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Abstract

For partially ordered sets X we consider the square matrices M~
with rows and columns indexed by linear extensions of the partial
order on X. Each entry (M X ) PO is a formal variable defined by a
pedestal of the linear order () with respect to linear order P. We show
that all the eigenvalues of any such matrix M¥X are Z -linear combi-
nations of those variables.

1 The statement of the main result

Let X = {ay,...,a,,} be a partially ordered set with the partial order < . A
linear extension P of < is a bijection P : X — [1,...,n], such that for any
pair a;, oy, satisfying o; < a; we have P (a;) < P ().

Let P, @ be two linear extensions of . We call the node Q! (k) € X a
(P, Q)-disagreement node (or descent node, following [St]) iff P (Q~' (k — 1)) >
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P(Q7'(k)). By definition, the node Q@' (1) is a (P, Q)-agreement node.
With every pair P, () we associate the function epg : {1,...,n — 1} — {0,1},
given by

epq (k) = {

Note that for some pairs (P, Q) # (P’,Q’) the functions epg, epg can
coincide (see the Examples section).

1 if Q' (k+1)isa (P,Q)-descent node,
0 otherwise.

(1)

To formulate our main result we denote by € = {e : {1,...,n — 1} — {0,1}}
the set of all 277! different e functions, and we associate with every ¢ a cor-
responding formal variable a.. For any poset X consider the square matrix
M*, whose matrix elements are indexed by the pairs (P, Q), and are given

by (MX)PQ = lepg-

For example, the poset (X, <) with three elements and one relation: X =
{{u,v,w},u < v} has three linear extensions of <: uv < v < w, u < w <
v, w < u < v. Let P be the linear extension v < v < w and ) — the linear
extension u < w < v. We have epg = (0, 1) since 2 is not a descent (u < v
in both @ and P) and 3 is a descent (w < v in @ but not in P). The matrix
M¥X is

Qoo  Go1 410
apr Goo Q1o | - (2)
Qo1 G110 Qoo

The eigenvalues of this matrix are agg— ao1, aoo— @10 and agy+ag1 +a1g, SO
they are Z-linear combinations of the letters entering the matrix. One of us
(0.0.) conjectured that this holds (the eigenvalues are Z-linear combinations
of the letters entering the matrix M¥) for every poset X. Below we present
the proof of this conjecture.

Theorem 1 For every poset X the matriz M~ is non-degenerate, and all
its ergenvalues are linear combinations of the variables a. with integer coef-
ficients.

Here ‘non-degenerate’ means non-degenerate over the field of rational func-
tions in the matrix elements.

The matrices M were introduced in the paper [OS]. It is proven there
that the row sums » (M X ) PO do not depend on the row P, so the matrix

M* is ‘stochastic’ (up to a scale), and Ix ({a.}) := 3", (MX)PQ is its main

eigenvalue. In OS] the corresponding sums are called the ‘pedestal polyno-
mials’. They enter into the expression for the generating functions of the



monotone functions f: X — {0,1,2,...} (e.g. the generating function of the
number of plane partitions, spacial partitions, etc.):

L |
Yeex fl@) —
DT ) | )
monotone f:X—{0,1,2,...} k=1

where the polynomial IIx (¢) is obtained from IIy ({a.}) by the substitution

=)

We put into the Appendix the relevant combinatorial facts about the pedestals
and pedestal polynomials.

Our main tool is the filter semigroup of operators M3, introduced in the
next section. They have appeared first in [BHRL BD|, where their spectral
properties were studied. In fact, part of the proof of Theorem 1 can be
obtained by following the proof of Thm 1.2 in [BHR]. We give a shorter and
more direct proof.

The next section contains some general facts about posets. It is followed
by the section containing proofs.

2 The filter semigroup

At the end of this section we will introduce the filter semigroup. But it is
easier to describe it geometrically, as the face semigroup of a hyperplane
arrangement, so we do this first.

2.1 Faces

Consider the central real hyperplane arrangement A, consisting of hyper-
planes {H;; : 1 <i < j <n}in R" defined by H;; = {(x1,...,z,) 1 ; = x;}.
Every open connected component of the complement R™\ {UH,;} is called a
chamber. A cone is any union of closures of chambers which is convez. Let
us introduce the (finite) set O (n) of all different cones thus obtained.

