Crystal Structure of Localized Quantum Unipotent Coordinate Category

Combinatorics and Arithmetics for Physics

IHES, Paris

Toshiki Nakashima

(partially joint work with M.Kashiwara)

Sophia University, Tokyo

November 21, 2024

References

Preliminaries

• g = n ⊕ t ⊕ n[−] = ⟨*eⁱ* , *hⁱ* , *fi*⟩: Simple Lie algebra (→ Kac-Moody),

 $A = (a_{ij})_{i,j \in I: = \{1,2,\cdots,n\}}$: Cartan matrix for $\mathfrak g$

 \bullet { α_i : *i* ∈ *I*}: set of simple roots, { h_i : *i* ∈ *I*}: set of simple coroots such that $a_{ij} = \alpha_j(h_i)$. Define the root lattice $Q := \bigoplus_i \mathbb{Z} \alpha_i \supset Q_+ := \bigoplus_i \mathbb{Z}_{\ge 0} \alpha_i$. For $\beta = \alpha_{i_1} + \cdots + \alpha_{i_k} \in Q_+$, define the height of β by $|\beta| = k$.

 \bullet (,): symm.bilinear form on t^{*} s.t. $(\alpha_i, \alpha_i) \in 2\mathbb{Z}_{>0}$ and $\lambda(h_i) = \frac{2(\alpha_i, \lambda_i)}{(\alpha_i, \alpha_i)}$ $\frac{2(\alpha_i,\lambda)}{(\alpha_i,\alpha_i)}$ for $\lambda \in \mathfrak{t}^*$. (We shall use the notation $\langle h_i, \lambda \rangle$ for $\lambda(h_i)$.)

- *P* := { $\lambda \in \mathfrak{t}^* \mid \langle h_i, \lambda \rangle \in \mathbb{Z}(\forall i \in I)$ }: weight lattice $D P_+$: dominant weights
- *P* ∗ := {*h* ∈ t | ⟨*h*, *P*⟩ ⊂ Z}: dual weight lattice
- $W = \langle s_i | i \in I \rangle$: Weyl group ass. *P*.
- *Uq*(g) := ⟨*eⁱ* , *fⁱ* , *q h* ⟩*i*∈*I*,*h*∈*P*[∗] : quantum algebra/Q(*q*)
- \bullet $U_q^-(g) := \langle f_i \rangle_{i \in I}$, $U_q^+(g) := \langle e_i \rangle_{i \in I}$ nilpotent subalgebras

Quantum coordinate ring

(Unipotent) quantum coordinate ring $\mathcal{A}_q(\mathfrak{n})$ is defined as a restricted dual of $U_q^+(\mathfrak{g})$:

$$
\mathcal{A}_q(\mathfrak{n}) = \bigoplus_{\beta \in \mathcal{Q}_-} \mathcal{A}_q(\mathfrak{n})_\beta \qquad \mathcal{A}_q(\mathfrak{n})_\beta := \text{Hom}_{\mathbb{Q}(q)}(U_q^+(\mathfrak{g})_{-\beta}, \mathbb{Q}(q))
$$

Note that we get the isomorphism of Q(*q*)-algebras

$$
U_q^-(\mathfrak{g}) \quad \stackrel{\sim}{\longrightarrow} \quad \mathcal{A}_q(\mathfrak{n}) \qquad (f_i \longmapsto F_i^*).
$$

The \mathbb{Z} -form $\mathcal{A}(\mathfrak{n})_{\mathbb{Z}[q,q^{-1}]}$ is defined by:

$$
\mathcal{A}(\mathfrak{n})_{\mathbb{Z}[q,q^{-1}]} := \{a \in \mathcal{A}(\mathfrak{n}) \mid \langle a, U^+_{\mathbb{Z}[q,q^{-1}]}(g) \rangle \subset \mathbb{Z}[q,q^{-1}]\}.
$$

