˝ ds

1´s .x1
şz
0 ˝ds

s .x0 `
şz
0 ˝ ds

1´s .x1

˛

‚“

ˆşz
1 ˝ds

s 0

0
şz
0 ˝ds

s

˙

.x0 `

ˆ

0 0
şz
0 ˝ ds

1´s

şz
0 ˝ ds

1´s

˙

.x1 “

T0.x0 ` T1.x1

and using formula (2), we get

T ˚ “

´

pT0.x0q˚T1.x1

¯˚

pT0.x0q˚ “

´

pT0.x0q˚T1.x1

¯`

pT0.x0q˚ ` pT0.x0q˚

(15)
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About the asymptotic condition

3 We then have

Li “
`

1 1
˘

T ˚

ˆ

1Ω
0

˙

“

`

1 1
˘

´

pT0.x0q˚T1.x1

¯`

pT0.x0q˚

ˆ

1Ω
0

˙

`
`

1 1
˘

pT0.x0q˚

ˆ

1Ω
0

˙

“
`

1 1
˘

´

pT0.x0q˚T1.x1

¯`

pT0.x0q˚

ˆ

1Ω
0

˙

looooooooooooooooooooooooomooooooooooooooooooooooooon

Li` only words s.t. |w |x1ą0

`ex0 logpzq (16)

In this way Li “ Li` `ex0 logpzq and we get

lim
z´ą0

e´x0 logpzq Li “ lim
z´ą0

Li e´x0 logpzq “ 1 (17)

this allows to prove unicity by means of the differential Galois group
of (12).
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About the asymptotic condition/2

4 Li “ G1 is a shuffle character (due to the fact that the multiplier and
the asymptotic condition are grouplike i.e. characters).

5 For a Rs ´ 8, 0s, the integrator
şz
1 ˝ds

s can be replaced by
şz
a ˝ds

s , one
then finds a series Ga which fullfils system (12) where the asymptotic
initial condition is modified to
lim zÑ0

zPΩ
Spzqe´x0plogpzq´logpaqq “ 1HpΩqxxX yy.

6 Due to the fact that, on the one hand the asymptotic counterterm
e´x0plogpzq´logpaqq is grouplike (i.e. a shuffle character) and, on the
other hand the multiplier is primitive (i.e. a shuffle infinitesimal
character), one easily sees that all Ga are shuffle characters.

7 Computing xGa|x˚
0 y “

ř

ně0xGa|xn
0 y “ eplogpzq´logpaqq “ z{a,

one sees that all shuffle characters Ga are differenta.

aMore generally, the possibility of setting a series in the RHS place of a scalar
product has been explored in [6].
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Domain of Li (definition)

In order to extend Li to series, we define DompLi ; Ωq (or DompLiq) if the context
is clear) as the set of series S “

ř

ně0 Sn (decomposition by homogeneous
components) such that

ř

ně0 LiSnpzq converges for the compact convergence in Ω
(see [6]). One sets

LiSpzq :“
ÿ

ně0

LiSnpzq (18)

The ladder (upper part)

pCxX y, x , 1X˚ q HpΩq

DompLi ; Ωq HpΩq

Li‚

Li
p1q
‚

Examples

Lix˚
0

pzq “ z , Lix˚
1

pzq “ p1 ´ zq´1 ; Lipαx0`βx1q˚pzq “ zαp1 ´ zq´β
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Last part: a two-state transducer for the Collatz

function.

40 / 86



Recall: Division by 8 with transducer

0

1

2

3

4

5

6

7

1|1

9|4

4|9

3|2

1 1 9 4 3
3 9

7 4
2 3

7

8
1 4 9 2

11 8

3 1

39 8

7 4

74 8

2 9

23 8

7 2
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Division by 2 in base 3.

0 1

1|0

1|2

0|0

2|1

0|1

2|2

00 2

0 0

01 2

1 0

02 2

0 1

10 2

1 1

11 2

0 2

12 2

1 2
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Collatz function, conjecture and plan.

