# Inequalities defining polyhedral realizations and monomial realizations of crystal bases

Combinatorics and Arithmetic for Physics, IHES

Yuki Kanakubo (Ibaraki University)

22.11.2024

#### Goal

We give a conjecture on explicit forms of polyhedral realizations for crystal bases of quantum groups in terms of monomial realizations.

Crystal bases  $B(\infty)$ ,  $B(\lambda)$ : a powerful tool to study representations of quantum groups

Polyhedral realization : a combinatorial description of  $B(\infty)$  Monomial realization : a combinatorial description of  $B(\lambda)$ 

#### <u>Plan</u>

- 1. Quantum groups
- 2. Crystal bases and polyhedral realizations
- 3. Monomial realizations
- 4. Main results

1. Quantum groups

# Lie algebras

Lie algebra  $\mathfrak{g}$ : Vector space/ $\mathbb{C}$  with Lie bracket product  $[\ ,\ ]$ .

For  $x, y, z \in \mathfrak{g}$ ,

- [x, x] = 0,
- [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

# Lie algebras

Lie algebra  $\mathfrak{g}$ : Vector space/ $\mathbb{C}$  with Lie bracket product  $[\ ,\ ]$ .

For  $x, y, z \in \mathfrak{g}$ ,

- [x, x] = 0,
- [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.
- (I) Finite dimensional simple Lie algebras
- (II) Kac-Moody algebras
- (III) Quantum groups
- (IV) Quantum groups for Kac-Moody algebras

## (I) Finite dimensional simple Lie algebra $\mathfrak g$

**simple** means  $\mathfrak{g}$  has no ideal other than  $\{0\}$  and  $\mathfrak{g}$ .

Example) 
$$\mathfrak{g} = \mathfrak{sl}_2(\mathbb{C}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} | a, b, c, d \in \mathbb{C}, a+d = 0 \right\}.$$

$$[x,y] = xy - yx, \qquad x,y \in \mathfrak{g} \Rightarrow [x,y] \in \mathfrak{g}.$$

Putting

$$e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

these are generators of  $\mathfrak{g}$ . It holds

$$[e, f] = h$$
,  $[h, e] = 2e$ ,  $[h, f] = -2f$ .

## Theorem (Serre(1966))

 $\mathfrak{g}$ : finite dimensional simple Lie algebra. Then  $\mathfrak{g}$  has generators  $e_i$ ,  $f_i$  and  $h_i$   $(i \in I = \{1, 2, \dots, n\})$  s.t.

Here,  $(\operatorname{ad} x)y := [x, y]$ .  $A = (a_{ij})_{i,j \in I}$  is called a **Cartan matrix** and

- $a_{ii} = 2 \ (i \in I), \ a_{ij} \le 0 \ \text{if} \ i \ne j,$
- if  $a_{ij} = 0$  then  $a_{ji} = 0$ ,
- $(a_{ij})$  is symmetrizable (i.e.,  $\exists D$ : diagonal matrix s.t. DA is symmetric) and DA is positive definite.

 $(a_{ij})$  is classified by Dynkin diagrams:



Here,



implies  $a_{ij} = a_{ji} = -1$ ,



implies  $a_{ij} = -1$ ,  $a_{ji} = -2$ ,



implies  $a_{ij} = -1$ ,  $a_{ji} = -3$ . If i and j are not connected then  $a_{ij} = a_{ji} = 0$ .

The **structure** and **classification** of cpx. finite dimensional simple Lie algebras are well known.

→ The theory of fin. dim. simple Lie algebras are quite successful.

Considering natural **variations** of fin.dim.simple Lie algebras, it can be expected to obtain some new interesting theories.

#### Variations

• Removing the positive definite condition for  $(a_{i,j}) \rightarrow$  Kac-Moody algebra.

Recall: When  $\mathfrak{g}$  is fin. dim. simple,

- $a_{ii} = 2 \ (i \in I), \ a_{ij} \le 0 \ \text{if} \ i \ne j,$
- if  $a_{ij} = 0$  then  $a_{ji} = 0$ ,
- $(a_{ij})$  is symmetrizable (i.e.,  $\exists D$ : diagonal matrix s.t. DA is symmetric) and DA is positive definite.
- Quantization → quantum group.
- Both → quantum group for KM algebra.

## (II) Kac-Moody algebras

Let  $A = (a_{ij})_{i,j \in I}$  be a matrix s.t.

