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Introduction

© The story of automata theory (in the large, i.e.
Eilenberg-Schiitzenberger machines) is all about states, ations
(command letters), alphabets, transitions and multiplicities (outputs).

@ In this review, we will see several sets of states

©® (Free) monoid on the alphabet X = {xp, x1}
® Numeral symbols on base b (i.e. X =b=1{0,---,b—1})
© (If times permits), the free group (on X)
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The free monoid {xp, x1}*.
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Numeral symbols 8 = {0,--- ,7}
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Factorizations

Last year (CAP10), H. Nakamura began his talk by some stringology i.e. the fact
that any string (word) on the alphabet ¥ = {X, Y} could be written

w=Xnyxhy. ... yxhy|xho (1)

Doing this, save the last factor Xh= we obtain a factorization into blocs of the
form X"Y. We will later write this set X*Y = Y + XY + X2Y + ..., the (free)
monoid they generate (X*Y)* =1+ (X*Y)T. The set of all words, therefore, is

(X + Y)* = (X*Y)EX* = (X*Y)TX* + X*, (2)

an instance of Lazard elimination theorem (discussed last year).
Factorization (1) can be computed by the following (boolean or N-) automaton

| Y oy
qen ®

all words X first factor




A simple transition system: flow charts or flow diagrams

Directed graph weighted by numbers which can be lengths, time (durations),
costs, fuel consumption, probabilities. This graph is equivalent to a square matrix.
Coefficients are taken in different semirings (i.e. rings without the “minus”
operation, as tropical or [min,+]) according to the type of computations to be
done. Tropical semirings were so called by MPS school because they were founded
by the Hungarian-born Brazilian mathematician and computer scientist Imre
Simon. Evaluation is done by multiplications in series and addition in parallel.
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Weighted (or multiplicity) automata: the forefathers

Marcel-Paul Schiitzenberger, On the
definition of a family of automata,
Inf. and Contr., 4 (1961)

Samuel Eilenberg, Automata,
Languages, and Machines (Vol. A &
B) Acad. Press, New York, (1974)
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Multiplicity Automaton (Eilenberg, Schiitzenberger)

()b

Example: Evaluate 2.bccabc.
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Multiplicity automaton (linear representation) & behaviour

Linear representation

Due to the left-to-right word reading, it is
A=(d2 A 0 0 0), y=0 0 m 0 )"
0 ap 0 0 O 00 0 a2 O
ag 0 0 0 O 0 0 az 0 O
wa@a=10 0 0 0 O wb)y=10 0 0 0 O
0 0 0 0 asg 00 0 0 O
0 0 00 O 00 0 0 O (3)
0 0 00 O
0 0 00 O
wlc)=10 0 0 0 as
0 0 0 0 oy
0 ags 0 0O O
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Multiplicities.

© Multiplicities are taken within a semiring R. Each time you change R,
you change your universe.

Q@ If R =B, you get the theory of languages, if R = N, you are able to
count the paths for example.

© If R is commutative, you have the theory of rational series and if R is
a field, you get a way to compute within Sweedler’s duals.

If the multiplicities are probabilities, you get stochastic automata.

© 0

But R does not need to be commutative

@ If R = k(I') for some alphabet I', you get transducers
® R can be a semiring of operators, this opens the door to application of
rational identities to the plane of transition matrices.
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Linear representation & Behaviour

For a right-to-left word reading, data have to be transposed

Non commutative series

Series are functions X* — R where R is a semiring (i.e. a ring without the
“minus”’ operation as example the tropical semiring). We have different ways to
consider a series, namely:

Math: Functions, elements of a dual (total, restricted, Sweedler's &c.)
Computer Sci.: Behaviour of a system (automaton, transducer, grammar &c.)
Physics: Non comm. diff. equations, evaluation of paths, normal orderings &c.

Behaviour of a “word machine”, the series 5(M).

M) = Ap(w)y = 3 X (Y weight(p)) — 20) (#)

—_—
s weight of all paths () — (J)
with label w
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Operations and definitions on series (R semiring).

Addition, Scaling: As for functions because R{X) = RX™ (viewed as
R-R modules)

Concatenation: f.g(w) =3, _, f(u)g(v)

Polynomials: Series s.t. supp(f) = {w}r(u)+0 is finite.

The set of polynomials will be denoted R{X).

Pairing: (S|P) = >} cx S(w)P(w) (S series, P polynomial)
Summation: ), S; summable iff f or all w € X*, i — (5j|w) is finitely
supported. In particular, we have

M= Y OSilwy) w
iel weX* jel

Remark: This notion is exactly the one of limit of the net of partial sums
(Dlicr Si)Fegme 1 With respect to the sup-lattice of finite subsets of /, topology
being the product of discrete topologies on R (see [12] “summable™).
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Operations and definitions on series (R semiring)/2

Star: For all series S s.t. (S|1xx) = 0, the family (5")n>0 is summable
and weset $* == 15" =1+5+ 5%+ .- (if Ris a ring, we have
§* = (1—5)7') and the plus-notation S* :=>] (S"=5+ 5%+ ...
(again, if R is a ring we have ST = S.(1-S)"t = (1-5)7L.9).
Shifts: (u~1S|w) = (S|uw) and (Su=t|w) = (S|wu).