Collatz function:

f(n) =

#

n
2 if n is even

3n + 1 if n odd

Collatz conjecture:

For any n ą 0, there exists p ě 0 such that f p(n) = 1

3
f

ÝÑ 10
f

ÝÑ 5
f

ÝÑ 16
f

ÝÑ 8
f

ÝÑ 4
f

ÝÑ 2
f

ÝÑ 1

Plan:

Explicit automaton realizing f p (or equivalent) according to p.
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Shortcut Collatz.

Shortcut Collatz function

gpnq “

#

n
2 if n is even

3n`1
2 if n odd

Collatz conjecture with g :

3
g

ÝÑ 5
g

ÝÑ 8
g

ÝÑ 4
g

ÝÑ 2
g

ÝÑ 1

and the corresponding transducer. We observe that the TS (transition
structure) is that of the Division by 2 in base 3.

0 1

1|0

1|2

0|0

2|1

0|1

2|2

Start

.ϵ .2
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Shortcut Collatz/2

Transducer squared (for g 2)

0 b 0 1 b 0

0 b 1 1 b 1

0|0

1|0

2|0 0|0

1|1
2|1

0|1

1|1

2|2 0|2

1|2
2|2

.ϵ .1

.2 .22

(see MPS On a theorem of R. Jungen, 1962 [17]).
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Shortcut Collatz/2

Transducer squared for g 2, transition structure.

0 1

2 3

0|0

1|0

2|0 0|0

1|1 2|1

0|1

1|1

2|2 0|2

1|2 2|2

We get the division by 4 in base 3. Relabelling of the states done by
reverse base 2 i.e. a b b Ñ 2b ` a.
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Division by 23 in base 3 :
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Division by 23 in base 3 :

0/0
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Division by 23 in base 3 :

0/0

1/0
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Division by 23 in base 3 :

0/0

1/0
2/0
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Division by 23 in base 3 :

0/0

1/0
2/0

0/0
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Division by 23 in base 3 :

0/0

1/0
2/0

0/0

1/0
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Division by 23 in base 3 :

0/0

1/0
2/0

2/0

0/0

1/0
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Division by 23 in base 3 :

0/0

1/0
2/0

2/0

0/0

1/0

0/0

47 / 86



Division by 23 in base 3 :

0/0

1/0
2/0

2/0

0/0

1/0

0/0

1/0
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Division by 23 in base 3 :

0/0

1/0
2/0

2/0

0/0

1/0

0/0

1/0

2/1
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Division by 23 in base 3 :

0/0

1/0
2/0

2/0

0/0

1/0

0/0

1/0

2/1
0/1
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Division by 23 in base 3 :

   

0/0 2/1

 0/1 2/2

1/0 1/1

 1/1

2/0

2/1

 0/1

 2/2

 2/1

1/2

 0/0

 0/0

1/0

0/1

 2/2

0/2

 2/0

 0/2

1/0

1/21/2

Construction:

=/

=/

=/ =/

=/

=/

i

b+1/c

b a−1

 j

 b/c

 i+1

i

a−1/c

0/c

b/c

0

d−1

0

d−1 a−1/c

 i+1

 j  i j

 b+1/c+1  0/c+1

j

j b

c

d−1 a−1

a−1

c a−1

d−1

 j+1  j+1
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Division by 23 in base 3 (TS of g 3) and terminal function.

110 000

111001

ε

2222

11

010100

011 101

102

22 2

0/0

2/4

2/0

 2/1

 0/1 2/2

 2/0

2/1

0/0

 0/1

2/1

 2/2

0/1

0/2

1/0

1/2

1/0

 1/11/2

1/2

 1/11/0

 0/0 2/2

 0/2  2/0
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Concluding remarks

1 We have indicated the structure of automaton with multiplicities in a
(non necessarily commutative) semiring R, following the original
thought of Eilenberg and Schützenberger.

2 The computation of its behaviour, a generating series, entails that of
the star of a matrix (in general with noncommutative coefficients).