- $a_{ii} = 2 \ (i \in I), \ a_{ij} \le 0 \ \text{if} \ i \ne j,$
- if  $a_{ij} = 0$  then  $a_{ji} = 0$ ,
- $(a_{ij})$  is symmetrizable.

#### We need the following:

- Let  $\mathfrak{h}$  be a 2|I| rank(A)-dimensional vector space/ $\mathbb{C}$  and we assume that  $\{h_i\}_{i \in I} \cup \{d_i\}_{1 \leq i \leq |I| \text{rank}(A)}$  is a base of  $\mathfrak{h}$ .
- We take  $\alpha_i \in \mathfrak{h}^*$   $(i \in I)$  s.t.  $\alpha_j(h_i) = a_{ij}$ ,  $\alpha_j(d_k) \in \{0, 1\}$ .

#### Definition

Let  $\mathfrak{g}$  be a Lie algebra with generators  $e_i$ ,  $f_i$   $(i \in I)$  and  $\mathfrak{h}$  s.t. for  $h, h' \in \mathfrak{h} \subset \mathfrak{g}$ ,

- [h, h'] = 0,
- $[e_i, f_j] = \delta_{i,j} h_i,$

g is called a symmetrizable Kac-Moody algebra.

Unlike fin.dim.simple Lie alg,

- Kac-Moody algebras are infinite dimensional.
- All non-trivial representations are infinite dimensional.

In particular, when DA is nonnegative-definite and not positive definite, g is called an affine Lie algebras.

Nonnegative-definite  $(a_{ii})$  is classified by affine Dynkin diagrams:

$$A_{n-1}^{(1)} (n \ge 3) : \underbrace{\frac{n}{2} \cdots \frac{n}{n-2n-1}}_{n-2n-1}$$

$$B_{n-1}^{(1)} (n \ge 3) : \underbrace{\frac{3}{1} 2 \cdots \frac{n}{n-1}}_{n-1} n$$

$$C_{n-1}^{(1)} (n \ge 3) : \underbrace{\frac{3}{1} 2 \cdots \frac{n}{n-1}}_{n-1} n$$

$$A_{2n-2}^{(2)} (n \ge 3) : \underbrace{\frac{3}{1} 2 \cdots \frac{n}{n-1}}_{n-1} n$$

and  $D_n^{(2)}$ ,  $D_{n-1}^{(1)}$ ,  $A_{2n-3}^{(2)}$ ,  $D_4^{(3)}$ ,  $E_6^{(1)}$ ,  $E_7^{(1)}$ ,  $E_8^{(1)}$ ,  $F_4^{(1)}$ ,  $G_2^{(1)}$  and  $E_6^{(2)}$ .

# (III)Quantum groups (Drinfeld,Jimbo(1985)) (='similar' algebra to $\mathfrak{g}$ )

• q : indeterminant,

$$[r]_q:=rac{q^r-q^{-r}}{q-q^{-1}} ext{ for } r\in \mathbb{Z}_{\geq 0}, \ [r]_q!:=[r]_q[r-1]_q\cdots [1]_q,$$

$$\begin{bmatrix} m \\ r \end{bmatrix}_q = \frac{[m]_q!}{[r]_q![m-r]_q!}.$$

Let  $\mathfrak{g}$  be a finite dimensional simple Lie algebra.

Let  $U_q(\mathfrak{g})$  be  $\mathbb{C}(q)$ -algebra with unit 1 with generators  $e_i$ ,  $f_i$  and  $q^h$   $(h \in \bigoplus_{i \in I} \mathbb{Z}h_i)$  satisfying

- $q^h e_i q^{-h} = q^{\alpha_i(h)} e_i,$
- $q^h f_i q^{-h} = q^{-\alpha_i(h)} f_i,$
- $\bullet e_i f_j f_j e_i = \delta_{ij} \frac{q^{d_i h_i} q^{-d_i h_i}}{q^{d_i} q^{-d_i}},$

Here,  $D = \text{diag}(d_1, \dots, d_n)$ .  $U_q(\mathfrak{g})$  is called a **quantum group** associated with  $\mathfrak{g}$ .

When ' $q \rightarrow 1$ ', we get relations of (universal env. alg. of)  $\mathfrak{g}$ .