Let M be the automaton (p, g, r, a, b, c can be operators).

I=(a 0
x|q T=<p(’)x ;:))’<>F=<£C’)

o <(p-(>)<)* (p-X)’Z;;V)-iq-X)*>

a.(px)*.b+ a.(px)*.r.y.(g.x)*.b
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Rational series (Sweedler’s duals & Schiitzenberger's shifts)

Theorem A (k field, X finite).

Let S e k{X) TFAE

i) The family (Su=1),cx= is of finite rank.

i) The family (u=1S),ex= is of finite rank.

iii) The family (U_ISV_I)uNeX* is of finite rank.

iv) It exists ne N, A e k1", 1 : X* — k™" (a multiplicative morphism)
and v € k"1 such that, for all w e X*

(S, w) = Au(w)y (5)

v) The series S is in the closure of k(X) for (+, conc,* ) within k{X)).

Definition

A series which fulfills one of the conditions of Theorem A will be called
rational. The set of these series will be denoted by k*{X). In the theory
of Hopf algebras it is Sweedler's dual of k({X).
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Sweedler's duals & Kleene-Schiitzenberger's Theorem.

Q (i < iii) needs k to be a field.

@ (iv) needs X to be finite, (iv <> v) is known as the theorem of
Kleene-Schiitzenberger (M.P. Schiitzenberger, On the definition of a
family of automata, Inf. and Contr., 4 (1961), 245-270.)

© For the sake of Combinatorial Physics (where the alphabets can be
infinite), (iv) has been extended to infinite alphabets and replaced by

iv') The series S is in the rational closure of kX (linear series) within
kX

© When k is a ring, the rational closure of a subset P < k{X)) is
exactly the inverse-closed subalgebra of k(X)) generated by P.

@ In the vein of (v) expressions like ab* or identities like
(ab*)*a* = (a + b)* (Lazard's elimination) will be called rational.
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Sweedler’s duals & Kleene-Schiizenberger's Theorem. /2

© For the needs of CS, an analogue of Theorem A has been proved for k
a commutative semiring (see [15, 11, 13]) where “is of finite rank” is
replaced mutatis mutandis by “is contained in a shift-invariant
submodule of finite type”.

@ Contrariwise to the case when k is a field, the property of being a
submodule of finite type is not hereditary (as soon as we only have a
ring). It can then happen that the module generated by the shifts of
a rational series be not of finite type. The case
k=N, §=a%a" =3 _o(n+1)a" is typical: when one computes
the shifts on the series S = a*a* =}, o (n+ 1)a" (considered as a
function), we get a shift-invariant module of infinite type whereas,
following Eilenberg [9], when we perform them on its rational
expression a*a*, we get a FS automaton.

© This theorem is linked to the following subjects: Representative
functions on X* (see Eiichi Abe [1], Chari & Pressley [3]), Sweedler’s
duals [7] &c. |
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From theory to practice: Schitzenberger's calculus

From series to automata

Starting from a series S, one has a way to construct an automaton
(finite-stated iff the series is rational) providing that we know how to
compute on shifts and one-letter-shifts will be sufficient due to the formula
u=tv 1S = (vu)~1S.

Calculus on rational expressions

In the following, x is a letter, E, F are rational expressions (i.e. expressions
built from letters by scalings, concatenations and stars)

@ xlis (left and right) linear
Q x L(E.F) = x1(E).F + (E|lx+)x"1(F)
Q@ x Y(E*) = xY(E).E*
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Examples

With (2a)*(3b)* ; X = {a, b}

al2 b|3
b|3
L ey (3b) 2 f(ab)r )L
1

X()|1.'2




With (t2x0x1)* ; X = {xo, x1} (balanced)

tx1 (t2X0X1 ) *
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From theory to practice: construction starting from S.

o States m (constructed step by step)

o Edges We shift every state by letters (length) level by level (knowing
that x 1(u™1S) = (ux)~1S). Two cases:
Returning state: The state is a linear combination of the already
created ones i.e. x (u1S) =3 a(ux, v)vLS (with F finite),
then we set the edges

x|awy

i3] ]

The created state is new: Then

uis| 2L xY(u™1s)

o Input with the weight 1
o Outputs All states with weight {T|1xx)

21./-86



Words and paths

Powers of a (generic) transfer matrix
d12

az1  ax

azi

2
T2 — aT; + dizaxn 311312 + azaxn
= 2
aziail + axani ax, + az1di2

Tn _ > n-paths 1 > 1 > n-paths 1 — 2
~ \>. n-paths 2 > 1 3 n-paths 2 — 2

Star notation and Mc Naughton-Yamada formulae.