Let a poset X of n elements be given, with a binary relation <. To every
pair ¢,7 € X which is in the relation ¢ < j there corresponds a half-space
K;j = {z; < z;} C R" (here we assume that X is identified with {1,2,... ,n}
as a plain set, ignoring the order). Consider the cone

A(X,ﬁ):{ N Ki]} € O (n)

i<
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where the intersection is taken over all pairs ¢, j such that i < .
The following statements are well-known (and easy to prove), see [B, D]
Sal, [St].

Claim 2 The above defined correspondence (X, <) — A(X, <) is a one-to-
one correspondence between the set of all partial orders on {1,2,...,n} and
the set of all cones O (n).

We present an illustration of this claim for n = 4.

Figure 1: The central real hyperplane arrangement A4 in R*, projected to R? along the
line x = y = z = t and intersected with the sphere S? C R3. It is a partition of S? into 24
equal triangles, each with the angles (g, 3 %) . The types of convex unions of the triangles
are: the sphere, the hemisphere, the region between two great semicircles, an elementary
triangle — or e-triangle, a pair of e-triangles with a common side, a triangle made from
three e-triangles, a ‘square’ formed by four e-triangles with a common F-vertex, a triangle
made from a ‘square’ and a fifth adjacent e-triange, a triangle formed by six e-triangles
with a common Z-vertex. The number of corresponding convex shapes are 1, 12, 60, 24,
36, 48, 6, 24, 8, with total being 219. This is precisely the number of partial orders on the

set of four distinct elements, see the sequence A001035 in OEIS [SI].

Let f', f” be two faces in A(X) = A (X, x). (It is allowed that one or both
of them are in fact chambers, i.e. faces of highest dimension). Define the face
f=7"(f) e A(X) - or the face-product f"f — by the following procedure:
choose points 2’ € f', z” € f” in general position and let s,/,~ : [0, 1] — R™ be
a linear segment, S,,» (0) = 2/, sp,n (1) = 2”. Consider the face f € A(X)
which contains all the points s,,» (1 — &) of our segment for ¢ > 0 small
enough. Such a face does exist due to the convexity of A(X). By definition,
1" (f") = f. Note that if f” is a chamber then f”f = f".

The face-product is associative. We mention for completeness that the
semigroups A (X, x) are what are called left-reqular bands, see [Sal:
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Claim 3 For every choice of faces f,g,h € A(X, <) we have
f(gh) = (fg)h,
fr=1r rof=1rg

We do not give here the proofs as we are not using these relations.

2.2 Filters

Let F' be a filter on X of rank k, i.e. a surjective map F': X — {1,...,k},
preserving the partial order, and let

{01, 0, } {bjst, o bt oo {bj i1, o by F C X

be its ‘floors’:

{bj, 11,00, }=F " (r), r=1,...k
Consider the face fr € A(X, <), defined by the equations

and inequalities

Tby, < Zbj, < ... <X

j k"

(More precisely, we write an equation for every floor of F' which contains at
least two elements of X.) This is a one-to-one correspondence between faces
and filters. The filters of the highest rank n, i.e. the linear extensions of <,

correspond to the chambers.

The corresponding filter-product looks as follows. For F’, F” being two
filters of X, the filter ' = F”F’ on X is uniquely defined by the following
properties:

e For u,v with F” (u) < F" (v) we have F' (u) < F (v).
e For u,v with F” (u) = F" (v) we have F' (u) < F (v) iff F' (u) < F' (v).



Indeed, let f', f” be the two faces, corresponding to the filters F’, F”, and
the general position points x’, 2" belong to corresponding faces.

The fact that F” (u) < F”(v) means that 2/, < z7. But the point
Sprar (1 — €) is close to the point 2", therefore [sy,7 (1 — €)], < [spra (1 —€)],
for all € small enough.

