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Goal

We give a conjecture on explicit forms of polyhedral realizations for
crystal bases of quantum groups in terms of monomial realizations.

Crystal bases B(c0), B(\): a powerful tool to study representations
of quantum groups

Polyhedral realization : a combinatorial description of B(o0)
Monomial realization : a combinatorial description of B(\)
Plan

1. Quantum groups

2. Crystal bases and polyhedral realizations
3. Monomial realizations

4. Main results

Yuki Kanakubo (lbaraki University) Polyhedral realizations and monomial realizati 22.11.2024 2/40



1. Quantum groups
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|
Lie algebras

Lie algebra g : Vector space/C with Lie bracket product [, ].
For x,y,z € g,

e [x,x] =0,
o [x,[y,z]l + [y, [z, x]] + [z, [x, ¥]] = 0.
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Lie algebras

Lie algebra g : Vector space/C with Lie bracket product [, ].

For x,y,z € g,
e [x,x] =0,
o [x[y,zll + 1y, [z, x|l + [z, [x, y]] = 0.
() Finite dimensional simple Lie algebras
(I1) Kac-Moody algebras
(I1I) Quantum groups
(IV) Quantum groups for Kac-Moody algebras
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(1) Finite dimensional simple Lie algebra g

simple means g has no ideal other than {0} and g.

Example) g = sl,(C) = {(i 3) la,b,c,d € C,a+d = 0}.

x,y]=xy—yx, xyeg=[xylecg

0 1 0 0 1 0
(oo 0o 5

these are generators of g. It holds

Putting

[e,f]=h, [he]l=2e, [h f]=—2f.
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|
Theorem (Serre(1966))
g : finite dimensional simple Lie algebra. Then g has generators ¢;, f;
and h; (i € I ={1,2,--- ,n}) s.t.
o [hi7 hj] =0,
Q [e, f]] = dijhi,
@ [hi, e = ajey,
Q [hi, fi] = —ayf;
Q (ad g)' e = 0 for i # J,
Q (ad £;)%f, =0 fori+#].
Here, (ad x)y =[x, y]. A= (aj)ijes is called a Cartan matrix and
0 a;=2(i€el) ay<0ifi#],
e if a; = 0 then a; =0,
@ (a;) is symmetrizable (i.e., 3D : diagonal matrix s.t. DA is
symmetric) and DA is positive definite.
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|
(aj) is classified by Dynkin diagrams:

A,: e *o— - - — ° ° B,: e — .. —0——>0
1 2 n—1 n 1 2 n—1 n
n—1
°
C,: o o— . —e—e D,: e ._..._./
1 2 n—1 n 1 2 n— 2\,
n
® 0 o 7
Es: o ° l ° ° E;: o—o—l—o—o—o
1 2 3 4 5 1 2 3 4 5 6
LIRS
Es o—o—l—o—o—o—o
7 6 5 4 3 2 1
Fr: o ——0 ° G, : =>e
1 2 3 4 1 2
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Here,
e
I J
implies a;; = a;; = —1,
/ J
implies a;; = —1, a;; = —2,
—e
I J
implies a;; = —1, a; = —3. If / and j are not connected then

ajj = ajj = 0.
The structure and classification of cpx. finite dimensional simple
Lie algebras are well known.

~~The theory of fin. dim. simple Lie algebras are quite successful.
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Considering natural variations of fin.dim.simple Lie algebras, it can
be expected to obtain some new interesting theories.

Variations

@ Removing the positive definite condition for (a;;) —
Kac-Moody algebra.

Recall : When g is fin. dim. simple,
o ai=2(icl) a; <O0ifi#]
o if 3 = 0 then a; =0,
o (ajj) is symmetrizable (i.e., 3D : diagonal matrix s.t. DA is
symmetric) and DA is positive definite.

@ Quantization — quantum group.
@ Both — quantum group for KM algebra.
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(1) Kac-Moody algebras

Let A= (aj)ijes be a matrix s.t.
0 a;=2(i€l) ay<0ifi]j
o if aj = 0 then ajj = 0,

o (aj) is symmetrizable.