Weset TT:=> T, T*:=14+Tt=14+T+T?+..-. =3 T"
This matrix T* is the (unique) solution R € k{aj;)) of the self-reproducing
equations

R=1+TR=1+RT
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Mac Naughton-Yamada (with multiplicities) formulae.

With T = (311 al?) we have T* = (A” Al2> with  (6)
a1 ax A1 Ax

A1 = (a11 + aoaj,a)* Al2 = Anra12a;, (or = ajja12A)

Ao1 = Apaniaj; (or = a3,ax1A11) Az = (a2 + az1aj;ai2)*

Applications of “word machines”.

—~~
~
~

These expressions have many incarnations/applications. Among them

@ Sweedler’s duals (and explicit/combinatorial computations
within them)

e NCDE and, in particular, Hyper- (and Poly-) logarithms (today)
@ Noncommutative geometry

@ Geometrization of the Collatz conjecture (today)




Remarks

© If the multiplicities of slide 13 are taken in some X x k(I') (resp.
Y x ), we have a finite-state (resp. letter-to-letter) transducer.

@ X (resp. IN) is called (and understood as) input (resp. output)
alphabet.

@ If, in all loops, multiplicities belong to k(") (i.e. series with no
constant term), it is always possible to compute the star of the
transfer matrix.

@ In a more general way, if multiplicities are taken in an augmented ring
(A, €) which is complete (i.e. Hausdorff and complete with the
topology defined by {(.A+)"},>0) and aj;; € A, the generic matrix T
possesses a star (computable by formulas Eq. 7). This is the case of
many rings of formal series (k[[X]], k[[M]]).

© One obtains rational identities by factoring the sets of paths differently
(see dual expressions of A1z, Az; in formulas formulas Eq. 7).
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Application 1: Transducer

oon—x
~N © ©
N

With this simple
transducer, we see
that “states” can
mean “cases”. Here
Y =T={0,---9}.
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Application 2: Difference and differential equations

@ We have seen the shifts which give rise to a calculus on rational
expressions, that we recall here

@ x1is (left and right) linear

@ x 1(E.F) =x"YE).F +{(E|lxs)x~1(F)

o x Y(E*)=x"1(E).E*
but not only, as transpose of right and left multiplication, they
operate on series and can be used to set difference equations.

@ In the same way, we can consider differential equations of the type
d(S)=MS; (S|ixxy=14 (8)

where d(S) = > cx+((S|w))".w (term by term differentiation) and
M, the multiplier, is a series without constant term. The case when

M =% cx ux x (homogeneous of degree one) is of particular interest
and is used to better understand iterated integrals.
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Construction of a solution: Picard iterations.

© In the case when (A, d) admits a section (then (A, d, {)), one can
construct a particular solution of

{ d(S) = M.S with Me A (X)) 9)
Slixxy = 1a
using Picard iterations.

So = Ixs ; Sn+1 = Lxx +J M.S, (10)

Then, it is not difficult to see that S, admits a limit S which
satisfies (9).
The complete set of solutions of (9) is S7¢.C{X)).
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Example of iterated integrals.

© For example, let us consider a perturbated version of the
polylogarithmic system (here Q = C\ (] — o0, —1] U [1, 4+00[) and
5 € H(Q2)x0, x1))

{ d(s) = ( + 2L+ h(2). [xo,xl]).s (NCDE-Per1)

(11)
S(zp) = 1xx (Init. Cond.)

5P€(z) satisfies and can be computed by the following recursion

e =1
S§0<5\u> 1% if w=xu

(Slw)|z] = < S;O & —log(:2) if w=x
(S|xox1u)[z] + SZO<S|U> sl.h(s)ds if w=xxu
{ SZO<5|X1U>[ s|E if w=xqu
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Computation by levels and from left to right.

Xox1 X1X0X1 XO X1 X12X0 X0X1X0 X1X0
XoX1 X1X0

NN



(Very) quick review of Polylogarithms.

© Here we consider Q@ = C\ (] — o0, —1] U [1, +0[)
© Classical polylogarithms are defined, for k > 1,|z| < 1, by

. z" z" : z
—log(1—2z) =Li; = Zﬁ’ Lip = Z?, .o Lig(2) = Z—

n=1 n=1 n=1

© Multiple polylogarithms extend classical ones twofold, they are
indexed by words (i.e. lists) and satisfy the following system

d(S) = (2 +%).S (NCDE)
Iimzig S(z)eolo8(2) — Ly@yxy (Asympt. Init. Cond.) (12)

from the general theory (differential Galois group of NCDE + Lazard
elimination), this system has a unique solution over Q which is
precisely Li (called Gy in [5]).
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Explicit construction of Li.

Given a word w, we note |w|y, the number of occurrences of x; within w
lg if w=1xs
SoLifuy[s]s  if w=xu

§1(Li|u)[s]

(Tiwlz] - { b
s
SoLilup[s]Z if w=xouand |ul, >0

if w=xuand|ul,, =0

The third line of this recursion implies

2 n log(z)"
ag(xg) = ,$!>

one can check that (a) all the integrals (improper for the fourth line) are
well defined and (b) the series S = >, v« a§(w) w is Li (Gy in [1])

- S ARena
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3 2 2 2 2 3
Xy X0X{ X1X0X1 XoX1 X{ X0 XpX1X0 X1XQ X5
N/ N/ N/ N/
x2 XoX1 X1 X0 X3
Some coefficients with X = {xp, x1}; up(z) = %; up(z) = i, tg =0

_ (—log(1—2))"
n!

