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Let us recall the notion of the second Sklyanin Poisson bracket.
Let G be a classical Lie group and Fun(G ) be the space of
functions on it. Then the bracket

{f , g}Sk = ◦ (ρl(r)(f ⊗ g)− ρr (r)(f ⊗ g))

is Poisson on G , if

r =
∑
α>0

Xα ⊗ X−α − X−α ⊗ Xα.

As usual we assume the generators Xα to be normalized so that

< Xα,X−α >= 1.
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If G = SL(N), this bracket is well de�ned on the enveloping vector
space (i. e. we cancel the condition detT = 1). We assume it to
be de�ned on Fun(gl(N)∗) = Sym(gl(N)) and denote it {., .}Sk .
This bracket possesses the following property

{f , g}Sk = 0, f , g ∈ Sym(gl(N))

for any two functions central w.r.t. to the linear gl bracket.
As such functions we can take TrT k , where T = ‖t ji ‖1≤i ,j≤N and

{t ji , t
l
k}gl(N) = l ji δ

l
k − l lk δ

j
i .

It should be emphasized that the brackets {., .}Sk and {., .}gl(N) are
not compatible. Instead, the bracket {., .}Sk is compatible with its
linearization, which is linear and is called the �rst Sklyanin bracket.

Dimitry Gurevich IITP Re�ection Equation algebras versus Quantum Groups



In the late 80's I studied another "r -matrix bracket"

{f , g}r = ◦(rad ,ad(f ⊗ g)), f , g ∈ Sym(gl(N))

where r ∈ g⊗2 is a bi-vector.
However, this expression is a Poisson bracket if r is skew-symmetric
and satis�es the classical YB equation

[r12, r13] + [r12, r23] + [r13, r23] = 0.

As an example of such r we can take H ∧ X ∈ sl(2)∧2.
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Drinfeld quantized such bi-vectors, i.e. for each such r he
constructed a braiding R , i.e. an operator R : V⊗2 → V⊗2 such
that it meets the braid relation

R12 R23 R12 = R23 R12 R23,

and is involutive R2 = I .
So, this braiding cannot come from a QG.
However, by using it I introduced a "braided version of Lie algebra
gl(N)" in the space End(V ) by putting

[X ,Y ] = ◦(X ⊗ Y −R(X ⊗ Y )),

where R : End(V )⊗2 → End(V )⊗2 is an extension of the involutive
braiding R . (Note that R is also an involutive braiding.)
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Fortunately, if g = sl(N) and r is as above, the bracket {f , g}r can
be slightly modi�ed and thus we can get after a quantization an
algebra related to the QG Uq(sl(N)).
If g = sl(N) in the decomposition of the space g⊗2 onto irreducible
g-modules the component g itself comes twice: once in Sym(2)(g)

and once in
∧(2)(g).

By considering a properly normalized sl(N)-covariant map

α : Sym(2)(g)→
∧(2)

(g),

and by adding it to the r -matrix above, we get a Poisson bracket
onto the space Sym(gl(N)).
This Poisson bracket will be denoted {., .}RE since its quantum
counterpart is the Re�ection Equation (RE) algebra.
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It should be emphasized that the bracket {., .}RE is compatible
with that {., .}gl(N) and their linear combination can be quantized
via the so-called modi�ed RE algebra, de�ned via the system

R L̂1 R L̂1 − L̂1 R L̂1 R = R L̂1 − L̂1 R, L̂ = ‖l̂ ji ‖.

This algebra is a two-parameter deformation of the algebra
Sym(gl(N)).
For other classical Lie algebras such a map α does not exist: in the
decomposition of g⊗2 onto the irreducible components g itself
comes once.
This is the reason why a similar deformation of the algebra U(g)
(and even Sym(g)) for g belonging to other series does not exist.
However, for the algebras Fun(G ) there exist two deformations:
one of RTT type (arising from the Sklyanin bracket) and the other
of RE type arising from the bracket { , }RE , de�ned on the group.
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What are quantum analogs of the Poisson brackets {., .}Sk and
{., .}RE?
For the former bracket it is the RTT algebra, generated by the
entries of the matrix T = ‖t ji ‖ subject to

R T1 T2 = T1 T2 R.

For the latter one it is the so-called Re�ection Equation algebra,
generated by the entries of the matrix L = ‖l ji ‖ subject to

R L1 R L1 = L1 R L1 R.