We need the following:

@ Let h be a 2|/| — rank(A)-dimensional vector space/C and we
assume that {hi}ic; U {dj}1<j<|i|-rank(a) is @ base of b.
o We take o; € h* (i € 1) s.t. aj(h) = aj, aj(dk) € {0, 1}.
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Definition
Let g be a Lie algebra with generators ¢;, f; (i € ) and b s.t. for
h,h €bhCy,
Q [hH] =0,
Q [e, f]] = dijhi,
Q [h. ] = a(h)e;,
Q [h, fi] = —a;(h)f;,
Q (ad )t %e =0 fori#}j,
Q (ad £;)%f, =0 fori+#].
g is called a symmetrizable Kac-Moody algebra.

Unlike fin.dim.simple Lie alg,
@ Kac-Moody algebras are infinite dimensional.

@ All non-trivial representations are infinite dimensional.
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In particular, when DA is nonnegative-definite and not positive
definite, g is called an affine Lie algebras.

Nonnegative-definite (a;) is classified by affine Dynkin diagrams:

n
)
Ag,l)l(n>3): /\
o~ o — ... — ° °
1 2 n—2n-—1
3
(1) l__
B,"1 (n=3) 1 2 1 n
(1) . S
G (=3 s
@) > 0 -+ ——O0——>0
Azn—z(”—3)-1 2 n—1 n

and DI, DV, AQ) 5, D, EM, ED, EN, MY, 6V and EP.

n—1 4
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(I Quantum groups (Drinfeld,Jimbo(1985)) (='similar’ algebra to g)

@ g : indeterminant,

r

[r]g =2 %1 for r € Lo, [rlg! := [rlglr — 1]q- -~ [1]q,
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Let g be a finite dimensional simple Lie algebra.
Let U,(g) be C(qg)-algebra with unit 1 with generators e;, f; and ¢"
(h € ®jciZh;) satisfying

o qO =1 qhq qh+h’

Q ¢"eiqg " = q"PMe;,

(s} q”f-q"’ = q““"(h)f

dih;
06‘, 5,]%,
1-a; 1—a; 1—a—k & .,
O N1 ] e el =0(i£)),
qi

ajj 1_31 —a,-j—k . .
Do G ] B e I )
qi

Here, D = diag(dy,--- ,d,). Uy(g) is called a quantum group
associated with g.

When ‘g — 1", we get relations of (universal env. alg. of) g.
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(IV) quantum groups for Kac-Moody algebras

We take A = (a;;), vector space ) and «; € h* just as in the
definition of Kac-Moody algebras :

Let (a;)ijes be a matrix s.t.
0 a;=2(iel) ay<0ifi#]j,
o if a; = 0 then a; =0,
@ Ais symmetrizable.
Let h be a 2|/| — rank(A)-dimensional vector space/C with base
{hi}ier U{di}1<j<ii)—rank(a).
We take a; € h* (i € 1) s.t. oj(h;) = a; and o;j(dk) € {0,1}.
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We can define U,(g) by the same way as in the case g is fin. dim.
simple:

Let U,(g) be C(q)-algebra with unit 1 and with generators ¢;, f; and
h(he ®iciZh; ® @B, Zd)) satisfying
e qO — 1, qhqh’ — qh+h
@ ¢"eiq " =g Me;,
Q q'fig"=qMF,
Q eff — fie = 0;S5=g",

U qi-q”

o -1 [ 7] e e —0(i2))

q%

a ].— i a;i— . .
o Ty [P At =062
q /
This Uy(g) is called quantum group associated with KM-algebra g.
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2. Crystal bases and polyhedral realizations
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|
Representations of U,(g) = (e;, f;, g") for a KM-algebra g

P .= {)\ € b*|A(hi), A(dk) € Z} : weight lattice
= {A € b7 [A(hi), A(dk) € Z=o}-
For A € PT, there exists a representation V(\) s.t. Jvy € V()) and

evy=20 (VI € /), q vy, = q V)\ (Vh € @,G/Zh D @de

V(/\) - <61 T fj-'r 12 |.j17 T 7.jr € />(C(q)—vect.sp.'