Crystal Base I

Definition

Let $A \subset \mathbb{Q}(q)$ be the subring regular at $q = 0$. A pair (L, B) is a crystal base of $M \in O_{\rm int}(\mathfrak{g})$ (resp. $U_q^-(\mathfrak{g})$), if it satisfies:

1 *L* is a free A-submodule of *M* (resp. $U_q^-(g)$) such that

$$
M \cong \mathbb{Q}(q) \otimes_A L \quad \text{(resp. } U_q^-(\mathfrak{g}) \cong \mathbb{Q}(q) \otimes_A L)
$$

$$
L = \oplus_A L_A \ (L_A := L \cap M_A).
$$

² *B* is ^a basis of the Q-vector space *L*/*qL* and

$$
B=\sqcup_{\lambda} B_{\lambda} \ (B_{\lambda}:=B\cap L_{\lambda}/qL_{\lambda}).
$$

- ³ *e*˜*iL* ⊂ *L* and ˜*fiL* ⊂ *L*. (*e*˜*ⁱ* , ˜*fⁱ* ∈ End^Q(*q*)(*M*) Kashiwara operator)
- \bullet $\tilde{e}_i B \subset B \sqcup \{0\}$ and $\tilde{f}_i B \subset B \sqcup \{0\}.$
- **5** For $u, v \in B$, $\tilde{f}_i u = v \Longleftrightarrow \tilde{e}_i v = u$.

Crystal Base II

By \bigcirc of the definition, *B* holds a colored oriented graph structure, called crystal graph:

Definition

The crystal graph of a crystal *B* is a colored oriented graph given by the rule:

$$
b_1 \xrightarrow{i} b_2 \iff b_2 = \tilde{f}_i b_1 \quad (b_1, b_2 \in B).
$$

Let $V(\lambda)$ (resp. $U_q^-(\mathfrak{g})$) be the integrable simple h.w.module (resp. nilp. negative subalg. of *U*_{*q*}(g)) with the h.w.v *u*_{λ} ($\lambda \in P_+$) (resp. 1 := *u*_∞). Define

$$
L(\lambda) := \sum_{i_j \in I, l \ge 0} A \tilde{f}_{i_l} \cdots \tilde{f}_{i_1} u_{\lambda}, \quad B(\lambda) := \{ \tilde{f}_{i_l} \cdots \tilde{f}_{i_1} u_{\lambda} \text{ mod } qL(\lambda) \mid i_j \in I, l \ge 0 \} \setminus \{0\},
$$

$$
L(\infty) := \sum_{i_j \in I, l \ge 0} A \tilde{f}_{i_l} \cdots \tilde{f}_{i_1} u_{\infty}, \quad B(\infty) := \{ \tilde{f}_{i_l} \cdots \tilde{f}_{i_1} u_{\infty} \text{ mod } qL(\infty) \mid i_j \in I, l \ge 0 \} \setminus \{0\}.
$$

Theorem (Kashiwara)

The pair $(L(\lambda), B(\lambda))$ (resp. $(L(\infty), B(\infty))$) is a crystal base of $V(\lambda)$. (resp. $U_q^-(g)$).

Tensor product of Crystal Bases I

Tensor product of crystal bases is one of the most beautiful and useful results.