Sk

n

2 o . _ z
(Shim) = Lis(@) = Lig (@) = 3

w3
n

cl.not. n=1
2 . . zM
{Slxoxyy = Li, 2 (2) = Lip 13(2) = -
1 ny>np=1 M2

(Slxox) = Lia(z) = Ligq (2) = 3. 5

n
cl.not. n=1
. . 2
{(Slxixox1) = L1x1x0x1 (z) = L1[1,2] (z) = Z —
n>m=1 MM
log"(2)

Sy = =
nt
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Computation of integrators by transducer

The two cases of the transducer are given by the languages x; and

X*x1X* and the generating series Li by the behaviour of the transducer

Start
x| 5 o1
ds
X
ol §f o2 xox) )
1 0 ]_T
Out Out s
x| f o2 0

T =
x|fo o1 xolf5 0L +xlf; 0%

Alphabet : ¥ = {xg,x1} x End(W) ~ End(W).{xo, x1} with W c H(Q) (13)

——
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The space W.

© We define Hg as the space of f € H () admitting an analytic continuation
around zero. This space embeds naturally in H (). Then we define W as
the algebra generated by Ho(S2) and log(z).

@ Due to the fact that f € W\ {0} = f ~q ay.z* for some k and oy # 0, it
is an easy exercise to see that W is a free Ho-module with basis
{log"(z)}n=0. We also remark that W is closed by all the integrators.

More precisely, with splitting Ho = "Har @ C.1q w.r.t. the evaluation at zero

(i.e. Hg = ker(dp)) we see that
W = W+ @ (@ngo(c. |Ogn(2)) = W+ @ Wr 5 (14)
—

W, (=rightmost branch)

@ the integrator {7, 0% acts within W,

@ W, is made of sums zP log?(z) with p > 1 so that the other
integrators (with lower bound 0) act in W,

0 {; o1~ sends W, to W,.
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Computation of the behaviour/1

Linear representation

Due to the fact that the action is on the left (i.e. right-left reading of the
word), we have (with the alphabet End(W).{xo, x1})

A= (1 1) ’yz(léz)

Z _ds
S]. D?.XO 0

S Dﬁ So $xo+ g DTS-Xl

T =

Computation of the star/1

Applying formulas of Eq. (7), we get

* *
T* _ a1l 0 _ 311 0
a1 ax ajaxaj;  axy
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Computation of the star/2

This star can be factored, considering that

T _ Sl D?.XO 0 _
S Di X1 So Sxo+ g D%'Xl
ffo 0 0 0 B
( 07 frod) 0t ok frog )T
Toxo + T1.x1

and using formula (2), we get

T* = ((To.XQ)*Tl.X;[)*(To.Xo)* = ((To.XQ)*Tl.X1)+(T0.Xo)* aF (To.Xo)*
(15)
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About the asymptotic condition

© We then have
i= 97 (g) -
1 1) ((To.xo)*Tl.x1>+(T0.xo)* (152> + (1 1) (Toxo)* <1éz>

~(1 1) ((To.xo)*Tl.x1>+(T0.x0)* <1§> e oE(?) (16)

Li* only words s.t. |w|x >0
In this way Li = Li* +e%'°8(2) and we get

lim e "8 [j = |im Lie "8 —1 (17)
z—>0 z—>0

this allows to prove unicity by means of the differential Galois group
of (12).
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About the asymptotic condition/2

Q Li = Gj is a shuffle character (due to the fact that the multiplier and
the asymptotic condition are grouplike i.e. characters).

@ For a¢] —,0], the integrator {7 0% can be replaced by §* 0% one
then finds a series G, which fullfils system (12) where the asymptotlc

initial condition is modified to

lim = §(z)e~0198) 18 = 15/g)xy.

@ Due to the fact that, on the one hand the asymptotic counterterm
e—0(log(2)—10g(2)) is grouplike (i.e. a shuffle character) and, on the
other hand the multiplier is primitive (i.e. a shuffle infinitesimal
character), one easily sees that all G, are shuffle characters.

@ Computing (Ga|xg) = 22 ,=0¢Galxg) = ellog(z)—log(a)) — z/a,
one sees that all shuffle characters G, are different?.