The both algebras are unital.
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The braiding R entering the both de�nitions is the so-called Hecke
symmetry since it meets the Hecke condition

(R − q I )(R + q−1 I ) = 0.

We assume q to be generic, i.e. such that kq = qk−q−k

q−q−1 6= 0.

Nevertheless, there exists a lot of Hecke symmetries, which are not
necessarily related to a Lie algebra. For such R the both algebras
can be de�ned by the same formulas. We denote them
correspondingly T (R) and L(R).
If R comes from the QG Uq(gl(N)), it and all corresponding
objects are called standard.
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In the both algebras it is possible to de�ne quantum determinants
detq T and detq L. In all algebras L(R) the quantum determinants
are central. In the algebras T (R) its centrality depends on R .
If R is standard, the quantum determinant in the RTT algebra is
central.
As for the QG Uq(sl(N)) itself, it can be de�ned as the Hopf dual
to the algebra T (R)/ < detq T − 1 >.
Observe that while the RE algebras L(R) for any R , deforming the
usual �ip P (for instance the Crammer-Gervais one), is a
deformation of the enveloping algebra U(gl(N)), the QG Uq(sl(N))
deforms only the coalgebraic structure of U(sl(N)).
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There exists a construction describing the center of the QG. In the
paper [RTF] 1989 (Leningrad Math. J.) there are de�ned two
matrices T+ and T− composed with entries belonging to the QG
Uq(gl(N)) which are upper (resp., low) triangular and meet the
RTT type relations

R T±
1
T±
2

= T±
1
T±
2
R, R T+

1
T−
2

= T−
1
T+
2
R.

Also, a condition on the diagonal components is imposed:
T− = T+ on the diagonal.
Let us introduce the matrix L = T+(T−)−1. Then according to
RTF the elements Trq L

k , k = 1, 2... belong to the center of the
QG Uq(gl(N)).
Note that the matrix L generates the RE algebra. Thus, we get a
map from the RE algebra to the QG. Note that this map is not
unique.
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Here Trq is the quantum trace, de�ned as follows

TrqA = TrCq A,

where Cq is a diagonal matrix, composed from powers of q. Thus,
if N = 2, then it can be taken as Cq = diag(q−1, q).
However, for "exotic" Hecke symmetries, constructed by myself,
the corresponding the matrix Cq = CR can be non-diagonal. The
problem of classi�cation of the matrices CR is equivalent to
classi�cation of the Hecke symmetries.

Dimitry Gurevich IITP Re�ection Equation algebras versus Quantum Groups



Namely, the realization of the QG Uq(sl(N)) via the RTT relations
from [RTF] was used in the papers by Jing, Liu, Molev
"Eigenvalues of quantum Gelfand invariants" and "The
q-immanants and higher Capelli identities".
By Gelfand invariants the authors mean the elements TrqL

k (we
call them power sums). They computed the values of the power
sums in the irreps of the QG and thus they obtained a quantum
analog of the Perelomov-Popov formula. The PP formula says that
in the irreducible U(gl(N))-module Vλ labeled by the partition
λ = (λ1 ≥ λ2... ≥ λN), where λi are non-negative integers, the
quantities Tr Lk become scalar operators χλ(TrLk)I and

χλ(TrLk) =
∑
i

(λi + N − i)k
∏
p 6=i

λp − λi − p + i + 1

λp − λi
,

Dimitry Gurevich IITP Re�ection Equation algebras versus Quantum Groups



However, the problem of describing the center is more natural for
the RE algebras than for the QG. Let R be any even (or GL(N)
type) Hecke symmetry (for instance the standard one). Then the
generating matrix L = ‖l ji ‖ of the corresponding RE algebra is
subject to the Cayley-Hamilton identity, i.e. a polynomial relation

P(L) = 0, where P(t) =
K∑

k=0

(−1)N−kak t
k

is a polynomial with central coe�cients.
Then let us introduce "eigenvalues" µi of the matrix L in a natural
way ∑

i

µi = aN−1,
∑
i<j

µi µj = aN−2 . . .
∏
i

µi = a0.