@ V/()\) is an analog of finite dimensional irreducible representation
L(A) of fin.dim.simple Lie algebra.
c.f.) 3¢, € L(X) and

el =0 (VI € /), hey = )\(h)fA (Vh c @ie/Zh,’),

L(>\) - <f_-]1 T f_}rg)\L/lJ I € l>(C—vect.sp.-
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Crystal base B(\) (Properties)
@ B(\) is a set with maps

&.f : B(\) = B(\) L {0},

which are ‘combinatorial analogs’ of ¢;, f; : V(A) — V()).
e JVv, € B())s.t.

B(\) = {fy - £, Valk € Zso, ju, -+ ,jx € I}\ {0}.

It holds #B()) = dim V().
@ There is a map wt : B(\) — P s.t.

Wt(fj-l Ce )i'v)\)(hi) = Eigen value of ;5.1 C. fJ-'k'V/\ c V()\) for th.

Yuki Kanakubo (lbaraki University) Polyhedral realizations and monomial realizati 22.11.2024 19 /40



|
Let U; (g) == (Fli € 1) C Uy(g).
* q" ~ U (9) by g"xq~" for x € U, (g).
* fi ~ U; (g) by the multiplication from the left.
* 3 & ~ U, (g), which is a modification of the multiplication of e;

Crystal base B(oo) for U (g) (Properties)

@ B(c0) is a set with maps
&, : B(oo) — B(oc) L {0},

which are ‘combinatorial analogs’ of €], f; : U  (g) — U (g).
e Vv, € B(0) s.t.

B(oo) = {f, -+ FVeo|k € Zso, j1,-++ .k € I}
@ There is a map wt : B(oo) — P s.t.
wt(f, - - £, Voo ) (h;) = Eigen value of f, -+ £, -vo € U, (g) for q.
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e For any A € PT, there is a map B(oo) — B(\), which is an
analog of U;(g) = V(A), £y -, = -+ fvi.
By studying B()), we know eigenvalues of V(\), dimV/(\) and
structures of tensor products and so on. B(o0) tells us a structure of

U, (9).

To study B(>), B()\), combinatorial descriptions are useful. They
have a bunch of combinatorial descriptions.

Today, we consider the polyhedral realization that is a description
of B(co) and monomial realization that is a description of B(\).
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Polyhedral realizations

Let . = (---, h, i) be a sequence from | = {1,2,---  n}.

23X ={(--- a0, a1)|a €Z, ax =0 (k> 0)}.
One can define maps denoted by £, & : Z>° — Z> 1 {0} and
wt : Z>° — P as follows:

Forr€Zsyanda=(---,a,a1) € Z>®,
o.(a):=a,+ Z a3 (r € Zs1),
j>r
= max,.;,—{o,(a)},
M&(@) := {r € Zz1i, = k, o,(a) = c¥(a)}.
wt : Z>° — P is defined by

e}
wt(a) == — E aj..
J
J=1
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One can define )
&, fi 1 Z° — 7° U {0}

as
(ﬁ((a))f =ar+ 6r,minM(’<)(a)7
(ék(a))r ‘=ar— 6r,maxM(k)(a) If O(k)(a) > 0 ; O.W. ék(a) = O
fora=(--,a, - ,a,a) € Z>.

Essential point : Above &, f; and wt are defined by only sum of
integers (in particular, without representation theory). Everybody
can compute them by following the above rule.
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Theorem (Nakashima-Zelevinsky)
There is an injective map

V, : B(oco) — Z°

st. V,(Voo) =(---,0,0,0) and ¥, commutes with §&;, f. and
preserves wt.

By this theorem, we can reduce calculations of &, 7, wt on B(o0) to
——
important

&, f;, wt on Z*.