“More generally, the possibility of setting a series in the RHS place of a scalar
product has been explored in [6].
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Domain of Li (definition)

In order to extend Li to series, we define Dom(Li; Q) (or Dom(Li)) if the context
is clear) as the set of series S = >, _; S, (decomposition by homogeneous
components) such that >} _, Lis,(z) converges for the compact convergence in Q
(see [6]). One sets

Lis(z) := ). Lis,(2) (18)

n=0

The ladder (upper part)

Li,

(CCXD, mx, Lxx) < H(Q)
Dom(Li: ) Lis” H(Q)

Examples

Lig(2) = 2, Lig(2) = (1= 2)™"; Licugrpy(2) = 2°(1 —2)7P
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Last part: a two-state transducer for the Collatz
function.
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Recall: Division by 8 with transducer

9 me
9 1492
7




Division by 2 in base 3.

0[0 ) 0/1 0/0 1|0 o0]1
2|1 22

1) (2 Wiz el

1/1 0|2 112
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Collatz function, conjecture and plan.

Collatz function:

g if n iseven
f(n) =
3n+1 if n odd

Collatz conjecture:
For any n > 0, there exists p > 0 such that fP(n) = 1

3L 1w-5Hs s fag s fio flg

Plan:
Explicit automaton realizing fP (or equivalent) according to p.
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Shortcut Collatz.
Shortcut Collatz function
if n is even

n) =
0 { 2l if n odd

Collatz conjecture with g:

w NIS

g

3_ 8,5 6,8 _¢&, <

45,25,

and the corresponding transducer. We observe that the TS (transition
structure) is that of the Division by 2 in base 3.

Start 1]0

0/0
2|1 @
o€

0/1
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Shortcut Collatz/2

Transducer squared (for g2)

(see MPS On a theorem of R. Jungen, 1962 [17]).
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Shortcut Collatz/2

Transducer squared for g2, transition structure.

1]0
00 CJol 1 201
210 2J2 0j2 |0J0
1]2
o1 J2) 2|2
11
We get the division by 4 in base 3. Relabelling of the states done by
reverse base 2 i.e. a® b — 2b + a.
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Division by 23 in base 3:

«40>» «Fr» «E» <«

Do
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Division by 23 in base 3:

SO

«40>» «Fr» «E» <«

Do
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Division by 23 in base 3:

«40>» «Fr» «E» <«

Do
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Division by 23 in base 3:

2/0

e

SO

«40>» «Fr» «E» <«

Do
47/86



Division by 23 in base 3:

2/0

.
10
0/0
.

SO

«40>» «Fr» «E» <«

Do
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Division by 23 in base 3:

.
2/0

10
0/0
.

SO

«40>» «Fr» «E» <«

Do
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Division by 23 in base 3:

.
2/0

10
0/0
.

SO

«40>» «Fr» «E» <«

Do
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Division by 23 in base 3:

«40>» «Fr» «E» <«

Do
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Division by 23 in base 3:

«40>» «Fr» «E» <«

Do
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Division by 23 in base 3:

«40>» «Fr» «E» <«

Do
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Division by 23 in base 3:

«40>» «Fr» «E» <«

Do
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Division by 23 in base 3:

0/2 2/1 (]

Construction:

i i
i+l
0 0
d-1 d-1
J J i
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Division by 23 in base 3 (TS of g°) and terminal function.

48/86



Concluding remarks

© We have indicated the structure of automaton with multiplicities in a
(non necessarily commutative) semiring R, following the original
thought of Eilenberg and Schiitzenberger.

@ The computation of its behaviour, a generating series, entails that of
the star of a matrix (in general with noncommutative coefficients).

© When one specializes R to R = ¥ x k (k a ring of operators), one
gets a powerful notion of >-action which is powerful enough to, for
example, generate Hyperlogarithms and, through Lazard elimination,
explain the asymptotic initial conditions.

© When one specializes R to R = ¥ x k (k a commutative semiring),
one gets the classical structure of automaton with multiplicities in k,
rational series, rational calculus.
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Concluding remarks/2

o

o

o

o
10

If, moreover, k is a field, one can use the this rational calculus to
compute within every Sweedler's dual of a k Hopf or bi-algebra.

The trick is the following. Let o : X—.4 be an (indexed) generating
family of A, p: k(X)—A the corresponding (onto) morphism and
p* o A* — kX)) its transpose. Then, due to the formula

1 (fuuy) = p*(f)u we have p*(A°) = k™ X)) n Im(p*) which
allows the rational calculus within A°.

If the multiplicities are taken in some R = ¥ X I, one gets the
classical “letter-to-letter” finite states transducer structure. In this
way, states can encode cases.

We have described an unexpectedly simple two-state “letter-to-letter”
transducer which produces the Collatz function.
This opens the door to a geometrization of the Collatz conjecture.

Such methods could shed a new light on Erdés conjecture [10].

~ e
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Reserve/1

Let P e C{X) and f(z) = {L|P) = 3, cx+{Plw) Liy.
1) The following conditions are equivalent
i) f can be analytically extended around zero.
i) PeC{X)x ®@C.1xx.
2) In this case Q itsel can be extended to
Q; = C\(] — o0, —1] U [1, +o[).