The fact that F” (u) = F" (v) while F' (u) < F' (v) means that z/ = z!
while 2], < . Since the map s,,» : [0,1] — R™ is linear, for any ¢ < 1 we
have [s,7an (B)], < [swar (2)],

Let F' be a filter on X, and P is some filter of rank n, i.e. a linear order
on X. Then the filter F'P is again a filter of rank n. Consider the square

matrix My = H (Mg)PQH where P, () are linear orders on X :
(MF)RQ_{ 0 ifQ+FP

The operators M7 play a central role in our proof.

Examples of the operators Mj are given in the Examples section below.

3 Proof of the main result
The plan of the proof is the following:

1. We will show that the matrix M*X can be written as a linear combina-
tion of M3 -s with integer monomial coefficients.

2. We will show that all M;X-s can be made upper-triangular via conjuga-
tion with the same matrix, and the resulting upper-triangular matrices
have integer entries on the diagonal.

3.1 The filter decomposition

Let us rewrite M~ as the sum over all 2! functions € : {1,...,n —1} —
{0,1}:
M~ = "a.By., (4)

£

where the entries of each matrix By, are 0 or 1.



For every function € we define the number r (¢) = 1+ Z;:ll e(j), and we
partition the segment {1,...,n} into r (¢) consecutive segments

{1,...n}={1,...,c1}
U{aa+1,...,c1+ ¢}
U{aa+e+1,..,a+c+e}tU...
U{a+..+ce+1...n},

where the values ¢; +1,¢; + ¢ +1,...,¢1 + ... + ¢) + 1 are all the points
where the function ¢ takes value 1.

For ¢y, ..., ¢, being integers summing up to n we denote by F., ., the set
of all filters F': X — [1,2,...,r] such that [~ (i)| = ¢; forall i = 1,..., 7.

Lemma 4 Suppose that the matriv Bx. # 0, and the function ¢ has the
parameters r and cy, ...,c.. Then the following inclusion-exclusion identity
holds:

BX,& - Z M;w( - Z MF)S— (5>

Fefcl ,,,,, cr Fefc1+02,03 ,,,,, C’y'u
U-Fcl,c2+c3 ..... ,;TU...

Fe-/—‘cl+02+03,64 ,,,,, C’V‘U
U-Fcl+cz,c3+c4 ..... crU~-~

where the sums are taken over all possible mergers of neighboring indices c;,
#mergers

and the signs are (—1)

Proof. Indeed, if we take an order () from the row P which appears in the
lhs, then it agrees with P over the first ¢; —1 locations, then it disagrees once,
then it agrees again over next cy — 1 locations, then disagrees once again, etc.
But an order () from the row P which appears in the rhs and corresponds
to the first sum in , agrees with P over the first ¢; — 1 locations, then it
agrees or disagrees once, then it agrees again over next ¢y — 1 locations,
then agrees or disagrees once again, etc. Therefore we have to remove all
these )-s which agrees with P over the first ¢; — 1 locations, then agrees
once again, then agrees also over next co — 1 locations, etc.

See the Examples section for some M3 operators. m



3.2 Conjugation of M3 -s to upper-triangular

Let X = {aq,...,a,} be a poset with the partial order < . We denote by
Toty the set of all total orders extending <. Our matrices M Iff are of the
size |Totx| x |Totx|. Let us now abolish all order relations on X, getting the
poset X with |Totg| = n! . Of course, M7 is a submatrix of Mj . Imagine
(after reindexing) that it is an upper-left submatrix. We claim that to the
right of this submatrix all matrix elements of M7 are zero, and so M3 is a
block of M3. Indeed, each row of M3 has exactly one 1, and the rest are
0-s. But each row of M} already has one 1. So it is sufficient to know that
the spectrum of M7 consists of integers.

In what follows, the initial poset X will not appear any more, and we will
deal only with ‘totally unordered’ poset X. The fact that the matrices My
can be conjugated simultaneously to upper-triangular ones can be deduced
from the results of the papers [BHRI BD]. We give a shorter and more direct
proof.