## (IV) quantum groups for Kac-Moody algebras

We take  $A = (a_{ij})$ , vector space  $\mathfrak{h}$  and  $\alpha_i \in \mathfrak{h}^*$  just as in the definition of Kac-Moody algebras :

Let  $(a_{ij})_{i,j\in I}$  be a matrix s.t.

- $a_{ii} = 2 \ (i \in I), \ a_{ij} \le 0 \ \text{if} \ i \ne j,$
- if  $a_{ij} = 0$  then  $a_{ji} = 0$ ,
- A is symmetrizable.

Let  $\mathfrak{h}$  be a 2|I| - rank(A)-dimensional vector space/ $\mathbb{C}$  with base  $\{h_i\}_{i\in I} \cup \{d_j\}_{1\leq j\leq |I|-\text{rank}(A)}$ .

We take  $\alpha_i \in \mathfrak{h}^*$   $(i \in I)$  s.t.  $\alpha_j(h_i) = a_{ij}$  and  $\alpha_j(d_k) \in \{0, 1\}$ .

We can define  $U_q(\mathfrak{g})$  by the same way as in the case  $\mathfrak{g}$  is fin. dim. simple:

Let  $U_q(\mathfrak{g})$  be  $\mathbb{C}(q)$ -algebra with unit 1 and with generators  $e_i$ ,  $f_i$  and  $q^h$   $(h \in \bigoplus_{i \in I} \mathbb{Z} h_i \oplus \bigoplus_i \mathbb{Z} d_j)$  satisfying

- $q^h e_i q^{-h} = q^{\alpha_i(h)} e_i,$
- $q^h f_i q^{-h} = q^{-\alpha_i(h)} f_i,$
- $\bullet e_i f_j f_j e_i = \delta_{ij} \frac{q^{d_i h_i} q^{-d_i h_i}}{q^{d_i} q^{-d_i}},$

This  $U_q(\mathfrak{g})$  is called **quantum group** associated with KM-algebra  $\mathfrak{g}$ .

2. Crystal bases and polyhedral realizations

# Representations of $U_q(\mathfrak{g})=\langle e_i,f_i,q^h \rangle$ for a KM-algebra $\mathfrak{g}$

$$P:=\{\lambda\in \mathfrak{h}^*|\lambda(h_i),\lambda(d_k)\in \mathbb{Z}\}$$
 : weight lattice  $P^+:=\{\lambda\in \mathfrak{h}^*|\lambda(h_i),\lambda(d_k)\in \mathbb{Z}_{\geq 0}\}.$ 

For  $\lambda \in P^+$ , there exists a representation  $V(\lambda)$  s.t.  $\exists v_\lambda \in V(\lambda)$  and

$$e_i v_{\lambda} = 0 \ (\forall i \in I), \quad q^h v_{\lambda} = q^{\lambda(h)} v_{\lambda} \ (\forall h \in \bigoplus_{i \in I} \mathbb{Z} h_i \oplus \bigoplus_k \mathbb{Z} d_k),$$

$$V(\lambda) = \langle f_{j_1} \cdots f_{j_r} v_{\lambda} | j_1, \cdots, j_r \in I \rangle_{\mathbb{C}(q) - \mathsf{vect.sp.}}$$

V(λ) is an analog of finite dimensional irreducible representation
 L(λ) of fin.dim.simple Lie algebra.
 c.f.) ∃ℓ<sub>λ</sub> ∈ L(λ) and

$$e_i \ell_{\lambda} = 0 \ (\forall i \in I), \quad h \ell_{\lambda} = \lambda(h) \ell_{\lambda} \ (\forall h \in \bigoplus_{i \in I} \mathbb{Z} h_i),$$
  
$$L(\lambda) = \langle f_{j_1} \cdots f_{j_r} \ell_{\lambda} | j_1, \cdots, j_r \in I \rangle_{\mathbb{C}-\text{vect.sp.}}.$$

## Crystal base $B(\lambda)$ (Properties)

•  $B(\lambda)$  is a set with maps

$$\tilde{e}_i, \tilde{f}_i: B(\lambda) \to B(\lambda) \sqcup \{0\},\$$

which are 'combinatorial analogs' of  $e_i$ ,  $f_i: V(\lambda) \to V(\lambda)$ .