Theorem

Let (L_j, B_j) be a crystal base of finite dimensional $U_q(\mathfrak{g})$ -module M_j $(j = 1, 2)$. Set *L* = *L*₁ ⊗_{*A*} *L*₂ and *B* = {*b*₁ ⊗ *b*₂; *b*_{*j*} ∈ *B*_{*j*} (*j* = 1, 2)} ⊂ *L*/*qL*. Then we have \bigodot (*L*, *B*) is a crystal base of $M_1 \otimes M_2$. 0 $\tilde{f}_i(b_1 \otimes b_2) = \begin{cases} \tilde{f}_i b_1 \otimes b_2 & \text{if } \varphi_i(b_1) > \varepsilon_i(b_2), \\ b \otimes \tilde{f}_i b & \text{if } \varphi_i(b_1) < \varepsilon_i(b_2), \end{cases}$ $b_1 \otimes \tilde{f}_i b_2$ if $\varphi_i(b_1) \leq \varepsilon_i(b_2)$, $\tilde{e}_i(b_1 \otimes b_2) = \begin{cases} b_1 \otimes \tilde{e}_i b_2 & \text{if } \varphi_i(b_1) < \varepsilon_i(b_2), \\ \tilde{e}_i b_1 \otimes b_2 & \text{if } \varphi_i(b_1) > \varepsilon_i(b_2), \end{cases}$ $\tilde{e}_i b_1 \otimes b_2$ if $\varphi_i(b_1) \ge \varepsilon_i(b_2)$. where $\left| \varepsilon_i(b) = \max\{k \ge 0; \ \tilde{e}_i^k b \ne 0 \} \right| \left| \varphi_i(b) = \max\{k \ge 0; \ \tilde{f}_i^k b \ne 0 \} \right|$ $\longrightarrow \bullet$ ${\epsilon_i(u)}$ *u* ${\varphi_i(u)}$ $\overline{\rightarrow}\bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet$ $\varphi_i(u)$

Crystals

"Crystal" is a combinatorial object abstracting the properties of crystal bases.

Definition (Crystal)

A 6-tuple $(B, wt, \{\varepsilon_i\}, \{\varphi_i\}, \{\tilde{\varphi}_i\}, \{\tilde{f}_i\})_{i \in I}$ is a crystal if *B* is a set and $\exists 0 \notin B$ and maps:

$$
\text{wt}: B \to P, \quad \varepsilon_i: B \to \mathbb{Z} \sqcup \{-\infty\}, \quad \varphi_i: B \to \mathbb{Z} \sqcup \{-\infty\} \quad (i \in I) \tag{1}
$$

$$
\tilde{e}_i: B \sqcup \{0\} \to B \sqcup \{0\}, \quad \tilde{f}_i: B \sqcup \{0\} \to B \sqcup \{0\} \ (i \in I), \tag{2}
$$

satisfying :

- $\phi_i(b) = \varepsilon_i(b) + \langle h_i, \text{wt}(b) \rangle.$
- **If** $b, \tilde{e}_i b \in B$, then $\text{wt}(\tilde{e}_i b) = \text{wt}(b) + \alpha_i$, $\varepsilon_i(\tilde{e}_i b) = \varepsilon_i(b) 1$, $\varphi_i(\tilde{e}_i b) = \varphi_i(b) + 1$.
- **If** $b, \tilde{f}_i b \in B$, then $\text{wt}(\tilde{f}_i b) = \text{wt}(b) \alpha_i$, $\varepsilon_i(\tilde{f}_i b) = \varepsilon_i(b) + 1$, $\varphi_i(\tilde{f}_i b) = \varphi_i(b) 1$.
- **1** For $b, b' \in B$ and $i \in I$, one has $\tilde{f}_i b = b' \Longleftrightarrow b = \tilde{e}_i b'$.
- **5** If $\varphi_i(b) = -\infty$ for $b \in B$, then $\tilde{e}_i b = \tilde{f}_i b = 0$ and $\tilde{e}_i(0) = \tilde{f}_i(0) = 0$.