They are assumed to be central in the extended algebra
L(R)[µ1...µK ].
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We assume the leading coe�cient to be 1. (It is possible since R is
even.)
If R is a deformation of the super-�ip Pm|n, then K = m + n. In
this case the leading coe�cient is not a number. In this case we
introduce two families of "eigenvalues" µi , i = 1...m and
νi , i = 1...n which are assumed to be central in the extended
algebra L(R)[µi , νi ].
Anyway, a polynomial relation with central coe�cients for a matrix
with non-commutative entries is a very exceptional property. It is
known for the generating matrices of the enveloping algebras of
some Lie algebras and for the RE algebras. For a matrix composed
of entries from the QG Uq(gl(N)) this property is possible since the
corresponding RE algebra is embedded in the QG Uq(gl(N)). This
construction is known only for the standard R .
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The eigenvalues µi and νi are very useful tools for parametrization
of the central elements from the RE algebra. Thus, the power sums
can be parameterized via the eigenvalues µi and νi as follows

pk(L) =
m∑
i=1

µki di +
n∑

j=1

νkj fj ,

di = q−1
m∏
p 6=i

µi − q−2 µp
µi − µp

n∏
j=1

µi − q2 νj
µi − νj

,

fj = −q
m∏
i=1

νj − q−2 µi
νj − µi

n∏
p 6=j

νj − q2 νp
νj − νp

.
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Note that the eigenvalues µi , νi become scalar operators in irreps of
L(R). Thus, we get three questions
1. How to construct irreps of L(R)?
2. What are values of the quantities µi , νi in these modules?
3. What is TrR? More generally, what are unusual traces and in
which algebras they have to be introduced?
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Recently, Mikhail Zaitzev (Saponov's student) has computed the
value of µi in the modules Vλ under condition that R is even

χλ(µi ) = q−2(λi−i+K).

Here K is the degree of the CH polynomial for L.
This result enables us to compute the characters χλ(pk) and the
characters of the Schur polynomials.
In particular, the quantities χλ(pk) are equal to these computed in
[JLM] but in a much more general situation. Observe once more
that we do not use any object of QG type. We are dealing only
with the RE algebras, associated with any even Hecke symmetry.
Note that the PP result can be obtained by a "proper" passage to
the limit q = 1.
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Now, we compare the properties of the RTT algebra and these of
the RE one.
First of all, in the algebra L(R) there is a center looking like that of
U(gl(N)) if R is even or U(gl(m|n)) if R is not even.
In the algebra T (R) the center contains only detRT (for some R).
However, in this algebra there is a commutative subalgebra (we call
it Bethe), generated by the following elements

TrR(1...k)T1...Tk f (R1, ...,Rk−1),

where f is any polynomial in R1, ...,Rk−1.
Note that the center in the RE algebra L(R) is constructed by
similar formulas

TrR(1...k)L1...Lk f (R1, ...,Rk−1),

where
L
1

= L1, Lk = Rk Lk−1 R
−1
k .
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Also, note that in the de�nition of the Bethe subalgebra of the RTT
algebra it is possible to use the usual trace instead of the R-trace.
Let us explain this claim. We have

TrR(1...k)T1...Tk f = Tr(1...k)C1 C2...Ck T1...Tk f

Let us denote Ci Ti = T̃i . Thus we have

Tr(1...k)C1 C2...Ck T1...Tk f = Tr(1...k)T̃1...T̃k f

. Also, observe that in virtue of the relation

R C1 C2 = C1 C2 R,

we have that the matrices T̃i are subject to the RTT relation

R T̃1 T̃2 = T̃1 T̃2 R.

However, in the RE algebras we have to use the R-trace.
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Other discrepancies of these algebras are
1. The RE algebra (in the standard case) can be equipped with the
adjoint action of the QG Uq(sl(N)) but the RTT algebra cannot.
2. The RTT algebra can be equipped with a bi-algebra structure
whereas the RE algebra can be equipped with the braided
bi-algebra structure.
3. On the RE algebra it is possible to introduce analogs of partial
derivatives in the generators and thus to introduce an analog of the
Weyl-Heisenberg algebra
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These "quantum partial derivatives" are introduced via the
following system

R L1 R L1 = L1 R L1 R,

R−1D1 R
−1D1 = D1 R

−1D1 R
−1,

D1 R M1 R = R M1 R
−1D1 + R.

The �rst line de�nes a RE algebra L(R). The second line de�nes a
RE algebra D(R−1). The third line is the so-called permutation
relation between two algebras.
Namely, the entries of the matrix D = ‖∂ji ‖, generating the algebra

D(R−1), play the role of partial derivatives in l ji :

∂ji =
d

d l ij
.
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Note that in the classical limit (as R = P) the above system
de�nes Weyl-Heisenberg algebra. Now, we describe its role in the
Capelli identity and exhibit its quantum analogs.
First consider a classical low-dimensional example n = 2. Let

L =

(
a b
c d

)
, D =

(
∂a ∂c
∂b ∂d

)
.

