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Ãq(n)

(Decorated)
Geometric Crystals

on Schubert cell

Tropicalization

kk

Toshiki Nakashima (partially joint work with M.Kashiwara) (Sophia University, Tokyo)Localized Quantum Unipotent Coordinate Category November 21, 2024 3 / 38



Preliminaries

• g = n ⊕ t ⊕ n− = ⟨ei, hi, fi⟩: Simple Lie algebra (→ Kac-Moody),
A = (ai j)i, j∈I:={1,2,··· ,n} : Cartan matrix for g
• {αi : i ∈ I}: set of simple roots, {hi : i ∈ I}: set of simple coroots such that
ai j = α j(hi). Define the root lattice Q :=

⊕
i Zαi ⊃ Q+ :=

⊕
i Z≥0αi. For

β = αi1 + · · · + αik ∈ Q+, define the height of β by |β| = k.

• ( , ) : symm.bilinear form on t∗ s.t. (αi, αi) ∈ 2Z>0 and λ(hi) =
2(αi,λ)
(αi,αi)

for λ ∈ t∗.
(We shall use the notation ⟨hi, λ⟩ for λ(hi). )

• P := {λ ∈ t∗ | ⟨hi, λ⟩ ∈ Z(∀i ∈ I)}: weight lattice⊃ P+: dominant weights

• P∗ := {h ∈ t | ⟨h, P⟩ ⊂ Z}: dual weight lattice

• W = ⟨si | i ∈ I⟩: Weyl group ass. P.

• Uq(g) := ⟨ei, fi, qh⟩i∈I,h∈P∗ : quantum algebra/Q(q)

• U−q (g) := ⟨ fi⟩i∈I , U+q (g) := ⟨ei⟩i∈I : nilpotent subalgebras
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Quantum coordinate ring

(Unipotent) quantum coordinate ringAq(n) is defined as a restricted dual of U+q (g):

Aq(n) =
⊕
β∈Q−

Aq(n)β Aq(n)β := HomQ(q)(U+q (g)−β,Q(q))

Note that we get the isomorphism of Q(q)-algebras

U−q (g)
∼−→ Aq(n) ( fi 7−→ F∗i ).

The Z-form A(n)Z[q,q−1] is defined by:

A(n)Z[q,q−1] := {a ∈ A(n) | ⟨a,U+
Z[q,q−1](g)⟩ ⊂ Z[q, q−1]}.
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Crystal Base I

Definition

Let A ⊂ Q(q) be the subring regular at q = 0. A pair (L, B) is a crystal base of
M ∈ Oint(g)(resp. U−q (g)), if it satisfies:

1 L is a free A-submodule of M (resp. U−q (g)) such that

M � Q(q) ⊗A L (resp. U−q (g) � Q(q) ⊗A L)

L = ⊕λLλ (Lλ := L ∩ Mλ).

2 B is a basis of the Q-vector space L/qL and

B = ⊔λBλ (Bλ := B ∩ Lλ/qLλ).

3 ẽiL ⊂ L and f̃iL ⊂ L. (ẽi, f̃i ∈ EndQ(q)(M) Kashiwara operator)
4 ẽiB ⊂ B ⊔ {0} and f̃iB ⊂ B ⊔ {0}.
5 For u, v ∈ B, f̃iu = v⇐⇒ ẽiv = u.
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Crystal Base II

By 4⃝ of the definition, B holds a colored oriented graph structure, called crystal graph:

Definition

The crystal graph of a crystal B is a colored oriented graph given by the rule:

b1
i−→b2 ⇐⇒ b2 = f̃ib1 (b1, b2 ∈ B).

Let V(λ) (resp. U−q (g)) be the integrable simple h.w.module (resp. nilp. negative subalg. of
Uq(g)) with the h.w.v uλ (λ ∈ P+) (resp. 1 := u∞). Define

L(λ) :=
∑

i j∈I,l≥0

A f̃il · · · f̃i1 uλ, B(λ) := { f̃il · · · f̃i1 uλ mod qL(λ) | i j ∈ I, l ≥ 0} \ {0},

L(∞) :=
∑

i j∈I,l≥0

A f̃il · · · f̃i1 u∞, B(∞) := { f̃il · · · f̃i1 u∞ mod qL(∞) | i j ∈ I, l ≥ 0} \ {0}.