°The domain, for z of Lip.
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A useful property

Let B = (k{X), conc,1xx,/A, €) be a conc-bialgebra, then
@ The space k(X)) is closed by the convolution product ¢ (here tA)
given by

(SoTlwy={® T|A(w)) (19)
Q If kisa Q-algebra and A, : k.X — k.X® k.X cocommutative, B is
an enveloping algebra iff A, is nilpotent?.

© If, moreover k is without zero divisors, the characters (x*)ex are
algebraically independant over (k{X), o, 1x#) within (k{X),o, Lxx).

?See CAP 2017
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A useful property/2

Property (3) is no longer true if A is not moderate. For example with the
Hadamard coproduct and x % y, one has y ® (x)* = 0.

Examples
Shuffle: (ax)*m (8y)* = (ax + By)*

Stuffle: (ay;)*w (Byj)* = (ayi + Byj + aByitj)*
g-infiltration: (ax)* 14 (By)* = (ax + By + afBox  x)*
Hadamard: (ca)* ® (8b)* = 1xx if a + b and (aa)* © (Ba)* = (aBa)*
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Starting the ladder

(CX), m, 1xs) —* % C{Liy}uexs

l [

i(1>
(COXY, m, L ) (—x0)%, X)) —= Co{Liw }wexs

Domain of Li (definition)

In order to extend Li to series, we define Dom(Li; 2) (or Dom(Li)) if the context
is clear) as the set of series S = >, _; S, (decomposition by homogeneous
components) such that >} _, Lis,(z) converges for the compact convergence in

Q. One sets
Lis(z) := Y Lis,(2) (20)

n=0

Examples

—B

Lixg‘ (2) =z, L’xl* (z2) =(1- Z)_l : Li(axo-‘r,é’)q)* (z2) =2z%(1-2)
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Properties of the extended Li

Proposition
With this definition, we have
© Dom(Li) is a shuffle subalgebra of C{ X)) and then so is
Dom"™*(Li) := Dom(Li) n C™*{(X))
@ For S, T € Dom(Li), we have

Ligy 7 = Lis . LiT

Examples and counterexamples
For |t| < 1, one has (txp)*x1 € Dom(Li, D) (D is the open unit slit disc),
whereas x§x; ¢ Dom(Li, D).

Indeed, we have to examine the convergence of >, o Lixsy, (2), but, for
z €]0,1[, one has 0 < z < Lixx (z) € R and therefore, for these values

Y n>0 Lixgx (2) = +00.
In fact, in this case (|t| < 1)
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Coefficients in the Ladder

(CX), m, 1xs) ——2* % C{Liy}exs

l o

(CUX, 1, L ) [, (—x0)*, %] ——2 Co{Liw bwexcr

[ o |

C{X ) m C™H ¢ x0 ) m C2¢x, ) BRSNS {Liy bwex

Were, for every additive subgroup (H,+) = (C, +), Cy has been set to the
following subring of C

Ch = C{z*(1 — 2) P} 0 pen - (22)
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The arrow Liﬁl)

Proposition

i. The family {x;, x;"} is algebraically independent over (C{X), m, 1x*)
within (C{X )™ m, Lxx).

ii. (CX), m, 1x#)[x§, X, (—x0)*] is a free module over C({X), the
family {(xé“)m’(m(xf)m’}(h,)ezﬂ\r is a C(X)-basis of it.

iii. As a consequence, {wm (x¢) ™ um (xj) ™/} ,cxx is a C-basis of it.
(k,1)EZxN
(1)

iv. Lis¢” is the unique morphism from (C{X), m, 1x*)[x§, (—x0)*, x{'] to
H () such that

Xt =z, (—x0)* >z tand xf - (1 —2)7*

v. Im(Li") = Cz{Liw bwex+.

vi. ker(LiEl)) is the (shuffle) ideal generated by x§ mxj" — x;* + Lxx.
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Sketch of the proof for vi.

Let J be the ideal generated by xj m x;" — x{* + 1x=. It is easily checked,
from the following formulas?, for k > 1,

wixgm () MK = wm (o) ™K — wm (o) R [T],
win (—x0)* m () ™% = wm (—x0)* m (x§) ™K+ wm () K [T],

that one can rewrite [mod J] any monomial wm (x¢) ™/ m (x§) ™k as a
linear combination of such monomials with k/ = 0. Observing that the

image, through Ligl), of the following family is free in H(Q)
{wm () ™ 1 (66) ™R} (w1 k)0 xNx (01 L (X x {0} x ) (23)

we get the result.

?In the Figure below, (w, /, k) codes the element w i (x;) ™'
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The Lie group of characters.

Group of characters G.