3 When one specializes R to R “ Σ ˆ k (k a ring of operators), one
gets a powerful notion of Σ-action which is powerful enough to, for
example, generate Hyperlogarithms and, through Lazard elimination,
explain the asymptotic initial conditions.

4 When one specializes R to R “ Σ ˆ k (k a commutative semiring),
one gets the classical structure of automaton with multiplicities in k,
rational series, rational calculus.
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Concluding remarks/2

5 If, moreover, k is a field, one can use the this rational calculus to
compute within every Sweedler’s dual of a k Hopf or bi-algebra.

6 The trick is the following. Let σ : X A be an (indexed) generating
family of A, µ : kxX y A the corresponding (onto) morphism and
µ˚ : A˚ ãÑ kxxX yy its transpose. Then, due to the formula
µ˚pfµpuqq “ µ˚pf qu we have µ˚pA˝q “ kratxxX yy X Impµ˚q which
allows the rational calculus within A˝.

7 If the multiplicities are taken in some R “ Σ ˆ Γ, one gets the
classical “letter-to-letter” finite states transducer structure. In this
way, states can encode cases.

8 We have described an unexpectedly simple two-state “letter-to-letter”
transducer which produces the Collatz function.

9 This opens the door to a geometrization of the Collatz conjecture.

10 Such methods could shed a new light on Erdös conjecture [10].
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THANK YOU FOR YOUR ATTENTION !
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Reserve/1

Proposition

Let P P CxX y and f pzq “ x L|Py “
ř

wPX˚xP|wyLiw .
1) The following conditions are equivalent

i) f can be analytically extended around zero.

ii) P P CxX yx1 ‘ C.1X˚ .
2) In this case Ω itselfa can be extended to
Ω1 “ Czps ´ 8,´1s Y r1,`8rq.

aThe domain, for z of LiP .
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A useful property

Proposition B

Let B “ pkxX y, conc , 1X˚ ,∆, ϵq be a conc-bialgebra, then

1 The space k ratxX y is closed by the convolution product ˛ (here t∆)
given by

xS ˛ T |wy “ xS b T |∆pwqy (19)

2 If k is a Q-algebra and ∆` : k .X Ñ k .X b k.X cocommutative, B is
an enveloping algebra iff ∆` is nilpotenta.

3 If, moreover k is without zero divisors, the characters px˚qxPX are
algebraically independant over pkxX y, ˛, 1X˚q within pkxxX yy, ˛, 1X˚q.

aSee CAP 2017
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A useful property/2

Remark

Property (3) is no longer true if ∆ is not moderate. For example with the
Hadamard coproduct and x “ y , one has y d pxq˚ “ 0.

Examples

Shuffle: pαxq˚ x pβyq˚ “ pαx ` βyq˚

Stuffle: pαyi q
˚ pβyjq

˚ “ pαyi ` βyj ` αβyi`jq
˚

q-infiltration: pαxq˚ Òq pβyq˚ “ pαx ` βy ` αβδx ,yxq˚

Hadamard: pαaq˚ d pβbq˚ “ 1X˚ if a “ b and pαaq˚ d pβaq˚ “ pαβaq˚
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Starting the ladder

pCxX y, x , 1X˚ q CtLiwuwPX˚

pCxX y, x , 1X˚ qrx˚
0 , p´x0q˚, x˚

1 s CZtLiwuwPX˚

Li‚

Li
p1q
‚

Domain of Li (definition)

In order to extend Li to series, we define DompLi ; Ωq (or DompLiq) if the context
is clear) as the set of series S “

ř

ně0 Sn (decomposition by homogeneous
components) such that

ř

ně0 LiSnpzq converges for the compact convergence in
Ω. One sets

LiSpzq :“
ÿ

ně0

LiSnpzq (20)

Examples

Lix˚
0

pzq “ z , Lix˚
1

pzq “ p1 ´ zq´1 ; Lipαx0`βx1q˚pzq “ zαp1 ´ zq´β
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Properties of the extended Li