Theorem (Kashiwara)

The pair (L(λ), B(λ)) (resp. (L(∞), B(∞))) is a crystal base of V(λ). (resp. U−q (g)).
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Tensor product of Crystal Bases I

Tensor product of crystal bases is one of the most beautiful and useful results.

Theorem

Let (L j, B j) be a crystal base of finite dimensional Uq(g)-module M j ( j = 1, 2). Set
L = L1 ⊗A L2 and B = {b1 ⊗ b2; b j ∈ B j ( j = 1, 2)} ⊂ L/qL. Then we have

1 (L, B) is a crystal base of M1 ⊗ M2.
2

f̃i(b1 ⊗ b2) =
{

f̃ib1 ⊗ b2 if φi(b1) > εi(b2),
b1 ⊗ f̃ib2 if φi(b1) ≤ εi(b2),

ẽi(b1 ⊗ b2) =
{

b1 ⊗ ẽib2 if φi(b1) < εi(b2),
ẽib1 ⊗ b2 if φi(b1) ≥ εi(b2).

where εi(b) = max{k ≥ 0; ẽk
i b , 0} φi(b) = max{k ≥ 0; f̃ k

i b , 0}
• −→ • −→ • −→︸                 ︷︷                 ︸ •−→ • −→ • −→ •︸                 ︷︷                 ︸

εi(u) u φi(u)
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Crystals

“Crystal” is a combinatorial object abstracting the properties of crystal bases.

Definition (Crystal)

A 6-tuple (B,wt, {εi}, {φi}, {ẽi}, { f̃i})i∈I is a crystal if B is a set and ∃0 < B and maps:

wt : B→ P, εi : B→ Z ⊔ {−∞}, φi : B→ Z ⊔ {−∞} (i ∈ I) (1)

ẽi : B ⊔ {0} → B ⊔ {0}, f̃i : B ⊔ {0} → B ⊔ {0} (i ∈ I), (2)

satisfying :
1 φi(b) = εi(b) + ⟨hi,wt(b)⟩.
2 If b, ẽib ∈ B, then wt(ẽib) = wt(b) + αi, εi(ẽib) = εi(b) − 1, φi(ẽib) = φi(b) + 1.
3 If b, f̃ib ∈ B, then wt( f̃ib) = wt(b) − αi, εi( f̃ib) = εi(b) + 1, φi( f̃ib) = φi(b) − 1.
4 For b, b′ ∈ B and i ∈ I, one has f̃ib = b′ ⇐⇒ b = ẽib′.
5 If φi(b) = −∞ for b ∈ B, then ẽib = f̃ib = 0 and ẽi(0) = f̃i(0) = 0.
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Crystal Bi

Example

For i ∈ I, set Bi := {(n)i | n ∈ Z} and its crystal structure is given by

wt((n)i) = nαi, εi((n)i) = −n, φi((n)i) = n,

ε j((n)i) = φ j((n)i) = −∞ (i , j),
ẽi((n)i) = (n + 1)i, f̃i((n)i) = (n − 1)i,

ẽ j((n)i) = f̃ j((n)i) = 0 (i , j)

Crystal graph of Bi:

i i i i
· · · - ����

1 -����
0 -����

-1 -����
-2 -����

x - · · ·
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Explicit Crystal Structure of Bi1 ⊗ · · · ⊗ Bim

Fix a sequence of indices i = (i1, · · · , im) ∈ Im and write

(x1, · · · , xm) := f̃ x1
i1

(0)i1 ⊗ · · · ⊗ f̃ xm
im

(0)im = (−x1)i1 ⊗ · · · ⊗ (−xm)im ,

where if n < 0, then f̃ n
i (0)i means ẽ−n

i (0)i.
The crystal structure on Bi1 ⊗ · · · ⊗ Bim is given by: Identifying x = (x1, · · · , xm) with
an element in Zm, define

σk(x) := xk +
∑
j<k

⟨hik , αi j⟩x j (k ∈ [1,m]),

σ̃(i)(x) := max{σk(x) | 1 ≤ k ≤ m and ik = i}, (i ∈ I),
M̃(i) = M̃(i)(x) := {k | 1 ≤ k ≤ m, ik = i, σk(x) = σ̃(i)(x)} (i ∈ I),
m̃(i)

f = m̃(i)
f (x) := max M̃(i)(x), m̃(i)

e = m̃(i)
e (x) := min M̃(i)(x) (i ∈ I).