•  $\exists \ \overline{\mathbf{v}}_{\lambda} \in B(\lambda) \text{ s.t.}$ 

$$B(\lambda) = \{\tilde{f}_{j_1} \cdots \tilde{f}_{j_k} \overline{\mathbf{v}}_{\lambda} | k \in \mathbb{Z}_{\geq 0}, \ j_1, \cdots, j_k \in I\} \setminus \{0\}.$$

It holds  $\sharp B(\lambda) = \dim V(\lambda)$ .

• There is a map  $\operatorname{wt}: B(\lambda) \to P$  s.t.

 $\operatorname{wt}( ilde f_{j_1}\cdots ilde f_{j_k}\!\cdot\!\overline v_\lambda)(h_i)= ext{Eigen value of } f_{j_1}\cdots f_{j_k}\!\cdot\! v_\lambda\in V(\lambda) ext{ for } q^{h_i}.$ 

Let  $U_q^-(\mathfrak{g}) := \langle f_i | i \in I \rangle \subset U_q(\mathfrak{g})$ .

- $q^h \curvearrowright U_q^-(\mathfrak{g})$  by  $q^h x q^{-h}$  for  $x \in U_q^-(\mathfrak{g})$ .
- $f_i \curvearrowright U_a^-(\mathfrak{g})$  by the multiplication from the left.
- $\exists e_i' \curvearrowright U_q^-(\mathfrak{g})$ , which is a modification of the multiplication of  $e_i$

# Crystal base $B(\infty)$ for $U_q^-(\mathfrak{g})$ (Properties)

•  $B(\infty)$  is a set with maps

$$\tilde{e}_i, \tilde{f}_i: B(\infty) \to B(\infty) \sqcup \{0\},$$

which are 'combinatorial analogs' of  $e'_i$ ,  $f_i: U_q^-(\mathfrak{g}) \to U_q^-(\mathfrak{g})$ .

•  $\exists \ \overline{\mathbf{v}}_{\infty} \in B(\infty) \text{ s.t.}$ 

$$B(\infty) = \{\tilde{f}_{j_1} \cdots \tilde{f}_{j_k} \overline{v}_{\infty} | k \in \mathbb{Z}_{\geq 0}, \ j_1, \cdots, j_k \in I\}.$$

• There is a map  $\operatorname{wt}: B(\infty) \to P$  s.t.

$$\operatorname{wt}(\widetilde{f}_{j_1}\cdots\widetilde{f}_{j_k}\cdot\overline{v}_\infty)(h_i)= ext{Eigen value of } f_{j_1}\cdots f_{j_k}\cdot v_\infty \in U_q^-(\mathfrak{g}) ext{ for } q^{h_i}.$$

• For any  $\lambda \in P^+$ , there is a map  $B(\infty) \twoheadrightarrow B(\lambda)$ , which is an analog of  $U_q^-(\mathfrak{g}) \twoheadrightarrow V(\lambda)$ ,  $f_{j_1} \cdots f_{j_r} \mapsto f_{j_1} \cdots f_{j_r} v_{\lambda}$ .

By studying  $B(\lambda)$ , we know eigenvalues of  $V(\lambda)$ ,  $\dim V(\lambda)$  and structures of tensor products and so on.  $B(\infty)$  tells us a structure of  $U_q^-(\mathfrak{g})$ .

To study  $B(\infty)$ ,  $B(\lambda)$ , **combinatorial descriptions** are useful. They have a bunch of combinatorial descriptions.

Today, we consider the **polyhedral realization** that is a description of  $B(\infty)$  and **monomial realization** that is a description of  $B(\lambda)$ .

#### Polyhedral realizations

Let 
$$\iota = (\cdots, i_2, i_1)$$
 be a sequence from  $I = \{1, 2, \cdots, n\}$ .

$$\mathbb{Z}_{\iota}^{\infty} := \{(\cdots, a_2, a_1) | a_j \in \mathbb{Z}, \ a_k = 0 \ (k \gg 0)\}.$$

One can define maps denoted by  $\tilde{f}_i$ ,  $\tilde{e}_i: \mathbb{Z}_{\iota}^{\infty} \to \mathbb{Z}_{\iota}^{\infty} \sqcup \{0\}$  and  $\mathrm{wt}: \mathbb{Z}_{\iota}^{\infty} \to P$  as follows:

For 
$$r \in \mathbb{Z}_{\geq 1}$$
 and  $\mathbf{a} = (\cdots, a_2, a_1) \in \mathbb{Z}_{\iota}^{\infty}$ , 
$$\sigma_r(\mathbf{a}) := a_r + \sum_{j>r} a_{i_r, i_j} a_j \quad (r \in \mathbb{Z}_{\geq 1}),$$
 
$$\sigma^{(k)} := \max_{r; i_r = k} \{\sigma_r(\mathbf{a})\},$$

$$M^{(k)}(\mathbf{a}) := \{ r \in \mathbb{Z}_{\geq 1} | i_r = k, \ \sigma_r(\mathbf{a}) = \sigma^{(k)}(\mathbf{a}) \}.$$

 $\operatorname{wt}: \mathbb{Z}^{\infty} \to P$  is defined by

$$\operatorname{wt}(\mathbf{a}) := -\sum_{i=1}^{\infty} a_i \alpha_{i_j}.$$

One can define

$$\tilde{e}_i, \tilde{f}_i: \mathbb{Z}_{\iota}^{\infty} \to \mathbb{Z}_{\iota}^{\infty} \sqcup \{0\}$$

as

$$( ilde{f}_k(\mathbf{a}))_r := a_r + \delta_{r,\min M^{(k)}(\mathbf{a})},$$
  $( ilde{e}_k(\mathbf{a}))_r := a_r - \delta_{r,\max M^{(k)}(\mathbf{a})} ext{ if } \sigma^{(k)}(\mathbf{a}) > 0 ext{ ; o.w. } ilde{e}_k(\mathbf{a}) = 0$  for  $\mathbf{a} = (\cdots, a_j, \cdots, a_2, a_1) \in \mathbb{Z}_\iota^\infty.$ 

**Essential point**: Above  $\tilde{e}_i$ ,  $\tilde{f}_i$  and wt are defined by only sum of integers (in particular, **without** representation theory). Everybody can compute them by following the above rule.

#### Theorem (Nakashima-Zelevinsky)

There is an injective map

$$\Psi_{\iota}:B(\infty)\hookrightarrow\mathbb{Z}_{\iota}^{\infty}$$

s.t.  $\Psi_{\iota}(\overline{\nu}_{\infty}) = (\cdots, 0, 0, 0)$  and  $\Psi_{\iota}$  commutes with  $\tilde{e}_i$ ,  $\tilde{f}_i$  and preserves  $\mathrm{wt}$ .

By this theorem, we can reduce calculations of  $\underbrace{\tilde{e}_i, \tilde{f}_i, \operatorname{wt}}_{\operatorname{important}}$  on  $B(\infty)$  to

$$\underbrace{\tilde{e}_i, \tilde{f}_i, \operatorname{wt}}_{\text{computable}}$$
 on  $\mathbb{Z}_{\iota}^{\infty}$ .

#### Definition

 $\operatorname{Im}(\Psi_{\iota})(\cong B(\infty))$  is called a **polyhedral realization** for  $B(\infty)$ .

Example) 
$$\mathfrak{g} = \mathfrak{sl}_3(\mathbb{C}) = \left\{ \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} | a + e + i = 0 \right\}$$
: type  $A_2$ ,  $\iota = (\cdots, 2, 1, 2, 1, 2, 1)$ .

The crystal graph of  $B(\infty)$  is as follows:



Example) 
$$\mathfrak{g} = \mathfrak{sl}_3(\mathbb{C}) = \left\{ \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} | a + e + i = 0 \right\}$$
: type  $A_2$ ,  $\iota = (\cdots, 2, 1, 2, 1, 2, 1)$ .

The crystal graph of  $(B(\infty) \cong) \mathrm{Im}(\Psi_{\iota}) \subset \mathbb{Z}^{\infty}$  is as follows:

Yuki Kanakubo (Ibaraki University)

#### Problem

We'd like to know inequalities defining polyhedral realization  $\text{Im}(\Psi_{\iota})$  such as  $a_1 \geq 0$ ,  $a_2 \geq a_3 \geq 0$ ,  $a_k = 0$  (k > 3).

## Nakashima-Zelevinsky, Hoshino, Kim-Shin

• g: fin.dim.simple Lie alg.,  $\iota = (\cdots, n, \cdots, 2, 1, n, \cdots, 2, 1) \Rightarrow$  an explicit form of the inequalities of  $\operatorname{Im}(\Psi_{\iota})$ .