Proposition

With this definition, we have

1 DompLiq is a shuffle subalgebra of CxxX yy and then so is
DomratpLiq :“ DompLiq X CratxxX yy

2 For S ,T P DompLiq, we have

LiSxT “ LiS .LiT

Examples and counterexamples

For |t| ă 1, one has ptx0q˚x1 P DompLi ,Dq (D is the open unit slit disc),
whereas x˚

0 x1 R DompLi ,Dq.
Indeed, we have to examine the convergence of

ř

ně0 Lixn0 x1pzq, but, for
z Ps0, 1r, one has 0 ă z ă Lixn0 x1pzq P R and therefore, for these values
ř

ně0 Lixn0 x1pzq “ `8.
In fact, in this case (|t| ă 1)

Liptx0q˚x1pzq “
ÿ

ně1

zn

n ´ t
(21)
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Coefficients in the Ladder

pCxX y, x , 1X˚ q CtLiwuwPX˚

pCxX y, x , 1X˚ qrx˚
0 , p´x0q˚, x˚

1 s CZtLiwuwPX˚

CxX yxCratxxx0yyxCratxxx1yy CCtLiwuwPX˚

Li‚

Li
p1q
‚

Li
p2q
‚

Were, for every additive subgroup pH,`q Ă pC,`q, CH has been set to the
following subring of C

CH :“ Ctzαp1 ´ zq´βuα,βPH . (22)

Examples

Lix˚
0

pzq “ z , Lix˚
1

pzq “ p1 ´ zq´1 ; Liαx˚
0 `βx˚

1
pzq “ zαp1 ´ zq´β
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The arrow Lip1q
‚

Proposition

i. The family tx˚
0 , x˚

1 u is algebraically independent over pCxX y, x , 1X˚q

within pCxxX yyrat, x , 1X˚q.

ii. pCxX y, x , 1X˚qrx˚
0 , x˚

1 , p´x0q˚s is a free module over CxX y, the
family tpx˚

0 qx k x px˚
1 qx lupk,lqPZˆN is a CxX y-basis of it.

iii. As a consequence, tw x px˚
0 qx k x px˚

1 qx lu wPX˚

pk,lqPZˆN
is a C-basis of it.

iv. Li
p1q
‚ is the unique morphism from pCxX y, x , 1X˚qrx˚

0 , p´x0q˚, x˚
1 s to

HpΩq such that

x˚
0 Ñ z , p´x0q˚ Ñ z´1 and x˚

1 Ñ p1 ´ zq´1

v. ImpLi
p1q
‚ q “ CZtLiwuwPX˚ .

vi. kerpLi
p1q
‚ q is the (shuffle) ideal generated by x˚

0 x x˚
1 ´ x˚

1 ` 1X˚ .
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Sketch of the proof for vi.

Let J be the ideal generated by x˚
0 x x˚

1 ´ x˚
1 ` 1X˚ . It is easily checked,

from the following formulasa, for k ě 1,

w x x˚
0 x px˚

1 qx k ” w x px˚
1 qx k ´ w x px˚

1 qx k´1 rJ s,
w x p´x0q˚ x px˚

1 qx k ” w x p´x0q˚ x px˚
1 qx k´1 ` w x px˚

1 qx k rJ s,

that one can rewrite rmodJ s any monomial w x px˚
0 qx l x px˚

1 qx k as a
linear combination of such monomials with kl “ 0. Observing that the

image, through Li
p1q
‚ , of the following family is free in HpΩq

tw x px˚
1 qx l x px˚

0 qx kupw ,l ,kqPpX˚ˆNˆt0uq\pX˚ˆt0uˆZq (23)

we get the result.

aIn the Figure below, pw , l , kq codes the element w x px˚
0 q

x l x px˚
1 q

x k .
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The Lie group of characters. return

Group of characters G .

LpG q: Infinitesimal characters.