The matrix L has commutative entries, which generate Sym(gl(2)).
The matrix D is composed from the partial derivatives. Then the
matrix L̂ = LD is subject to the relation

PL̂PL̂− L̂PL̂P = PL̂− L̂P.

This means that the matrix L̂ is the generating matrix of the algebra
U(gl(2)). Otherwise stated, the algebra U(gl(2)) is represented by
di�erential operators. For n > 2 this construction is also valid.
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In the current q-setting there is a similar statement.

Theorem.

Let L = ‖l ji ‖1≤i ,j≤N be the generating matrix of an algebra L(R)

and D = ‖∂ji ‖1≤i ,j≤N be the matrix composed of the partial

derivatives, i.e. the matrices L and D are subject to the above

system. Then the matrix

L̂ = LD

generates the corresponding modi�ed RE algebra, i.e. it meets the

relation

R L̂1 R L̂1 − L̂1 R L̂1 R = R L̂1 − L̂1 R.
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This presentation of the matrix L̂ is used for "quantum
generalizations" of the Capelli identity. First, we remind the
classical one.
Let L̂ = LD in the classical setting. Then we have

rDet(L̂ + K ) = detL detD,

where K is the diagonal matrix diag(0, 1, ..., n − 1) and rDet is the
so-called row-determinant.
Observe that the term rDet(L̂ + K ) in the l.h.s. can be written in
the following form

cDet(L̂ + K ) = detL detD,

where K is the diagonal matrix diag(n − 1, ...1, 0) and cDet is the
so-called column-determinant. Also, the matrix form

Tr1..NA
(N)L̂1 (L̂ + I )2 (L̂ + 2I )3...(L̂ + (N − 1)I )N

is possible.
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Proposition.

In the RE algebra the following holds

TrR(1...m) A
(m) L̂1 (L̂

2
+q I )(L̂

3
+q2 2q I )...(L̂m +qm−1 (m−1)q I ) =

q−m detR L detR−1 D.

Here (m|0) is the bi-rank of R . (Note that in the classical case

m = N.)

Here, the determinants are the highest elementary polynomials,
mentioned above (recall that R here is even). Now, we describe its
far-going generalizations. In the classical setting they were obtained
by A.Okounkov and called higher Capelli identities. They are based
on the notion of immanants, also introduced by Okounkov.

Dimitry Gurevich IITP Re�ection Equation algebras versus Quantum Groups



Now, we are going to introduce a far-going generalization of the
Capelli identity. Let us recall some basic notions.

De�nition.

The Hecke algebra of An−1 type Hn(q) is a unital associative

algebra over C, generated by the Artin generators gi ,
i = 1, ..., n − 1 that satisfy the following relations:

gigj = gjgi , |i − j | > 1,

gigi+1gi = gi+1gigi+1, 1 ≤ i ≤ n − 2,

g2i = 1Hn(q) + (q − q−1)gi , 1 ≤ i ≤ n − 2,

q ∈ C \ {0,±1}.
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For a generic q the Hecke algebra Hn(q) is isomorphic to the group
algebra of the symmetric group C[Sn]. Consequently, Hn(q) is
semisimple and is isomorphic to the product of matrix algebras over
C:

Hn(q) ∼=
∏
λ`n

Matdλ×dλ(C).

Here λ are partitions of the integer n. The symbol dλ denotes the
number of standard Young tableaux of the shape λ. This
isomorphism takes diagonal matrix units Eλii ∈ Matdλ×dλ(C) to
primitive idempotents of the Hecke algebra, denoted by eλii .
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A big role is played by the so-called Jucys-Murphy elements

{jk}1≤k≤n; jk de�ned by the following formula:

j1 = 1Hn(q), jk = (gk−1 . . . g1)(g1 . . . gk−1), 2 ≤ k ≤ n.

Jucys-Murphy elements generate a maximal commutative
subalgebra in Hn(q). Moreover, the Hecke algebra center Z (Hn(q))
consists of all symmetric polynomials in the Jucys-Murphy elements.
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Any primitive idempotent is an eigenvector for all Jucys-Murphy
elements:

jke
λ
ii = q2c(k)eλii = eλii jk . (1)

Here c(k) = j − l is the content of the box with the number k in
the ith standard tableau of shape λ. Integers l and j are the row
and column indexes of the kth box respectively.
The following elements are the central idempotents of the algebra
Hn(q):

eλ =

dλ∑
i=1

eλii , 1Hn(q) =
∑
λ`n

eλ.