Let us consider an even bigger matrix, N }_(_, of size 2""=1/2 Here F is a
filter on X, while the rows and columns of Nj are indexed by tournaments
between the n entries of X. A tournament is an assignment of an order
< to each pair i # j of the elements of the set X, independently for each
pair. If we have a tournament < and a filter F' on X, then we define a new
tournament < by the rule:

1. If F (i) = F(j) then i gp j iff i < 7,
2. If F (i) < F(j) then i <p j.

We define N by
(NX> _ 1= <r
oo 1 0 ifx'#<p

‘Any linear order defines a tournament in an obvious way, so our matrices
M;3X are blocks of Ni-s, and it is sufficient to study N -s.

The key observation now is the fact that NJ is a tensor product of
n (n — 1) /2 two-by-two matrices, corresponding to all pairs (, j), since the
tournament orders < can be assigned to the pairs independently. And since
the tensor product of upper triangular matrices is upper triangular, it is suf-
ficient to check our claim just for the filters and tournaments in the case
n= ‘X ‘ =2



The two-element no-order set X = {1,2} carries three different filters
and has two possible tournaments. The three two-by-two matrices Nj-s are

10 10 01 : :
Nl.—(l O),Ng.—(o 1>,andN3.—<O 1). Conjugating them

a1 (1

: : : 1 :
by the discrete Fourier transform matrix U = sl 1 brings them to

11

the triple of upper triangular matrices: UN, U~ = ( 00

> LUNL U =

01 0 0
the tensor product finishes the proof.

( Lo ) ,and UN;U ! = ( L—l ) . Extending the conjugation through

Remark 5 Recall the definition of the matrices Bx.: for a poset X,
the set of (0,1)-valued matrices {Bxc}ecio iy m-1y is defined by M~ =

Y .a:Bx.. Let L(X) be the Lie algebra generated by the matrices {Bx}.
The proof shows that the Lie algebra L(X) is solvable.

Remark 6 Let us denote by ®7 the algebra of functions on the set Tourx of
tournaments considered as the set of vertices of the n(n — 1)/2-dimensional
cube in R™"=D/2_ This algebra carries an increasing filtration by subspaces

<n(n—1)
0cod’cdz'c.--Ccdy 2 =y

consisting of restrictions of polynomials of degree < 0,< 1,... to the vertices
of the cube. This filtration is strictly multiplicative in the sense that

<k _ x<l1 <1
O =7 o5t
N————

k times

Our considerations imply that all operators le:( preserve this filtration, and
commute with each other on the associated graded space ©p®5F /O,

Restricting functions from ®r to the subset Totx C Tourg we obtain again
a strictly multiplicative filtration on the algebra ®x := R of functions on
Toty, preserved by all operators Mz where F runs through filters on the
poset X.



4 Appendices

4.1 Pedestals

Let again X be a finite poset with the partial order <, and P, () be a pair of
linear orders on X, consistent with <. We define the function gpg on X by

aro (Q7' (k) =#{l: 1 <k,Q " () isa (P,Q)-descent node} . (6)

Clearly, the function gpg is non-decreasing on X, and gpg (Q~* (1)) = 0. It
is called the pedestal of () with respect to P.

For example, let X be a 3 x 2 Young diagram, and
1 2 3 1 2 5
P—{él 5 6 1’62_[3 4 6 1
be the two standard tableaux. Then
0 0 1
we=190 0 1
Let Ep denotes the set of all pedestals gpg. The correspondence

Q — qrg €€p

is a one-to-one map, as explained below.
Clearly, there is a map £p — £, which to every pedestal gpg corresponds
its ‘discrete derivative’ epq.

The pedestals were introduced in [S] in the following context. Consider
the set P = Px of all non-negative integer-valued non-decreasing functions
p on X. Denote by v (p) the ‘volume’ of p :

v(p) =Y _pla),
acX
and let G be the following generating function:
G () =Ygt = 3 00,
k>0 pPEPx

i.e. g is the number of non-decreasing p-s with v (p) = k. For example, if
the poset X is in fact the set X,, = [1,2,...,n], ordered linearly, then

n

GX”(t):Hlitl

=1
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is the generating function of the sequence g, of the number of partitions
of the integer k into at most n parts: k = 7 (1) + 7(2) + ... + 7 (n), with
m(i) > 0,7 (i) <m(i+1). Let Y, denote the set of all such partitions 7 (i.e.
Young diagrams).