# Hoshino (2013)

•  $\mathfrak{g}$ : classical affine type,  $\iota = (\cdots, n, \cdots, 1, n, \cdots, 1) \Rightarrow$  an explicit form of the inequalities of  $\operatorname{Im}(\Psi_{\iota})$ .

# Littlemann(1998)

•  $\mathfrak{g}$ : fin. dim. simple,  $\iota$ : 'nice decomposition'  $\Rightarrow$  an explicit form of **string cone**  $\mathcal{S}_{\iota}$ . (Im( $\Psi_{\iota}$ ) coincides with integer pts of a string cone.)

## K-Nakashima (2020), K(2023)

• If  $\mathfrak g$  is a classical Lie algebra or classical affine Lie algebra and  $\iota$  is 'adapted' then the inequalities of  $\mathrm{Im}(\Psi_\iota)$  are combinatorially described by column tableaux or Young walls.

## K-Koshevoy-Nakashima (2024)

• If  $\mathfrak g$  is a classical Lie algebra and arbitrary  $\iota$  then we give an algorithm to compute the inequalities of  $\operatorname{Im}(\Psi_{\iota})$ .

#### Goal

In this talk, we consider the case  $\mathfrak g$  is a symmetrizable Kac-Moody algebra and  $\iota$  is **adapted** and give a conjecture that claims inequalities of  $\operatorname{Im}(\Psi_{\iota})$  are expressed in terms of monomial realizations.

#### Definition

Let  $A=(a_{i,j})_{i,j\in I}$  be the symmetrizable generalized Cartan matrix of  $\mathfrak g$  and  $\iota=(\cdots,i_3,i_2,i_1)$ . If the following condition holds then  $\iota$  is said to be *adapted* to A: For  $i,j\in I$  s.t.  $a_{i,j}<0$ , the subsequence of  $\iota$  consisting of all i,j is either

$$(\cdots,i,j,i,j,i,j)$$
 or  $(\cdots,j,i,j,i,j,i,j,i)$ .

Example)  $\mathfrak{g}$ : type  $A_3^{(1)}$ ,  $\iota = (\cdots, 2, 1, 3, 2, 1, 3, 2, 1, 3)$ 

- subsequence consisting of 1, 2 :  $(\cdots, 2, 1, 2, 1, 2, 1)$
- subsequence consisting of 2, 3 :  $(\cdots, 2, 3, 2, 3, 2, 3)$
- subsequence consisting of 1, 3:  $(\cdots, 1, 3, 1, 3, 1, 3)$

Thus,  $\iota$  is adapted to A.

3. Monomial realizations

We consider the set of Laurent monomials as follows:

$$\mathcal{Y} := \left\{ \prod_{s \in \mathbb{Z}, \ i \in I} X_{s,i}^{\zeta_{s,i}} \, \middle| \, \zeta_{s,i} \in \mathbb{Z}, \ \zeta_{s,i} = 0 \ ext{except for finitely many } (s,i) 
ight\}.$$

We define maps  $\operatorname{wt}$ ,  $\tilde{f}_i$ ,  $\tilde{e}_i$  on  $\mathcal{Y}$  associated with an adapted sequence  $\iota$  as follows: Let  $(p_{i,j})_{i,j\in I; a_{i,j}<0}$  be integers s.t.

$$p_{i,j} = \begin{cases} 1 & \text{if the subseq. of } \iota \text{ consisting of } i,j \text{ is } (\cdots,j,i,j,i,j), \\ 0 & \text{if the subseq. of } \iota \text{ consisting of } i,j \text{ is } (\cdots,i,j,i,j,i,j). \end{cases}$$

For 
$$X = \prod_{s \in \mathbb{Z}, i \in I} X_{s,i}^{\zeta_{s,i}} \in \mathcal{Y}$$
, one sets  $\operatorname{wt}(X) := \sum_{s,i} \zeta_{s,i} \Lambda_i$ 

$$arphi_i(X) := \max \left\{ \sum_{k \leq s} \zeta_{k,i} \, | \, s \in \mathbb{Z} 
ight\}, \quad arepsilon_i(X) := arphi_i(X) - \operatorname{wt}(X)(h_i)$$

$$A_{s,k} := X_{s,k} X_{s+1,k} \prod_{j \in I; a_{i,k} < 0} X_{s+p_{j,k},j}^{a_{j,k}} \quad (s \in \mathbb{Z}, k \in I).$$