The idempotent corresponding to the diagram (1n) is called a
q-skew-symmetrizer and is denoted by A(n).
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The following is called "Quantum universal matrix Capelli identity".

Theorem.

In the Re�ection Equation algebra, constructed from an arbitrary

Hecke R-matrix, the matrix quantum Capelli's identity holds:

L
1
(L

2
+

J−1
2
− 1

q − q−1
) . . . (Ln +

J−1n − 1

q − q−1
) =

M
1
. . .MnDn . . .D1

J−1
1
. . . J−1n

Here, Jk = ρR(jk), and ρR is the R-matrix representation of the
Hecke algebra.
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Corollary. (JLM)

For any idempotend eλii the following equality holds:(
L
1
(L

2
− q−c(2)[c(2)]q) . . . (Ln − q−c(n)[c(n)]q)ρR(eλii )

)
=(

q−2(c(1)+···+c(n))M
1
. . .MnDn . . .D1

ρR(eλii )
)
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By applying the R-traces TrR(1...n) to the l.h.s. of the last formula,
we get the so-called "quantum immanant".

De�nition.

The element of the center of the RE algebra

TrR(1...n)

(
L
1
(L

2
− q−c(2)[c(2)]q) . . . (Ln − q−c(n)[c(n)]q)ρR(eλii )

)
is called quantum immanant.

Note that this quantum immanant does not depend on the number
i of the standard Young tableau.
Their classical counterparts were introduced by Okounkov.
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Now, I want to discuss some new perspectives of the RE algebras in
Integrable systems theory.
Recently D.Talalev has undertaken an attempt to generalize the
approach by Deift, Li, Nanda, and Tomei in "The full symmetric
Toda system" (1986).
The phase space of the system is the space of symmetric matrices
L. The authors have shown that the ratios of coe�cients in

∆k(λ) = det((L− λI )k)
Poisson commute among themselves with respect to the linear
gl(N) Poisson bracket.
Here, Ak means a sub-matrix of the matrix A in which the �rst k
columns and the last k rows are removed.
Talalaev has generalized this result to the standard RE algebra in
dimension 3 by using the Gelfand-Retakh quasi-determinants.
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Let us recall the notion of a quasi-determinant.
For any 1 ≤ i , j ≤ m let ri , cj be the i-th row and the j-th column
of X .
Let X ij be the submatrix of X obtained by removing the i-th row
and the j-th column from X . For a row vector r let r (j) be r
without the j-th entry. For a column vector c let c(i) be c without
the i-th entry.
Assume that X ij is invertible. Then the quasi-determinant |X |ij is
de�ned by the formula

|X |ij = xij − r
(j)
i (X ij)−1c

(i)
j .
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If T is the generating matrix of the RTT algebra with the standard
R , then the following holds

detqT = |T |11 |T 11|22...tNN

and the factors in this product commute all together.
However, it is not so if R is not standard.
Besides, it is not so if L is the generating matrix if the RE algebra.
However, if R is standard, according to the Talalaev's construction
we have the following.
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Let us consider the RE algebra with R standard and the generating
matrix

L =

 l1 a+ c+

a− l2 b+

c− b− l3

 (2)

Let us set
J1 = c+, J2 = l2 − b+(c+)−1a+,

J3 = c− − (b−, l3)

(
a+ c+

l2 b+

)−1(
l1
a−

)
.

Then J1, J2 J3 commute all together and their product equals
detRL.
However, for the higher dimensions the problem becomes much
more di�cult.
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In conclusion, remark that the RE algebras enable us to quantize
some bracket in a unusual way. Consider an example.
Let

{h, x} = 2x h, {h, y} = −2y h, {x , y} = h2

be a Poisson bracket on R3.
Its quantum counterpart can be presented as follows
L(R)/ < TrRL >, where R is standard.
The point is that this algebra is equipped with a unusual trace.
(Recall that according to B.Shoikhet a quantization of a Poisson
structure with the usual trace is possible if it is unimodular.)
However, it is not clear how is it possible to quantize the Poisson
bracket

{h, x} = 2x h2, {h, y} = −2y h2, {x , y} = h3

in a similar manner.
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Many thanks
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