In order to write a formula for Gx for an arbitrary poset X one needs
pedestals. Namely, let us fix some ordering P of X, consider all pedestals
qpPQ, and let

p (1) = S ¢(er) (7)
Q
be the generating function (in fact, generating polynomial) of the sequence

of the number of pedestals with a given volume. Then we have the identity:

1
11—t

Gx (t) =TIp (t) Gx, () =Tp () [ ] (8)
=1

(compare with ) In particular, it follows from that the polynomial
IIp (t) does not depend on P, and thus can be denoted by IIx (¢). The reason
for to hold is the existence of the bijection b : Px — Ep x ), between the
set Px of nondecreasing functions and the direct product £p x Y, respecting
the volumes. Namely, to each pedestal gpg and each partition 7 it associates
the following function p on X :

p(Q7 (k) =aqro (Q7" (k) + 7 (k), k=1,..,n.

Clearly, the function thus defined is non-decreasing on X. For the check that
b is a one-to-one correspondence see [J], relation (46) and the construction
of the inverse map b~! there. The bijectivity of b implies in particular that
for each P all the pedestals gpg are distinct.

In the case when X is a (2D) Young diagram, the functions p € Px are
called ‘reverse plane partitions’. The generating function G'x for these is also
given by the famous Stanley [St] formula,

1
GX (t) = H 1_—th@7
aceX

where h («) is the hook length of the cell @« € X. When X is a rectangle, this
is the MacMahon formula. That means that for the case of X being a Young
diagram nice cancellations happen in the rhs of (§)) . One can check that for
some X being a 3D Young diagram no cancellations happen in , and this
is the reason why the analog of the Stanley formula in the 3D case does not
exist.
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4.2 Pedestal polynomials

The fact that the function Ip (¢) (see (7])) does not depend on the order P on
X, but only on X, has the following generalization. Instead of characterizing
the pedestal gpg just by its volume let us associate with it the monomial
mpg (1,2, 23,...) = 2 el g1 where 1 is the number of
(P, @Q)-descent nodes, and [y, ..., are their locations, see @ Note that
mpo (1,1,2,...) = t*(re).

It was shown in OS] that the polynomial

bp (21,22, 73, ...) = Z mpq (%1, T2, T3, ...)
QEeTotx

is also independent of P, so it can be denoted as hx (1,9, T3, ...). Another
way of expressing this is to say that the matrix M* of size |Totx| x |Totx]|,

with entries (MX> = mpg (T1, T2, 73, ...) is stochastic, i.e. the vector
PQ
(1,1,...,1) is the right eigenvector, with the eigenvalue bx (z1, z9, x3, ...) .
By replacing the monomials mpq (21, 22, 73, ...) with variables a.,, one

obtains from M* our matrix M¥X.

Remark 7 As we just said, we know from [OS] that the rows of the matrix
M™X consist of the same matriz elements, permuted. So it is tempting to
consider the set of permutations wppr € Sitoty|, which permute the elements
of the row P to these of row P'. Unfortunately, rows of the matriz M~ can
contain repeated elements, so the permutations mpp: are not uniquely defined.

4.3 Examples

Here we present several examples in which our posets X correspond to par-
titions; we first list the linear orders, that is, the standard Young tableaux of
a given shape, and then present the pedestal matrix with lines and columns
labelled by the standard Young tableaux in the listed order.

0. In all examples we considered the pedestal matrix is diagonalisable in
the generic point. However for special values of variables the pedestal matrix
might have non-trivial Jordan blocks. We give a minimal example - partition
(3,1). It is essentially the same example as the one before the main theorem,
with the pedestal matrix , because the box (1,1) comes first in any linear
order and can be omitted.
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Here it is enough to take a partial evaluation ayg — —2ag;. Then the Jordan
form is

app — Qo1 1 0
0 apo — Qo1 0
0 0 Qoo + 2&01

It would be interesting to understand the regimes in which the pedestal
matrix is not diagonalisable.

1. Partition (3,2). The standard tableaux are

3[5] [1]2]5] [1]3]4] [1]2]4] |1]2]3

Y ? Y ?