7
77777
77777777
707777777777

L(G): Infinitesimal characters.
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End of W

The easy exercise

We first prove that "“it is a easy exercise to see that W is a free
Ho-module with basis {log"(z)},>0"
@ We first prove that (3, ¢ fi.log" = 0) = (Vi e F)(f; = 0)
@ Let S = {i € F|f; + 0} be the support of (f;);er. For all f € W\ {0},
we have f ~g a.z¥ for a unique monomial a.zX with ay # 0 (itis
the valuation term of the Taylor series of f at zero). Then for i € S,
we have f;log" (z) ~g ay,.z% log" (z). We then order S by i < j iff
ki > kj or, ki = kj, nj < n;j (it is the total order of the orders of
infinity).
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Q If S = J we are done otherwise, let iy be the greatest element of S

for <, we have

Az) = ) filog™ = ) fi.log" ~o .20 log™(2)  (24)

ieF

whence lim,_,q 3
z

o log"o(z)
this case is impossible. ]

i€eS

A
@) = g, but ayg # 0 which proves that
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Differential equations and BTT (Basic Triangle Theorem).

Theorem (DDMS [1])

Let (A, d) be a k-commutative associative differential algebra with unit
and C be a differential subfield of A (i.e. d(C) < C). We suppose that
S € ALX)) is a solution of the differential equation

d(S) = MS 0 <S’1X*> = ]-A (25)

where the multiplier M is a homogeneous series (a polynomial in the case
of finite X) of degree 1, i.e.

M=) ucxeC{X). (26)

xeX

[1] Independence of Hyperlogarithms over Function Fields via Algebraic Combinatorics,
M. Deneufchatel, GHED, V. Hoang Ngoc Minh and A. I. Solomon, 4th
International Conference on Algebraic Informatics, Linz (2011). Proceedings, Lecture
Notes in Computer Science, 6742, Springer.
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Differential equations and BTT/2

Theorem (cont'd)

The following conditions are equivalent :

@ The family ({S|w))wex= of coefficients of S is free over C
Q@ The family of coefficients ((S|y))yexui1,x) fs free over C
@ The family (ux)xex is such that, for f € C and oy € k

ZOéxe (Vx e X)(ax =0) .

(27)
xeX

@ The family (ux)xex is free over k and

d(C) n spank((ux)xex> — {0} . (28)
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The particular case of Hyperlogarithms.

© Hyperlogarithms are analytic functions produced as coordinates of a
solution of a Non Commutative Differential Equation (NCDE) of the
type

S'=MS (29)

where S € H(Q){X) and M, the multiplier, is of the form

" Aj X
M= SN +0 (30)
i=1

)
Z — a;

(Polylogarithms are a subclass of Hyperlogarithms (see [4]).
In order to get a solution of this NCDE we have to pile up sections of
the differential operators ﬁd% (i.e. integrators) of this
differential equation labelled by letters. For this reason it is natural to
use a transducer with values within endomorphism algebras
(integrators). We illustrate it below with Polylogarithms.

= = Yot
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Noncommutative Geometry

In 1992, I. M. Gelfand was in Paris with V. Retakh (IHES), we met him a
lot of times during his visit, but we did not know that this would lead him
to ask Alain Connes to better explain his conjecture about the rationality
of some elements of the (reduced C*-algebra) of the free group. We
eventually solved it with Christophe, using tools and properties of
automata theory and this resulted in publication [8]. Let me tell the story
and detail the conjecture ...
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Connes conjecture itself

Soit X be an alphabet (a set) and ' = F(X), the group freely generated
by X. We define

e for an arbitrary function f : [ - C

1fll2= >} f(g) € [0,0] (31)
gel
o I?(T) = {f:T — C t.q. ||f|]2 < o} (with the canonical basis (€g)ger)

e the regular representation by “shifts” I — L(/?()) (bounded
operators), extended faithfully to C[I'] (the algebra of the free group)
by linearity. Then C[I'] < L(/2(I))

e C#(I) is the norm closure of C[I'] within £(/?(I")) (called by
specialists, the reduced C* algebra of the free group).
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Connes conjecture itself/3

Let’s start with the free group (here F»)

ﬁ%
T

44+,

% *#
+ﬁ

|
[

+
%
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Connes conjecture itself/4

@ shows that the free group can be realized by reduced words (the
length of an element g € I is the length of the reduced word
representing it)

o take a barred (disjoint) copy of the alphabet X = X L X and form the
quotient
F(X)=X*/(xx = xx =1) (32)

i.e. apply the rewrite rules (xx — 1, Xx — 1)
o see that the action on the nodes is (one step each)

a = east, b = north, 3 = west, b = south

@ see the action by shifts on the (unoriented) edges.
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Connes conjecture itself/5

The algebra C(I') is the space where another sort of closure will take
place.
Let (C(I')), be the smallest subalgebra B — C*(I') such that ' € B and

x € Ma(B) 0 [Ma(CF ()] = x € [Ma(B)] (33)

You can imagine the making of this “rational completion of order n" by
the following process from By = C[I']. If By is constructed, then one
obtains B as follows

@ form the matrices (with non commutative coefficients) M, (By)

@ take the ones which are regular (invertible), find the inverses of them,
add their coefficients to By and make the closure by linear
combinations and products

the wanted closure is Up>0Bp,
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Connes conjecture itself/6

One has

(M (GM)2e - (GFM)nc - G (34)

the rational completion of order nis (C*(I')) = Up=1(CF(T))n.
Note that these rational completions can be defined for the situations