Crystal *Bⁱ*

Example

For $i \in I$, set $B_i := \{(n)_i \, | \, n \in \mathbb{Z}\}$ and its crystal structure is given by

wt(*n*)_i) = *n*
$$
\alpha_i
$$
, $\varepsilon_i((n)_i) = -n$, $\varphi_i((n)_i) = n$,
\n $\varepsilon_j((n)_i) = \varphi_j((n)_i) = -\infty$ (*i* \neq *j*),
\n $\tilde{e}_i((n)_i) = (n + 1)_i$, $\tilde{f}_i((n)_i) = (n - 1)_i$,
\n $\tilde{e}_j((n)_i) = \tilde{f}_j((n)_i) = 0$ (*i* \neq *j*)

Crystal graph of *Bⁱ* :

$$
\cdots \longrightarrow (1) \qquad i \qquad (0) \qquad i \qquad (1) \qquad i \qquad (2) \qquad i \qquad (3) \qquad \cdots
$$

(partially joint work Localized Quantum Unipotent Coordinate Category November 21, 2024 10/38

Explicit Crystal Structure of $B_{i_1} \otimes \cdots \otimes B_{i_m}$

Fix a sequence of indices $\mathbf{i} = (i_1, \dots, i_m) \in I^m$ and write

$$
(x_1, \cdots, x_m) := \tilde{f}_{i_1}^{x_1}(0)_{i_1} \otimes \cdots \otimes \tilde{f}_{i_m}^{x_m}(0)_{i_m} = (-x_1)_{i_1} \otimes \cdots \otimes (-x_m)_{i_m},
$$

where if $n < 0$, then $\tilde{f}_i^n(0)_i$ means $\tilde{e}_i^{-n}(0)_i$. The crystal structure on $B_{i_1}\otimes\cdots\otimes B_{i_m}$ is given by: Identifying $x=(x_1,\cdots,x_m)$ with an element in Z *^m*, define

$$
\sigma_k(x) := x_k + \sum_{j < k} \langle h_{i_k}, \alpha_{i_j} \rangle x_j \quad (k \in [1, m]),
$$
\n
$$
\widetilde{\sigma}^{(i)}(x) := \max \{ \sigma_k(x) \mid 1 \le k \le m \text{ and } i_k = i \}, \quad (i \in I),
$$
\n
$$
\widetilde{M}^{(i)} = \widetilde{M}^{(i)}(x) := \{ k \mid 1 \le k < m, i = i, \quad \sigma_k(x) = \widetilde{\sigma}^{(i)}(x) \}
$$

$$
\widetilde{M}^{(i)} = \widetilde{M}^{(i)}(x) := \{k \mid 1 \le k \le m, \ i_k = i, \ \sigma_k(x) = \widetilde{\sigma}^{(i)}(x)\} \quad (i \in I),
$$

$$
\widetilde{m}_f^{(i)} = \widetilde{m}_f^{(i)}(x) := \max \widetilde{M}^{(i)}(x), \quad \widetilde{m}_e^{(i)} = \widetilde{m}_e^{(i)}(x) := \min \widetilde{M}^{(i)}(x) \quad (i \in I).
$$

 t he Kashiwara operators \tilde{e}_i, \tilde{f}_i and the functions wt and $\tilde{\varepsilon}_i, \varphi_i$ as

$$
\tilde{f}_i(x)_k := x_k + \delta_{k,\widetilde{m}_f^{(i)}}, \qquad \tilde{e}_i(x)_k := x_k - \delta_{k,\widetilde{m}_e^{(i)}},
$$
\n
$$
\text{wt}(x) := -\sum_{k=1}^m x_k \alpha_{i_k}, \quad \varepsilon_i(x) := \widetilde{\sigma}^{(i)}(x), \quad \varphi_i(x) := \langle h_i, \text{wt}(x) \rangle + \varepsilon_i(x).
$$

(partially joint work Localized Quantum Unipotent Coordinate Category November 21, 2024 11/38

Cellular Crystal $\mathbb{B}_i = \mathbb{B}_{i_1 i_2 \cdots i_k} = B_{i_1} \otimes \cdots \otimes B_{i_k}$

For a reduced word $\mathbf{i} = i_1 i_2 \cdots i_k$ of $w \in W$, we call the crystal $\mathbb{B}_\mathbf{i} := B_{i_1} \otimes \cdots \otimes B_{i_k}$ a **cellular crystal** associated with i. Indeed, it is obtained by the tropicalization from the positive geometric crystal on the Langlands dual Schubert cell X_{w}^{\vee} $(w = s_{i_1} \cdots s_{i_k}).$

Theorem ([Kanakubo-N])

For any simple Lie algebra g and any reduced word $i_1 i_2 \cdots i_k$, the cellular crystal $\mathbb{B}_{i_1i_2\cdots i_k} = B_{i_1}\otimes B_{i_2}\otimes\cdots\otimes B_{i_k}$ is connected (as a crystal graph).