the Kashiwara operators ẽi, f̃i and the functions wt and εi, φi as

f̃i(x)k := xk + δk,m̃(i)
f
, ẽi(x)k := xk − δk,m̃(i)

e
,

wt(x) := −
m∑

k=1

xkαik , εi(x) := σ̃(i)(x), φi(x) := ⟨hi,wt(x)⟩ + εi(x).
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Cellular Crystal Bi = Bi1i2···ik = Bi1 ⊗ · · · ⊗ Bik

For a reduced word i = i1i2 · · · ik of w ∈ W, we call the crystal Bi := Bi1 ⊗ · · · ⊗ Bik a
cellular crystal associated with i. Indeed, it is obtained by the tropicalization from
the positive geometric crystal on the Langlands dual Schubert cell X∨w
(w = si1 · · · sik ).

Theorem ([Kanakubo-N])

For any simple Lie algebra g and any reduced word i1i2 · · · ik,
the cellular crystal Bi1i2···ik = Bi1 ⊗ Bi2 ⊗ · · · ⊗ Bik is connected (as a crystal graph).

N = l(w0) : the length of the longest element. For ∀k ≤ N,

Bi1i2···iN is connected =⇒ Bi1i2···ik is connected

since B1 ⊗ B2 is connected =⇒ both B1 and B2 are connected.
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Cellular Crystal Bi – Subspace Hi

Fix a longest reduced word i = i1 · · · iN , define the function βk by

βk(x) := σk+ (x) − σk(x) = xk +
∑

k< j<k+
⟨hikαi j⟩x j + xk+

(k+ := min{{m | k < m ≤ N, ik = im} ⊔ {N + 1}}, 1 ≤ k, k+ ≤ N)

Define Hi ⊂ ZN :

Hi := {x ∈ ZN(= Bi) | βk(x) = 0(∀k s.t. k+ ≤ N)} ⊂ Bi

Proposition (Kanakubo-N)

For i = i1i2 · · · iN , k = 1, 2, · · · ,N and a fundamental weight Λi, we define

h(k)
i := ⟨hik , sik+1 · · · siNΛi⟩, hi := (h(1)

i , h
(2)
i , . . . , h

(N)
i ) ∈ Bi

=⇒ Hi = Zh1 ⊕ Zh2 ⊕ · · · ⊕ Zhn
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B(∞) : crystal of U−q (g). We can realize B(∞) ⊂ Bi = Z
N by e.g., polyhedral realization.

Example

g = A2-case: B(∞) = {(x, y, z) ∈ Z3 | 0 ≤ x ≤ y, z ≥ 0} ⊂ Z3 = B121

Lemma (Kanakubo-N, N)

For h ∈ Hi, define
Bh(∞) := {x + h ∈ ZN = Bi | x ∈ B(∞)}.

1 For any x + h ∈ Bh(∞) and i ∈ I, we obtain

ẽi(x + h) = ẽi(x) + h, f̃i(x + h) = f̃i(x) + h,

and then Bh(∞) is connected.
2 For any h ∈ Hi, we have B(∞) ∩ Bh(∞) , ∅.
3

Bi =
∪
h∈Hi

Bh(∞)

By the fact that B(∞) is connected and this lemma, we can show that Bi is connected.
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Quiver Hecke Algebra

For a finite index set I and a field k, let (Qi, j(u, v))i, j∈I ⊂ k[u, v] be polynomials satisfying:
Qi, j(u, v) = Q j,i(v, u), Qi,i(u, v) = 0 for any i, j ∈ I and some other conditions. For
β =
∑

i miαi ∈ Q+ with |β| := ∑i mi = m.

Definition

For β ∈ Q+, the quiver Hecke algebra R(β) associated with a Cartan matrix A = (ai j)i, j=1,2,...,n

and polynomials (Qi j(u, v))i, j∈I is the algebra generated by

{e(ν)|ν ∈ Iβ := {((ν1, · · · , νm) |
m∑

k=1

ανk = β}}, {xk}1≤k≤m, {τi}1≤i≤m−1 set R :=
⊕
β∈Q+

R(β)

Grading

The defining relations are homogeneous if we define

deg(e(ν)) = 0, deg(xke(ν)) = (ανk , ανk ), deg(τle(ν)) = −(ανl , ανl+1 ).