The pedestal matrix MY is 13435y, where

o3 2l 2lxy adws xald
w3 2 adxs 2lxy xad
Aso = | 2izy 23wz o) 2 x23
rivs wivy a3 xd xyad
2 2 3 > 3

After a replacement
L3 2 2 3 9
¢ (a7, 129, 1125, X5, x5x3) — (a1, az, ag, ay, as) (9)
we have

a; a4 Qa2 ay as

. ay a1 a5 G2 as
A(3’2) = a2 A a; a4 as
as Gz a4 a1 as

as Gz a4 a3 Qi

The eigenvalues of A((bw) are

ai—as, a1+as—as—as , a1 —as+as—as , a;—as—aq+as , a+as+as+aqs+as .
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2. Partition (3,1,1). The standard tableaux are

als] |1]3]5] [1]2]5] [1]3]4]

) Y ) Y

The pedestal matrix is iL‘%A(g,Ll) where

[E:f Ill'% l‘% CL’%ZL‘Q IL‘%ZE3 ZL’ll'%
l‘lfL‘% CL’? ZE% l’%ﬂfg Z’gl‘g I‘ll‘%
T1Ty T1T2 TT3 Xy Ty L1y
Ill’% SL’%I:; .T%Ig I‘% I:I) LL’ll’%

31711'3 I%Z)’Jg ZE%CL’Q ZE;’ leg I:l))
After the same replacement @ (the matrix A3 1) contains the same mono-
mials as the matrix A o)) we have

a; a3 a4 az as as

az aip a4 az as as

Aqs . a3 a4 a1 as das as
311 = as Gz a5 aip a4 as
as a5 Gz a4 ap as

as as G2 a4 az ai

@
(3,1,1

of the eigenvalue y is k)

The cigenvalues of A, | ;) are (the notation (y); means that the multiplicity

(al—a3)2 s (11+CL2—CL4—CL5 s CL1—CL2+CL4—CL5 s al—az—a4—i—a5 , a1+a2—|—2a3—|—a4+a5 .

The example (3,1, 1) shows degeneration: the letter ag appears twice in
every row of A((z)3,1,1)' The corresponding monomial is z3x3 so for writing
down the decomposition of the matrix B,, we need filters from F35. There
are three of them in F35 (the notation is like for a matrix; element (i, j) is

in the intersection of row ¢ and column j):
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e [: Floor 1 contains cells (1,1), (1,2) and (2,1);
e Fy: Floor 1 contains cells (1,1), (1,2) and (1,3);

e F3: Floor 1 contains cells (1,1), (2,1) and (3,1).

The matrices of action of these filters on the linear orders are

Mp, =

SO O OO OO
O OO O ==
O OO = OO
OO~ O OO
-0 O O O
O OO OO oo
o OO o oo
o OO o oo
o OO O OO
OO OO OO
O OO OO OO
— = = e

— e R e
O OO O oo
S O OO oo
OO OO OO
SO OO OO
SO OO OO

The family F5 contains one filter, which acts as the identity /. The matrix
B, is thus

= Mp, +Mp, + Mp, — I,

— = = == O
[l oo Nel
SO OO o oo
OO oo oo
_o O O OO
O ==

as dictated by the inclusion-exclusion formula.

3. Partition (3,2,1). In this example, to save the space, we write down
the pedestal matrix in which the replacement

6 5. 4.2 4 3.3 .32 2.4 23 222 22
(27, 229, T1T5, TIToT3, TITS, TITHT3, BTy, TITHT3, T{THTs, T{THT3T) —>

(ab a2, asz, a4, as, 4g, a7, ag, g, alO)

is already made.
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Qay
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¢

The eigenvalues of A(3,2,1)

are
(a1 —as—ar+a10)s , a1 —as+ar—ay , (a1+az—as—ag)s, (a1 —az—as+ag)s ,

(@ —as—az+ag+ar—ag—ag+ay)s, (a1 —ag—as+ay—ar+ag+ag—a)s ,
(a1 —as+ as — ag + ar — ay)2 , a1+ 2as + 2a3 + a4 — a7 — 2ag — 2a9 — aqg ,

ay + 2a9 4+ 2a3 + 2as + 2a¢ + a7 + 2ag + 2a9 + aqp -
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