Spz0q

Spzq

c

S 1pzq
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End of W

The easy exercise

We first prove that “it is a easy exercise to see that W is a free
H0-module with basis tlognpzquně0”

1 We first prove that p
ř

iPF fi . logni “ 0q ùñ p@i P F qpfi “ 0q

2 Let S “ ti P F |fi “ 0u be the support of pfi qiPF . For all f P W ∖ t0u,
we have f „0 αk .z

k for a unique monomial αk .z
k with αk ‰ 0 (it is

the valuation term of the Taylor series of f at zero). Then for i P S ,
we have fi logni pzq „0 αki .z

ki logni pzq. We then order S by i ň j iff
ki ą kj or, ki “ kj , ni ă nj (it is the total order of the orders of
infinity).
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3 If S “ H we are done otherwise, let i0 be the greatest element of S
for ň, we have

Apzq “
ÿ

iPF

fi . logni “
ÿ

iPS

fi . logni „0 αki0
.zki0 logni0 pzq (24)

whence limzÑ0
Apzq

zki0 logni0 pzq
“ αki0

but αki0
‰ 0 which proves that

this case is impossible. l
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Differential equations and BTT (Basic Triangle Theorem).

Theorem (DDMS [1])

Let pA, dq be a k-commutative associative differential algebra with unit
and C be a differential subfield of A (i.e. dpCq Ă C). We suppose that
S P AxxX yy is a solution of the differential equation

dpSq “ MS ; xS |1X˚y “ 1A (25)

where the multiplier M is a homogeneous series (a polynomial in the case
of finite X ) of degree 1, i.e.

M “
ÿ

xPX

ux x P CxxX yy . (26)

[1] Independence of Hyperlogarithms over Function Fields via Algebraic Combinatorics,
M. Deneufchâtel, GHED, V. Hoang Ngoc Minh and A. I. Solomon, 4th
International Conference on Algebraic Informatics, Linz (2011). Proceedings, Lecture
Notes in Computer Science, 6742, Springer.
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Differential equations and BTT/2

Theorem (cont’d)

The following conditions are equivalent :

i) The family pxS |wyqwPX˚ of coefficients of S is free over C.

ii) The family of coefficients pxS |yyqyPXYt1X˚ u is free over C.

iii) The family puxqxPX is such that, for f P C and αx P k

dpf q “
ÿ

xPX

αxux ùñ p@x P X qpαx “ 0q . (27)

iv) The family puxqxPX is free over k and

dpCq X spank

´

puxqxPX

¯

“ t0u . (28)
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The particular case of Hyperlogarithms.

3 Hyperlogarithms are analytic functions produced as coordinates of a
solution of a Non Commutative Differential Equation (NCDE) of the
type

S 1 “ MS (29)

where S P HpΩqxxX yy and M, the multiplier, is of the form

M “

n
ÿ

i“1

λi .xi
z ´ ai

, λi “ 0 (30)

(Polylogarithms are a subclass of Hyperlogarithms (see [4]).
In order to get a solution of this NCDE we have to pile up sections of
the differential operators 1

λi pz´ai q
d
dz (i.e. integrators) of this

differential equation labelled by letters. For this reason it is natural to
use a transducer with values within endomorphism algebras
(integrators). We illustrate it below with Polylogarithms.
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Noncommutative Geometry

In 1992, I. M. Gelfand was in Paris with V. Retakh (IHES), we met him a
lot of times during his visit, but we did not know that this would lead him
to ask Alain Connes to better explain his conjecture about the rationality
of some elements of the (reduced C ˚-algebra) of the free group. We
eventually solved it with Christophe, using tools and properties of
automata theory and this resulted in publication [8]. Let me tell the story
and detail the conjecture ...
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Connes conjecture itself

Soit X be an alphabet (a set) and Γ “ F pX q, the group freely generated
by X . We define

for an arbitrary function f : Γ Ñ C

||f ||2 “
ÿ

gPΓ

|f pgq|2 P r0,8s (31)

l2pΓq “ tf : Γ Ñ C t.q. ||f ||2 ă 8u (with the canonical basis pϵg qgPΓ)

the regular representation by “shifts” Γ Ñ Lpl2pΓqq (bounded
operators), extended faithfully to CrΓs (the algebra of the free group)
by linearity. Then CrΓs ãÑ Lpl2pΓqq