 $N = l(w_0)$: the length of the longest element. For $\forall k \leq N$,

 $\mathbb{B}_{i_1 i_2 \cdots i_N}$ is connected \Longrightarrow $\mathbb{B}_{i_1 i_2 \cdots i_k}$ is connected

since $B_1 \otimes B_2$ is connected \Longrightarrow both B_1 and B_2 are connected.

Cellular Crystal Bⁱ **– Subspace** Hⁱ

Fix a longest reduced word $\mathbf{i} = i_1 \cdots i_N$, define the function β_k by

$$
\beta_k(x) := \sigma_{k^+}(x) - \sigma_k(x) = x_k + \sum_{k < j < k^+} \langle h_{i_k} \alpha_{i_j} \rangle x_j + x_{k^+}
$$
\n
$$
(k^+ := \min\{ \{ m \mid k < m \le N, \ i_k = i_m \} \sqcup \{ N + 1 \} \}, \ 1 \le k, k^+ \le N)
$$

Define $H_i \subset \mathbb{Z}^N$:

$$
\mathcal{H}_{\mathbf{i}} := \{ x \in \mathbb{Z}^N (= \mathbb{B}_{\mathbf{i}}) | \beta_k(x) = 0 (\forall k \text{ s.t. } k^+ \le N) \} \subset \mathbb{B}_{\mathbf{i}}
$$

Proposition (Kanakubo-N)

For $\mathbf{i} = i_1 i_2 \cdots i_N$, $k = 1, 2, \cdots, N$ and a fundamental weight Λ_i , we define

$$
h_i^{(k)} := \langle h_{i_k}, s_{i_{k+1}} \cdots s_{i_N} \Lambda_i \rangle, \qquad \mathbf{h}_i := (h_i^{(1)}, h_i^{(2)}, \dots, h_i^{(N)}) \in \mathbb{B}_1
$$

$$
\implies \mathcal{H}_i = \mathbb{Z}\mathbf{h}_1 \oplus \mathbb{Z}\mathbf{h}_2 \oplus \cdots \oplus \mathbb{Z}\mathbf{h}_n
$$

B(∞) : crystal of $U_q^-(g)$. We can realize B (∞) ⊂ $\mathbb{B}_i = \mathbb{Z}^N$ by e.g., polyhedral realization.

Example

 $g = A_2$ -case: $B(\infty) = \{(x, y, z) \in \mathbb{Z}^3 \mid 0 \le x \le y, z \ge 0\} \subset \mathbb{Z}^3 = \mathbb{B}_{121}$

Lemma (Kanakubo-N, N)

For
$$
h \in \mathcal{H}_i
$$
, define

$$
B^h(\infty) := \{x + h \in \mathbb{Z}^N = \mathbb{B}_1 \mid x \in B(\infty)\}.
$$

1 For any $x + h \in B^h(\infty)$ and $i \in I$, we obtain

$$
\tilde{e}_i(x+h) = \tilde{e}_i(x) + h, \qquad \tilde{f}_i(x+h) = \tilde{f}_i(x) + h,
$$

and then $B^h(\infty)$ is connected.

2 For any $h \in H_i$, we have $B(\infty) \cap B^h(\infty) \neq \emptyset$.

$$
\bullet
$$

$$
\mathbb{B}_{\mathbf{i}} = \bigcup_{h \in \mathcal{H}_{\mathbf{i}}} B^h(\infty)
$$

By the fact that $B(\infty)$ is connected and this lemma, we can show that \mathbb{B}_i is connected.