Thus, R(β) becomes a Z-graded algebra. Here we define the weight of R(β)-module M as
wt(M) = −β.
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R-modules I

R-modules
1 Define the graded shift functor q on a graded R(β)-module M =

⊕
k∈Z Mk by:

qM :=
⊕
k∈Z

(qM)k, where (qM)k = Mk−1.

2 For f ∈ HomR(qk M,N), define deg( f ) = k.
3 For M ∈ R(β)-Mod and N ∈ R(β′)-Mod, define the convolution product by

M ◦ N := R(β + β′)e(β, β′) ⊗R(β)⊗R(β′) (M ⊗ N) (e(β, β′) :=
∑

ν∈Iβ, ν′∈Iβ′
e(ν, ν′))

4 M∇N := hd(M ◦ N) (head), M△N := soc(M ◦ N) (socle), where the head
of a module is the quotient by its radical and the socle of a module is the sum
of all simple submodules.

5 A simple R-module M is real⇐⇒ M ◦ M is simple.
6 If M � M∗, we say M is self-dual.
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Categorification of U−q (g) and Aq(n)

R(β)-gmod: Category of finite-dimensional graded R(β)-modules
R(β)-gproj: Category of finitely generated graded projective R(β)-modules
Define the functors

Ei : R(β)-gmod→ R(β − αi)-gmod by Ei(M) := e(αi, β − αi)M

Fi : R(β)-gmod→ R(β + αi)-gmod by Fi(M) = L(i) ◦ M,

where e(αi, β − αi) :=
∑
ν∈Iβ,ν1=i e(ν) and L(i) is a 1-dim. simple R(αi)-module. They

satisfy e.g., EiFi = q−2
i FiEi + id (q-boson relation) and q-Serre relations.

Theorem ([Khovanov-Lauda, Rouquier])

Let K(R-gmod) (resp. K(R-gproj)) be the Grothendieck ring of the monoidal
category R-gmod (resp. R-gproj). Then we obtain

K(R-gproj) � U−q (g)Z[q,q−1], K(R-gmod) � Aq(n)Z[q,q−1]
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Categorfication of B(∞) by Lauda and Vazirani

For a simple module M ∈ R(β)-gmod, define

wt(M) = −β,
εi(M) = max{n ∈ Z | En

i M , 0}, φi(M) = εi(M) + ⟨hi,wt(M)⟩,

ẼiM := q1−εi(M)
i soc(EiM) (qi := q

(αi ,αi )
2 ),

F̃iM := qεi(M)
i hd(FiM).

Set B(R-gmod) := {S | S is a self-dual simple module in R-gmod}

Theorem (Lauda-Vazirani)

The 6-tuple, (B(R-gmod), {Ẽi}, {F̃i},wt, {εi}, {φi}) holds a crystal structure and there
exists the following isomorphism of crystals:

Ψ : B(R-gmod)
∼−→ B(∞)
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Braiders and Real Commuting Family I

Let Λ be Z-lattice and T = ⊕λ∈ΛTλ be a k-linear Λ-graded monoidal category with
1 ∈ T0 and the bifunctor ◦ : Tλ × Tµ → Tλ+µ. (Later Λ will be the root lattice Q)

Definition ([KKOP])

q: central obj.in T0. A graded braider is a triple (C,RC , ϕ), where C ∈ T , Z-linear
map ϕ : Λ→ Z and a morphism:

RC : C ◦ X → qϕ(λ)X ◦C (X ∈ Tλ),

which is functorial in X and satisfying the commutative diagram

C ◦ X ◦ Y
RC (X)◦Y//

RC (X◦Y) ''

qϕ(λ) X ◦C ◦ Y

X◦RC (Y)
��

qϕ(λ+µ)(X ◦ Y) ◦C

(X ∈ Tλ, Y ∈ Tµ)
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Braiders and Real Commuting Family II

Let I be an index set and Γ := ⊕i∈IZei and Γ+ := ⊕i∈IZ≥0ei. (Later Γ will be the
weight lattice P and Γ+ be the set of dominant weights P+.)