For  $i \in I$ , let us define actions of Kashiwara operators as follows:

$$\tilde{f}_{i}X := \begin{cases} A_{n_{f_{i}},i}^{-1}X & \text{if} \quad \varphi_{i}(X) > 0, \\ 0 & \text{if} \quad \varphi_{i}(X) = 0, \end{cases} \quad \tilde{e}_{i}X := \begin{cases} A_{n_{e_{i}},i}X & \text{if} \quad \varepsilon_{i}(X) > 0, \\ 0 & \text{if} \quad \varepsilon_{i}(X) = 0, \end{cases}$$

where we set

$$n_{f_i} := \min \left\{ r \in \mathbb{Z} \,\middle|\, \varphi_i(X) = \sum_{k \le r} \zeta_{k,i} 
ight\},$$

$$n_{e_i} := \max \left\{ r \in \mathbb{Z} \,\middle|\, \varphi_i(X) = \sum_{k \le r} \zeta_{k,i} 
ight\}.$$

## Theorem (Kashiwara, Nakajima)

We take  $X \in \mathcal{Y}$  as  $\tilde{e}_i(X) = 0$  for all  $i \in I$  and put  $\lambda = \operatorname{wt}(X) \in P^+$ . There exists a bijection from  $B(\lambda)$  to the set of monomials

$$\{\tilde{f}_{j_m}\cdots\tilde{f}_{j_1}X|m\in\mathbb{Z}_{\geq 0},\ j_1,\cdots,j_m\in I\}\setminus\{0\}\subset\mathcal{Y},$$

which is compatible with  $\operatorname{wt}$ ,  $\tilde{f}_i$ ,  $\tilde{e}_i$ .

$$\mathcal{M}_{s,k,\iota} := \{ \tilde{f}_{j_m} \cdots \tilde{f}_{j_1} X_{s,k} | m \in \mathbb{Z}_{\geq 0}, \ j_1, \cdots, j_m \in I \} \setminus \{0\} (\cong B(\Lambda_k))$$
 for  $s \in \mathbb{Z}, \ k \in I$ .

Here,  $\Lambda_k \in P^+$  is defined by  $\Lambda_k(h_j) = \delta_{k,j}$ ,  $\Lambda_k(d_s) = 0$ .

e.g.)  $\mathfrak{g}: A_2, \iota = (\cdots, 2, 1, 2, 1).$   $\mathcal{M}_{s,1,\iota}(\cong B(\Lambda_1))$  is expressed as

$$X_{s,1} \xrightarrow{1} \frac{X_{s,2}}{X_{s+1,1}} \xrightarrow{2} \frac{1}{X_{s+1,2}}$$

and  $\mathcal{M}_{5,2,t} (\cong B(\Lambda_2))$  is expressed as

$$X_{s,2} \stackrel{?}{\to} \frac{X_{s+1,1}}{X_{s+1,2}} \stackrel{1}{\to} \frac{1}{X_{s+2,1}}.$$

Tropicalizing them and considering inequalities  $Trop(M) \geq 0$  for  $M \in \mathcal{M}_{s,1,\iota} \cup \mathcal{M}_{s,2,\iota}$ , for  $(\cdots, a_{2,2}, a_{2,1}, a_{1,2}, a_{1,1}) \in \mathbb{Z}^{\infty}$  we have

$$a_{s,1}\geq 0,\ a_{s,2}-a_{s+1,1}\geq 0,\ -a_{s+1,2}\geq 0,$$

$$a_{s,2} \geq 0, \ a_{s+1,1} - a_{s+1,2} \geq 0, \ -a_{s+2,1} \geq 0 \quad (s \in \mathbb{Z}_{\geq 1}).$$

By  $a_{s,1} \ge 0$ ,  $-a_{s+2,1} \ge 0$  and  $a_{s,2} \ge 0$ ,  $-a_{s+1,2} \ge 0$ , we see that  $a_{m+1,1} = a_{m,2} = 0$  for all  $m \ge 2$ .