C ˚
r pΓq is the norm closure of CrΓs within Lpl2pΓqq (called by

specialists, the reduced C ˚ algebra of the free group).
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Connes conjecture itself/3

Let’s start with the free group (here F2)
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Connes conjecture itself/4

shows that the free group can be realized by reduced words (the
length of an element g P Γ is the length of the reduced word
representing it)

take a barred (disjoint) copy of the alphabet X̃ “ X \ X̄ and form the
quotient

F pX q “ X̃ ˚{pxx̄ ” x̄x ” 1q (32)

i.e. apply the rewrite rules pxx̄ ÞÑ 1, x̄x ÞÑ 1)
see that the action on the nodes is (one step each)

a “ east, b “ north, ā “ west, b̄ “ south

see the action by shifts on the (unoriented) edges.
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Connes conjecture itself/5

The algebra C ˚
r pΓq is the space where another sort of closure will take

place.
Let pC ˚

r pΓqqn be the smallest subalgebra B Ă C ˚
r pΓq such that Γ Ă B and

x P MnpBq X rMnpC ˚
r pΓqqs´1 ùñ x P rMnpBqs´1 (33)

You can imagine the making of this “rational completion of order n” by
the following process from B0 “ CrΓs. If Bk is constructed, then one
obtains Bk`1 as follows

1 form the matrices (with non commutative coefficients) MnpBkq

2 take the ones which are regular (invertible), find the inverses of them,
add their coefficients to Bk and make the closure by linear
combinations and products

the wanted closure is Yně0Bn
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Connes conjecture itself/6

One has

pC ˚
r pΓqq1 Ă pC ˚

r pΓqq2 Ă ¨ ¨ ¨ pC ˚
r pΓqqn Ă ¨ ¨ ¨ Ă C ˚

r pΓq (34)

the rational completion of order n is pC ˚
r pΓqqr “ Yně1pC ˚

r pΓqqn.
Note that these rational completions can be defined for the situations
A1 Ă A2 where Ai are arbitrary k-AAU (we will use it later on), the usual
rational closure is p .q1.
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Connes conjecture itself/7 : the operators P and F

Let Γp1q be the set of unoriented edges of the Cayley graph of Γ. Such an
edge is a pair tg , gxu with x P X̃ and lpgxq “ lpgq ` 1. We build a
Γ-module with two sectors H˘ by

H` “ l2pΓq, H´ “ l2pΓp1qq ‘ C (35)

and an involution F by

ˆ

H` H´

H` 0 P´1

H´ P 0

˙

“ F (36)

where P : H` Ñ H´ is the isometry defined by

Pϵ1 “ 1C; Pϵg “ tϵϕpgq, ϵgu for g P Γ ´ t1u (37)
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Connes conjecture itself/8 : the finite rank condition

Note that a P Γ acts by isometries on H by

atg , gxu “ tag , agxu, a1C “ 0, aϵg “ ϵag (38)

and then one can identify the elements of C ˚
r pΓq with operators in  LpHq.

We will denote pC ˚
r pΓqqfin the algebra of elements a P C ˚

r pΓq such that
rF , as is of finite rank.
The conjecture was

pC ˚
r pΓqqfin “ pC ˚

r pΓqqr (39)
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Connes conjecture itself/8 : steps of the proof

first prove that

pC ˚
r pΓqq1 “ ¨ ¨ ¨ “ pC ˚

r pΓqqn “ pC ˚
r pΓqqr Ă pC ˚

r pΓqqfin (40)

remark that every a P C ˚
r pΓq can be represented by a series

ap1Γq “
ř

gPΓ αg g (because apugq “ apuqg and this series is in l2pΓq)

denoting mpgq the (unique) reduced word associated with g P Γ, we
establish that if the series mpaq “