Definition ([KKOP])

We say (Ci,RCi , ϕi)i∈I a real commuting family(RCF)of graded braiders in T if
1 Ci ∈ Tλi for some λi ∈ Λ, and ϕi(λi) = 0, ϕi(λ j) + ϕ j(λi) = 0 (i, j ∈ I).
2 RCi (Ci) ∈ k×idCi◦Ci (i ∈ I), RCi (C j) ◦ RC j (Ci) ∈ k×idCi◦C j (i, j ∈ I).

(Note: RCi (C j)’s satisfy the ”Yang-Baxter equation” on Ci ◦C j ◦Ck.)

Lemma ([KKOP])

For a RCF (Ci,RCi , ϕi)i∈I , ∃bilin.map H : Γ × Γ→ Z such that
ϕi(λ j) = H(ei, e j) − H(e j, ei) and there exist
{Cα ∈ T | α ∈ Γ+} and isom. ξα,β : Cα ◦Cβ

∼−→qH(α,β)Cα+β(∀α, β ∈ Γ+).

Toshiki Nakashima (partially joint work with M.Kashiwara) (Sophia University, Tokyo)Localized Quantum Unipotent Coordinate Category November 21, 2024 20 / 38



Localization I

Define for α, β ∈ Γ, Dα,β := {δ ∈ Γ |α + δ, β + δ ∈ Γ+}
∃Inductive system {Hδ((X, α), (Y, β))}δ∈Dα,β ⊂ Hom(Cα+δ ◦ X,Y ◦Cβ+δ)

Definition (Localization [KKOP])

We define the localization of monoid.cat. T denoted by T̃ or T [C◦−1
i | i ∈ I]:

Ob(T̃ ) := Ob(T ) × Γ,
HomT̃ ((X, α), (Y, β)) := lim−−→

δ∈D(α,β), λ+L(α)=µ+L(β)

Hδ((X, α), (Y, β)),

(X, α) ◦ (Y, β) := (q−ϕ(β,λ)+H(α,β)(X ◦ Y), α + β),

where X ∈ Tλ, Y ∈ Tµ and L : Γ→ Λ (ei 7→ λi)
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Determinantial Modules

To localize R-gmod let us find ”real commuting family of graded braiders”. Take

a simple R(nαi)-module L(in) := q
n(n−1)

2
i L(i)◦n satisfying qdim(L(in)) = [n]i!.

Definition

For M ∈ R-gmod, define
F̃n

i (M) := L(in)∇M.

For a Weyl group element w, let si1 · · · sil be its reduced expression.
For Λ ∈ P+ and w, set mk = mk(Λ) := ⟨hik , sik+1 · · · silΛ⟩ (k = 1, · · · , l).We define
the determinantial module M(wΛ,Λ) associated with w and Λ by

M(wΛ,Λ) := F̃m1
i1
· · · F̃ml

il
1,

which does not depend on the choice of reduced word i1 . . . il.

Ci := M(wΛi,Λi) affords an affinization⇒ ∃ R-matrix RCi : Ci ◦ X → qϕX ◦Ci.
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Localization ˜R-gmod I

Set CΛ := M(w0Λ,Λ). In particular, for i ∈ I set Ci = CΛi . Then we obtain

Theorem ([KKOP])

Define the function ϕCi : Q→ Z by ϕCi (β) := −(β,w0Λi + Λi)

=⇒ {(Ci,RCi , ϕCi )}i∈I a real comm. family of graded braiders in R-gmod.

Take Γ = P and Γ+ = P+. Then, we obtain the localization of R-gmod

˜R-gmod := R-gmod[C◦−1
i | i ∈ I]

by {(Ci,RCi , ϕCi )}i∈I .

Its Grothendieck ring K( ˜R-gmod) defines the localized quantum coordinate
ring Ãq(n) := Q(q) ⊗Z[q,q−1] K( ˜R-gmod).
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Localization ˜R-gmod II

Definition

For a ring R(not necessarily commutative) and a multiplicative set S ⊂ R, a ring R′

is said to be a left ring of quotients of R w.r.t. S if ∃hom. φ : R→ R′ s.t.
1 ∀s′ ∈ φ(S ) is invertible in R′.
2 ∀m ∈ R′ is in the form m = φ(s)−1φ(a) for some s ∈ S , a ∈ R.
3 Kerφ = {r ∈ R | sr = 0 for some s ∈ S }.