Simplifying other inequalities, we get

$$a_{1,1} \geq 0, \ a_{1,2} \geq a_{2,1} \geq 0, \ a_{m+1,1} = a_{m,2} = 0 \ (m \in \mathbb{Z}_{\geq 2}).$$

Now we identify

$$(\cdots, a_3, a_2, a_1) = (\cdots, a_{2,2}, a_{2,1}, a_{1,2}, a_{1,1}) \in \mathbb{Z}^{\infty}$$

Recall)

$$\operatorname{Im}(\Psi_{\iota}) = \{(\cdots, a_3, a_2, a_1) \in \mathbb{Z}^{\infty} | a_1 \ge 0, \ a_2 \ge a_3 \ge 0, \ a_k = 0 \ (k > 3) \}$$

| 4. Polyhedral realizations and Monomial realizations |  |
|------------------------------------------------------|--|
|                                                      |  |

Let  $\iota = (\cdots, i_3, i_2, i_1)$ . For  $(\cdots, a_3, a_2, a_1) \in \mathbb{Z}_{\iota}^{\infty}$ , we rewrite the variable  $a_k$  as

$$a_k = a_{s,j}$$

if  $i_k = j$  and j is appearing s times in  $i_1, i_2, \dots, i_k$ .

#### Conjecture

Let  $\mathfrak g$  be a symmetrizable KM alg. and  $\iota$  be an adapted sequence and  $\mathcal M_{s,k,\iota}$  be the set of monomials for  $\mathfrak g^L$ . Here  $\mathfrak g^L$  is a KM alg. whose generalized Cartan matrix is transposed matrix of that of  $\mathfrak g$ . Then

$$\operatorname{Im}(\Psi_\iota) = \left\{ \mathbf{a} \in \mathbb{Z}_\iota^\infty | arphi(\mathbf{a}) \geq 0 \text{ for all } arphi \in igcup_{s \in \mathbb{Z}_{\geq 1}, \ k \in I} \operatorname{\mathit{Trop}}(\mathcal{M}_{s,k,\iota}) 
ight\}$$

If it is true, inequalities characterising the **polyhedral realization** are expressed in terms of **monomial realizations**.

#### Theorem

- (1) When  $\mathfrak{g}$  is a finite dimensional simple Lie algebra of type  $A_n$ ,  $B_n$ ,  $C_n$  or  $D_n$ , the conjecture is true.
- (2) When  $\mathfrak g$  is a Kac-Moody algebra of rank 2, the conjecture is true.
- (3) When  $\mathfrak{g}$  is a classical affine Lie algebra of type  $A_{n-1}^{(1)}, B_{n-1}^{(1)}, C_{n-1}^{(1)}, D_{n-1}^{(1)}, A_{2n-2}^{(2)}, A_{2n-3}^{(2)}$  or  $D_n^{(2)}$ , the conjecture is true.

Example)  $\mathfrak{g}$ : type  $C_2$ ,  $\iota = (\cdots, 2, 1, 2, 1, 2, 1)$ . Then  $\mathcal{M}_{s,1,\iota}$  is

$$X_{s,1} \xrightarrow{1} \frac{X_{s,2}}{X_{s+1,1}} \xrightarrow{2} \frac{X_{s+1,1}}{X_{s+1,2}} \xrightarrow{1} \frac{1}{X_{s+2,1}}$$

and  $\mathcal{M}_{s,2,\iota}$  is

$$X_{s,2} \stackrel{2}{\to} \frac{X_{s+1,1}^2}{X_{s+1,2}} \stackrel{1}{\to} \frac{X_{s+1,1}}{X_{s+2,1}} \stackrel{1}{\to} \frac{X_{s+1,2}}{X_{s+2,1}^2} \stackrel{2}{\to} \frac{1}{X_{s+2,2}}.$$

Tropicalizing them, we get

$$a_{s,1} \ge 0, \ a_{s,2} - a_{s+1,1} \ge 0, \ a_{s+1,1} - a_{s+1,2} \ge 0, \ -a_{s+2,1} \ge 0,$$
  $a_{s,2} \ge 0, \ 2a_{s+1,1} - a_{s+1,2} \ge 0, \ a_{s+1,1} - a_{s+2,1} \ge 0,$   $a_{s+1,2} - 2a_{s+2,1} \ge 0, \ -a_{s+2,2} \ge 0.$ 

Simplifying the inequalities,  $Im(\Psi_{\iota})$  for type  $B_2$  is as follows:

$$\operatorname{Im}(\Psi_{\iota}) =$$

$$\{(a_{m,j})\in\mathbb{Z}^{\infty}|a_{1,2}\geq a_{2,1}\geq a_{2,2}\geq 0,\ a_{1,1}\geq 0,\ a_{m,1}=a_{m,2}=0\ (m\geq 3)\}$$