ř

gPΓ αg mpgq is rational (i.e. that
its orbit by shifts - i.e. letter cancellation - is of finite rank, in other
words a rational series is a representative function on the free
monoid) then a P pC ˚

r pΓqq1

if a P C ˚
r pΓq is such that rF , as is of finite rank, then mpaq is rational

This ends the proof.
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Rational series and duality

Let A be an alphabet and k a field, let us note A˚, the free monoid with
base A, kxAy “ krA˚s its algebra (noncommutative polynomials),
kxxAyy “ kA˚

, the corresponding set of series and
p., .q : kxxAyy b kxAy Ñ k , the canonical pairing between series and
polynomials. One defines canonical actions (see talk by Dominique Perrin)
of A˚ on series by

S .u “
ÿ

wPA˚

pS , uwqw , u.S “
ÿ

wPA˚

pS ,wuqw (41)

One has the following theorem.

80 / 86



Theorem

Let S P kxxAyy TFAE
i) The family pS .uquPA˚ is of finite rank.
ii) The family pu.SquPA˚ is of finite rank.
iii) It exists n P N, λ P k1ˆn, µ : A˚ Ñ knˆn (a multiplicative morphism)
and γ P knˆ1 such that, for all w P A˚

pS ,wq “ λµpwqγ (42)

iv) (If A is finite, known as the theorem of Kleene-Schützenberger) The
series S is in the rational closure of kxAy within kxxAyy.

Remarks 1) For the sake of Combinatorial Physics (where the alphabets
are usually infinite, (iv) has been extended to infinite alphabets and
replaced by
iv’) The series S is in the rational closure of kA (linear series) within
kxxAyy.
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Sweedler’s duals

Remarks (cont’d) 2) This theorem is linked to the following
(Representative functions on semigroups, from the book of Eichii Abe)

In fact, rational series are exactly representative functions on A˚. If one
considers the multiplicative semigroup of a k-AAU and one restricts to the
linar forms, one gets exactly the Sweedler’s dual. Hence the rational series
are also the Sweedler’s dual kxAy˝.
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Charm of dualization

States are linear forms

Observation functions are linear forms

Allows to swap between commutativity and co-commutativity (e.g.
Connes Kreimer)

Combinatorial interest (dual laws : shuffle, stuffle, infiltration, bases
in duality)

So, one often wants to compute the dual of a Hopf algebra or a bialgebra
pH, µ, 1H,∆, ϵq and one should obtain some pH˝, µ∆, 1ϵ,∆µ, ϵ1q
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Examples

(Shuffle algebra) pkxAy, conc , 1A˚ ,∆, ϵq has (restricted) dual
pkxAy, x , 1A˚ ,∆conc , ϵq

(Stuffle algebra) pkxY y, conc , 1A˚ ,∆ , ϵq where Y “ tyiuiě1 and
the ∆ is defined on the letters by

∆ pysq “ ys b 1 ` 1 b ys `
ÿ

i`j“s

yi b yj (43)

(deformations)

∆
pqq

pysq “ ys b 1 ` 1 b ys ` q
ÿ

i`j“s

yi b yj (44)

Note that some laws are better understood by their dual (shuffle,
stuffle, infiltration).
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One can always dualize a comultiplication by

xf ˚∆ g |wy “ xf b g |∆pwqy (45)

but the same trick does not work for the products, and one has to find the
domain of a possible comultiplication

A˚

Domptpµqq A˚ b A˚

pA b Aq˚

nat1

tpµq

tpµq

nat2

This domain is exactly the Sweedler’s dual A˝. Due to associativity, it has
the very nice property that tpµqpA˝q Ă A˝ b A˝.
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Perspectives

The greatest dual of an algebra is the Sweedler’s dual (mind that it
can be p0q, as for the Heisenberg-Weyl algebra)

Many Hopf algebras of Combinatorics and Physics are free
(commutative or noncommutative) and then Sweedler’s dual
separates the Hopf algebra

Automata theory, by means of the rational expressions, provides a
convenient language to harness this dual (which contains the other
duals).
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