R′ is denoted by S −1R.

Proposition (KKOP)

We get K( ˜R-gmod) � S−1K(R-gmod)= the left ring of quotients of the ring
K(R-gmod)(� Aq(n)Z[q,q−1]) with respect to the multiplicative set

S := {qk∏
i∈I[Ci]ai | k ∈ Z, (ai)i∈I ∈ ZI

≥0}
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Localization ˜R-gmod III

Proposition (KKOP)

Let Φ : R-gmod→ ˜R-gmod be the canonical functor. Then,
1 ˜R-gmod is an abelian category and the functor Φ is exact.
2 C̃i := Φ(Ci) (i ∈ I) is invertible central graded braider in ˜R-gmod.
3 S ∈ R-gmod is simple =⇒ Φ(S ) is simple in ˜R-gmod.

For ν ∈ P, define C̃ν by C̃λ+µ = C̃λ ◦ C̃µ (up to grading) and C̃−Λi = C◦−1
i

4 For ∀simple M ∈ ˜R-gmod, simple ∃S ∈ R-gmod and ∃Λ ∈ P s.t.
M � C̃Λ ◦ Φ(S ) (Λ and S are not necessarily unique) .
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Crystal Structure on ˜R-gmod I

For a simple object C̃Λ ◦ Φ(S ) ∈ ˜R-gmod we write simply CΛ ◦ S .
Set B( ˜R-gmod) := {S | S is a self-dual simple object in ˜R-gmod}

Lemma (KKOP)
∀simple module M ∈ ˜R-gmod, ∃!n ∈ Z such that qnM is self-dual, denoted by δ(M).

The actions of the Kashiwara operators [N]

Define the Kashiwara operators F̃i and Ẽi (i ∈ I) on B( ˜R-gmod) :

F̃i(CΛ ◦ S ) = qδ(CΛ◦F̃iS )CΛ ◦ F̃iS ,

Ẽi(CΛ ◦ S ) =

qδ(CΛ◦ẼiS )CΛ ◦ ẼiS if EiS , 0,
qδ(CΛ−Λi∗ ◦(ẼiCΛi∗ ◦S ))CΛ−Λi∗ ◦ (ẼiCΛi∗ ◦ S ) if EiS = 0,

where δ is given in the above lemma and i∗ ∈ I is the index satisfying Λi∗ = −w0Λi.

Toshiki Nakashima (partially joint work with M.Kashiwara) (Sophia University, Tokyo)Localized Quantum Unipotent Coordinate Category November 21, 2024 26 / 38



Crystal Structure on ˜R-gmod II

Crystal structure: εi and wt [N]

Let Ψ : B(R-gmod)
∼−→B(∞) (Lauda-Vazirani). For CΛ ◦ S ∈ B( ˜R-gmod), define

wt(CΛ ◦ S ) = wt(Ψ(S )) + w0Λ − Λ,
εi(CΛ ◦ S ) = εi(Ψ(S )) − ⟨hi,w0Λ⟩,
φi(CΛ ◦ S ) = εi(Ψ(CΛ ◦ S )) + ⟨hi,wt(CΛ ◦ S )⟩.

Theorem ([N])

The 6-tuple (B( ˜R-gmod),wt, {εi}, {φi}, {Ẽi}, {F̃i})i∈I is a crystal.

Indeed, we should show that well-definedness, i.e.,all data do not depend on the
presentation CΛ ◦ S � CΛ′ ◦ S ′ and for b = CΛ ◦ S ,

ẼiF̃ib = F̃iẼib = b,

εi(F̃i(b)) = εi(b) + 1, εi(Ẽi(b)) = εi(b) − 1,
wt(Ẽib) = wt(b) + αi, wt(F̃ib) = wt(b) − αi.
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Cellular Crystal Bi and B( ˜R-gmod) I

As we have seen above that the set Hi ⊂ Bi is presented by

Hi =
⊕

i∈I

Zhi, hi = ((h(k)
i := ⟨hik , sik+1 · · · siNΛi⟩)k=1,··· ,N

Lemma ([N])