N——

computable

Definition

Im(WV,)(= B(c0)) is called a polyhedral realization for B(c0).

Yuki Kanakubo (lbaraki University) Polyhedral realizations and monomial realizati 22.11.2024 24 /40



Example) g = sl3(C) = lat+e+i=0, : type Ay,

R Q o
> o o
- 0

L= (+,2,1,2,1,2,1).
The crystal graph of B(oo) is as follows:
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a
Example) g = sl3(C) = d lat+e+i=0, : type Ay,
g

>0 o
- %0

L=(-,2,1,2,1,2,1).

The crystal graph of (B(o0) =)Im(W,) C Z* is as follows:

o
o
—
~—
—~
o
\.I—‘
(=)
~—

-
/'\
: N
w\'-‘
N
o
N
o
N—r

Im(V,)
= {( ,33,32,31) € Zoo\al >0, a>a2>0, a,=0 (k > 3)}
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Problem

We'd like to know inequalities defining polyhedral realization Im(W,)
suchasa; >0, ap>a3 >0, a, =0 (k > 3).

Nakashima-Zelevinsky, Hoshino, Kim-Shin

e g: fin.dim.simple Lie alg., t = (---,n,---,2,1,n,---,2/1) =
an explicit form of the inequalities of Im(W,).

Hoshino (2013)

@ g : classical affine type, t =(---,n,---,1,n,--- /1) = an
explicit form of the inequalities of Im(W,).
Littlemann(1998)

@ g : fin. dim. simple, ¢ : ‘nice decomposition’ = an explicit form
of string cone S,.
(Im(W,) coincides with integer pts of a string cone.)
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K-Nakashima (2020), K(2023)

o If g is a classical Lie algebra or classical affine Lie algebra and ¢
is ‘adapted’ then the inequalities of Im(W,) are combinatorially
described by column tableaux or Young walls.

K-Koshevoy-Nakashima(2024)

o If g is a classical Lie algebra and arbitrary ¢ then we give an
algorithm to compute the inequalities of Im(W,).

Goal

In this talk, we consider the case g is a symmetrizable Kac-Moody
algebra and ¢ is adapted and give a conjecture that claims
inequalities of Im(W,) are expressed in terms of monomial
realizations.
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Definition

Let A= (a;;)i jei be the symmetrizable generalized Cartan matrix of
gand ¢t = (---, i, h, ). If the following condition holds then ¢ is
said to be adapted to A: For i,j € | s.t. a;j <0, the subsequence of
¢ consisting of all /, j is either

("'7i7j7i7j7i7.j7i7j) or ("'7./7’7./7’7./7’7./7’)'

Example)

g:type AV L =(---,2,1,3,2,1,3,2,1,3)

@ subsequence consisting of 1, 2 : (---,2,1,2/1,2,1)

@ subsequence consisting of 2, 3: (---,2,3,2,3,2,3)

@ subsequence consisting of 1, 3: (---,1,3,1,3,1,3)
Thus, ¢ is adapted to A.
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3. Monomial realizations
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We consider the set of Laurent monomials as follows:

Y= { H Xff,.”' (si € Z, (s; = 0 except for finitely many (s, /)} :

seZ, iel

We define maps wt, 1?, € on ) associated with an adapted sequence
v as follows: Let (pi;)ijera <o be integers s.t.

)1 if the subseq. of ¢ consisting of 7, is (--- ,j,i,j,1,J, 1),
Pij = 0 if the subseq. of ¢ consisting of i,jis (--- ,1,/,1,j,1,j).