A; © A where A; are arbitrary k-AAU (we will use it later on), the usual
rational closure is ( .);.
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Connes conjecture itself/7 : the operators P and F

Let T'W be the set of unoriented edges of the Cayley graph of I'. Such an
edge is a pair {g, gx} with x € X and /(gx) = I(g) + 1. We build a

M-module with two sectors H* by
H* = (), H = PY)@C (35)
and an involution F by
HT H~
%t(g P01>=F (36)

where P : Ht — H™ is the isometry defined by

Per = 1¢; Peg = {ey(g): €g} for g e T — {1} (37)
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Connes conjecture itself/8 : the finite rank condition

Note that a € I' acts by isometries on H by

a{g,gx} = {ag,agx}, alc =0, aeg = €5 (38)

and then one can identify the elements of C;(I') with operators in L(H).
We will denote (C;*(I"))fin the algebra of elements a € Cj*(I') such that
[F,a] is of finite rank.

The conjecture was

(G (M) fin = (C(T)) (39)
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Connes conjecture itself/8 : steps of the proof

o first prove that

(M= = (G M) = (CN) = (C(M)in  (40)

@ remark that every ae€ C(I') can be represented by a series
a(lr) = X ger ag g (because a(ug) = a(u)g and this series is in 12(T))

@ denoting m(g) the (unique) reduced word associated with g € I', we
establish that if the series m(a) = >, g m(g) is rational (i.e. that
its orbit by shifts - i.e. letter cancellation - is of finite rank, in other
words a rational series is a representative function on the free
monoid) then a€ (C(I))1

e if ae C¥(I) is such that [F, a] is of finite rank, then m(a) is rational

This ends the proof.
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Rational series and duality

Let A be an alphabet and k a field, let us note A*, the free monoid with
base A, k(A) = k[A*] its algebra (noncommutative polynomials),

k{ Ay = k**, the corresponding set of series and

(.,.) : k{AY» ® k(Ay — k, the canonical pairing between series and
polynomials. One defines canonical actions (see talk by Dominique Perrin)
of A* on series by

Su= Y (S,uw)w, uS= > (S, wu)w (41)

WEA* wEA*

One has the following theorem.
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Let S € k{A) TFAE

i) The family (S.u)uea* is of finite rank.

i) The family (u.S) eax is of finite rank.

i) It exists n € N, A € k**", y : A* — k"™ (3 multiplicative morphism)
and v € k™ such that, for all w € A*

(S, w) = Au(w)y (42)

iv) (If A is finite, known as the theorem of Kleene-Schiitzenberger) The
series S is in the rational closure of k(A) within k{A).

Remarks 1) For the sake of Combinatorial Physics (where the alphabets
are usually infinite, (iv) has been extended to infinite alphabets and
replaced by

iv') The series S is in the rational closure of k* (linear series) within

kLA
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Sweedler's duals

Remarks (cont’d) 2) This theorem is linked to the following
(Representative functions on semigroups, from the book of Eichii Abe)

In fact, rational series are exactly representative functions on A*. If one
considers the multiplicative semigroup of a k-AAU and one restricts to the
linar forms, one gets exactly the Sweedler's dual. Hence the rational series
are also the Sweedler's dual k(A)°.
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Charm of dualization

States are linear forms

Observation functions are linear forms

Allows to swap between commutativity and co-commutativity (e.g.
Connes Kreimer)

e Combinatorial interest (dual laws : shuffle, stuffle, infiltration, bases
in duality)

So, one often wants to compute the dual of a Hopf algebra or a bialgebra
(H, s, 1, A, €) and one should obtain some (H°, ua,1c, Ay, €1)

83/86



Examples

o (Shuffle algebra) (k(A), conc, 1%, €) has (restricted) dual
(k<A>, m, 1ax, Aconc, 6)
o (Stuffle algebra) (k(Y), conc,1a%, A, €) where Y = {y;};>1 and
the A ., is defined on the letters by
AM(YS):YS®1+1®YS“‘ Z }/i®yj (43)
i+j=s
o (deformations)
AD () =y @1 +1®ys +q D ¥i®y (44)
i+j=s
Note that some laws are better understood by their dual (shuffle,

stuffle, infiltration).

84/86



One can always dualize a comultiplication by
(fxn glw) =<F @ g|A(w)) (45)

but the same trick does not work for the products, and one has to find the
domain of a possible comultiplication

A* W) (A® A)*
naty natp

, (1)
Dom(* (1)) A* @ A*

This domain is exactly the Sweedler's dual A°. Due to associativity, it has
the very nice property that *(u)(A°) ¢ A° ® A°.
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Perspectives

@ The greatest dual of an algebra is the Sweedler’s dual (mind that it
can be (0), as for the Heisenberg-Weyl algebra)

@ Many Hopf algebras of Combinatorics and Physics are free
(commutative or noncommutative) and then Sweedler's dual
separates the Hopf algebra

@ Automata theory, by means of the rational expressions, provides a
convenient language to harness this dual (which contains the other
duals).
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