For any reduced longest word i = i1i2 · · · iN and Λ ∈ P+, set
mk = mk(Λ) := ⟨hik , sik+1 · · · siNΛ⟩)k=1,··· ,N . Then, we obtain

f̃ m1
i1

f̃ m2
i2
· · · f̃ mN

iN
((0)i1 ⊗ (0)i2 ⊗ · · · ⊗ (0)iN ) = f̃ m1

i1
(0)i1 ⊗ f̃ m2

i2
(0)i2 ⊗ · · · ⊗ f̃ mN

iN
(0)iN

= (m1,m2, · · · ,mN) =: hΛ ∈ Hi,

where note that for Λ = Λi, one has mk(Λi) = h(k)
i . Then in this case we obtain

f̃ m1(Λi)
i1

f̃ m2(Λi)
i2

· · · f̃ mN (Λi)
iN

((0)i1 ⊗ (0)i2 ⊗ · · · ⊗ (0)iN ) = hi
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Cellular Crystal Bi and B( ˜R-gmod) II

Observation: Determinantial modules {CΛ = M(w0Λ,Λ)} ←→ Hi

{CΛ |Λ ∈ P+} ⊂ R-gmod ←→ Hi

CΛ = F̃m1
i1
· · · F̃mN

iN
1 ←→ hΛ = f̃ m1

i1
f̃ m2
i2
· · · f̃ mN

iN
((0)i1 ⊗ (0)i2 ⊗ · · · ⊗ (0)iN )

Theorem ([N])

For any reduced longest word i = i1i2 · · · iN , ∃isomorphism of crystals:

Ψ̃ : B( ˜R-gmod)
∼−→ Bi =

∪
h∈Hi

Bh(∞)

CΛ ◦ S 7−→ hΛ + Ψ(S ) ∈ BhΛ (∞),

where Ψ : B(R-gmod)
∼−→B(∞) (Lauda-Vazirani), S is simple in B(R-gmod) and for

Λ =
∑

i aiΛi we have hΛ =
∑

i aihi.
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Localized Quantum Unipotent Coordinate Category I

In an arbitrary ”symmetrizable Kac-Moody” setting, for any Weyl group element
w ∈ W, there exists the full subcategory Cw of R-gmod defined as follows: For
M ∈ R(β)-gmod, set W(M) := {γ ∈ Q+ ∩ (β − Q+) | e(γ, β − γ)M , 0} ⊂ Q+.

Define the category Cw := {M ∈ R-gmod | W(M) ⊂ Q+ ∩ wQ−}

Note: Cw0 = R-gmod for a semi-simple g.
Indeed, Cw categorifies Aq(n(w)) = quantum unipotent coordinate ring ass w, that
is, K(Cw) � Aq(n(w)). It admits a localization

C̃w = Cw[C◦−1
i | i ∈ I], (Ci = M(wΛi,Λi)),

called localized quantum unipotent coordinate category ass.w ∈ W.
Let Qw : R-gmod→ C̃w be the localization functor.
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Localized Quantum Unipotent Coordinate Category II

Proposition (KKOP2, KKOP3)

1 Qw |Cw
: Cw → C̃w is fully faithful.

2 There exists the category equivalence R-gmod[C◦−1
i | i ∈ I]

∼−→ C̃w

3 We obtain Ker(Qw) = R-gmod \Bw where
Bw = {M ∈ R-gmod | ∀simple subquotient S of M, Ψ(S ) ∈ Bw(∞)} and
Bw(∞) is a Demazure crystal in B(∞).

Problem

Q: Does the category C̃w hold a crystal B(C̃w) := {self-dual simple ∈ C̃w}? If so,

B(C̃w)
∼−→ Bi1 ⊗ · · · ⊗ Bim ?

where i1 · · · im is a reduced word of w.
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Localized Quantum Unipotent Coordinate Category III

Answer

The answer is “YES” (joint work with M.Kashiwara)

Key tools

For the answer, we need the following three objects:

Rigidity Affinization R-matrix
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Rigid category

Definition
X,Y ∈ T monoidal category, and ε : X ◦ Y → 1 and η : 1→ Y ◦ X morphisms in T .
A pair (X,Y) is a dual pair or X is a left dual to Y, denoted D−1(Y) and Y is a right
dual to X, denoted D(X) if the following compositions are identities:

X ≃ X ◦ 1
id◦η
−→ X ◦ Y ◦ X

ε◦id−→ 1 ◦ X ≃ X, Y ≃ 1 ◦ Y
η◦id
−→ Y ◦ X ◦ Y

id◦ε−→ Y ◦ 1 ≃ Y

Definition

A monoidal cat. T is left rigid (resp. right rigid) if ∀X ∈ T , ∃D−1(X) (resp. D(X)).
We say T is rigid if T is left and right rigid, .