For X = ] Xscj-”' € Y, one sets wt(X) := > (N

seZ,iel

©i(X) == max {Z Crils e Z} (X)) = pi(X) = wt(X) (k)

k<s
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A= XeaXerr || X, (SE€Z. kel).

jEl;aj,k<0

For i € I, let us define actions of Kashiwara operators as follows:

. ATLX i pi(X) >0 X i e
FX = ny,i LS ( ) > U, EX = Anei,lX If 5,(X) > 0,
0 if ©i(X)=0 0 if £;(X)=0,

Y

where we set

k<r

re’Z|ei(X)= Z(k,i} :

k<r

N, = Max

ng, := min {r €EZ|pi(X) = ZCk,i},
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Theorem (Kashiwara, Nakajima)

We take X € Y as &(X) =0 for all i € | and put A = wt(X) € P*.
There exists a bijection from B(\) to the set of monomials

{f}m...fjlx‘mEZEO, j1,"'7jm€/}\{0}cy’

which is compatible with wt, )?, é;.

MS,k,L = {f'm s fj'le,k‘m € Z207 Ji, " 5 Jm € /} \ {0}(; B(Ak))
forseZ, ke l.

Here, Ay € P is defined by /\k(hj) = (SkJ, Ak(ds) =0.
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-
eg) g: Ay, v=0(-,21,21) Msq1,(= B(A1)) is expressed as

1 Xso 2 1
X4 = 2= 5

)

Xs—i—l,l Xs+1,2
and M, (= B(A,)) is expressed as

2 Xsr11 1 1
X, p = 20 5

)

Xs+1,2 Xs+2,1

Tropicalizing them and considering inequalities Trop(M) > 0 for
Me Mg1, UMs,,, for (-+- a2, a21,812,a311) € Z> we have

as1 >0, asp —as411 >0, —asy10 >0,

352 >0, asy11 — 3412 >0, —as401 >0 (s € Zsy).

By as1 >0, —as421 >0and as» > 0, —as;12 > 0, we see that
dm+1,1 = @m2 = 0 for all m > 2.
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Simplifying other inequalities, we get
a11 >0, 810> a1 >0, ani11 = am2 =0 (m € Zsy).
Now we identify
(' ©-,d3,d, 31) = ( <+ ,d22,d21,4d12, a1,1) €L
Recall)

Im(V,)
= {(---,a3,@,a1) €Z>a; >0, @ > a3 >0, a, =0 (k>3)}
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4. Polyhedral realizations and Monomial realizations
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Let L= ( o 7i37 i27 Il) For ( ©c,d3,4d2, al) S ZLOO' we rewrite the
variable a, as
dig = dsj
if iy, =j and j is appearing s times in iy, o, - -, Ig.
Conjecture
Let g be a symmetrizable KM alg. and ¢ be an adapted sequence and

M k., be the set of monomials for gt. Here gt is a KM alg. whose
generalized Cartan matrix is transposed matrix of that of g. Then

Im(V,) =<cacZ>|p(a) >0 forall ¢ € U Trop(Ms k.,)

SGZZI’ kel

If it is true, inequalities characterising the polyhedral realization
are expressed in terms of monomial realizations.
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Theorem

(1) When g is a finite dimensional simple Lie algebra of type A,, B,
C, or D, the conjecture is true.

(2) When g is a Kac-Moody algebra of rank 2, the conjecture is true.
(3) When g is a classical affine Lie algebra of type Af,l_)l, Bn " C,Sl_) 1
D,(,17)1, Agi)d, Agi)f3 or DI, the conjecture is true.
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|
Example) g : type G, e = (-+-,2,1,2,1,2,1). Then M1, is

1 Xso2 2 Xey11 1 1
Xsq — o2 5 =22 5

)

Xs—i—l,l Xs+1,2 Xs+2,1
and M, is

2
> Xov1a 1 Xsp11 1 Xsp12 2 1
Xs2—> S S S

b 2 .
Xs+1,2 Xs+2,1 X5+271 X5+2,2

Tropicalizing them, we get

as1 >0, asp —asy11 >0, agy11 — as112 >0, —as401 >0,

asp >0, 2a5411 — as112 >0, asy11 — as21 > 0,

ast12 — 2as421 > 0, —asi00 > 0.
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Simplifying the inequalities, Im(W,) for type B, is as follows:
Im(V,) =

{(amj) € Z®|a1p > a1 > a22 >0, a11 >0, am1 = amp = 0(m > 3)}
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