Theorem ([KKOP,KKOP2])

For a quiver Hecke algebra R associated with an arbitrary symmetrizable
Kac-Moody Lie algebra and any w ∈ W, the category C̃w is rigid, i.e., ∀X ∈ C̃w,
∃D(X),D−1(X). (C̃w,v is right rigid, but not yet known to be left rigid.)
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Affinzation in C̃w and R-matrix I

In [KKOP4], for a monoidal category C with several ”good” conditions, the
following categories are defined

C ⊂ Pro(C) = {pro-object=some projective limit},
∪
Modg(k[z],Pro(C)) ⊃ Procoh(k[z],C) ⊃ Affz(C).

An object (M, z) ∈ Affz(C) is called an affine object of M = M/zM ∈ C and an affine
object (M, z) of M = M/zM with a ”rational center RM” is called an affinization of M.

Proposition (KKOP4, Prop 5.6)

If a category C is rigid, then the monoidal category Affz(C) is also rigid.

Example

If R is symmetric, ∀simple real object M in Cw affords an affinization M = M ⊗k k[z].
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Affinzation in C̃w and R-matrix II

Theorem (KKOP4, Prop 6.2, Thm 6.10, Prop 6.18)

Let C be an abelian rigid monoidal category with bi-exact tensor product.
1 For an affreal(=real and admits affinization) M ∈ C and a simple N ∈ C, M ◦ N

and N ◦ M have simple heads and simple socles, moreover,

HomC(M ◦ N,N ◦ M) = HomC(N ◦ M,M ◦ N) = k∃RM,N (R-matrix).

2 Let (M, zM)be the affinization of M as in 1⃝ and N ∈ C a simple. Then in
Procoh(k[z],C) ∃!renormailzed R-matrix Rren

M,N s.t.

k[z] · Rren
M,N = Homk[z](M ◦ N,N ◦M)

satisfying YB-eq. and Rren
M,N |z=0 = RM,N , etc.
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Affinzation in C̃w and R-matrix III

Applying the above results to C = C̃w, we obtain R-matrix and rigidity of the
category Affz(C̃w).
Then by the theorem above, for any affreal object M ∈ C̃w, its affinization (M, z,RM)
and a simple N ∈ C̃w, we obtain renormalized R-matrix and R-matrix

Rren
M,N ∈ Homk[z](M ◦ N,N ◦M) RM,N = Rren

M,N |z=0 ∈ HomC̃w
(M ◦ N,N ◦ M)

R : M ◦ N → N ◦ M be an R-matrix in Cw. Then, we define Λ(M,N) := deg(R).
Similarly, for an R-matrix R̃ : X ◦ Y → Y ◦ X in C̃w, define Λ(X,Y) := deg(R̃), and

Λ̃(X,Y) :=
1
2

(Λ(X,Y) + (wt(X),wt(Y))).
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Crystal Structure on C̃w

Using the rigidity and R-matrix of C̃w, we can define the crystal structure on

B(C̃w) := {M ∈ C̃w | M � M∗ is self-dual simple object}
by defining for X ∈ B(C̃w), e.g.,

Ẽi X := qφi(X)
i X ∇DQw(L(i)),

εi(X), φi(X), F̃i X, Ẽ∗i X, F̃∗i X, etc....

Note that Ẽi = F̃−1
i and Ẽ∗i = F̃∗i

−1.

Theorem

B(C̃w) becomes a crystal and we obtain an isomorphism of crystals :

B(C̃w)
∼−→ Bi1 ⊗ · · · ⊗ Bim

where i1 · · · im is a reduced word of w ∈ W.

Corollary

For any reduced word i1 · · · im of any w ∈ W, the cellular crystal Bi1 ⊗ · · · ⊗ Bim is connected
as a crystal graph.
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