Quiver Hecke Algebra

For a finite index set *I* and a field **k**, let $(Q_{i,j}(u, v))_{i,j\in I} \subset \mathbf{k}[u, v]$ be polynomials satisfying: $Q_{i,j}(u, v) = Q_{j,i}(v, u), Q_{i,i}(u, v) = 0$ for any $i, j \in I$ and some other conditions. For $\beta = \sum_i m_i \alpha_i \in Q_+$ with $|\beta| := \sum_i m_i = m$.

Definition

 $For \beta \in Q_+$, the quiver Hecke algebra $R(\beta)$ associated with a Cartan matrix $A = (a_{ij})_{i,j=1,2,...,n}$ and polynomials $(Q_{ij}(u, v))_{i,j\in I}$ is the algebra generated by

$$
\{e(v)|v\in I^{\beta}:=\{((v_1,\cdots,v_m)\mid \sum_{k=1}^m\alpha_{v_k}=\beta\}\},\quad \{x_k\}_{1\leq k\leq m},\quad \{\tau_i\}_{1\leq i\leq m-1}\quad \text{ set } R:=\bigoplus_{\beta\in Q_+}R(\beta)
$$

Grading

The defining relations are homogeneous if we define

$$
deg(e(v)) = 0
$$
, $deg(x_k e(v)) = (\alpha_{\nu_k}, \alpha_{\nu_k})$, $deg(\tau_l e(v)) = -(\alpha_{\nu_l}, \alpha_{\nu_{l+1}})$.

Thus, *R*(β) becomes a Z-graded algebra. Here we define the weight of *R*(β)-module *M* as $wt(M) = -\beta$.

*R***-modules I**

R-modules

1 Define the graded shift functor q on a graded $R(\beta)$ -module $M = \bigoplus_{k \in \mathbb{Z}} M_k$ by:

$$
M := \bigoplus_{k \in \mathbb{Z}} (qM)_k, \quad \text{where } (qM)_k = M_{k-1}.
$$

2 For $f \in \text{Hom}_R(q^kM, N)$, define $\deg(f) = k$.

q

3 For $M \in R(\beta)$ -Mod and $N \in R(\beta')$ -Mod, define the convolution product by

 $M \circ N := R(\beta + \beta')e(\beta, \beta') \otimes_{R(\beta) \otimes R(\beta')} (M \otimes N) \quad (e(\beta, \beta') := \sum_{\alpha \in \mathcal{C}}$ $\sum_{\substack{\mathcal{V}\in I^{\beta},\ \mathcal{V}'\in I^{\beta'}}}e(\mathcal{V},\mathcal{V}'))$ \bigodot *M*V*N* := hd(*M* ◦ *N*) (head), *M*△*N* := soc(*M* ◦ *N*) (socle), where the head of a module is the quotient by its radical and the socle of a module is the sum of all simple submodules.

- **5** A simple *R*-module *M* is real \Longleftrightarrow *M* \circ *M* is simple.
- **6** If $M \cong M^*$, we say M is self-dual.

$\mathsf{Categorical}$ at $U_q^-(\mathfrak{g})$ and $\mathcal{A}_q(\mathfrak{n})$

R(β)-gmod: Category of finite-dimensional graded *R*(β)-modules *R*(β)-gproj: Category of finitely generated graded projective *R*(β)-modules Define the functors

 E_i : $R(\beta)$ -gmod $\rightarrow R(\beta - \alpha_i)$ -gmod by $E_i(M) := e(\alpha_i, \beta - \alpha_i)M$

$$
F_i
$$
: $R(\beta)$ -gmod $\rightarrow R(\beta + \alpha_i)$ -gmod by $F_i(M) = L(i) \circ M$,

where $e(\alpha_i, \beta - \alpha_i) := \sum_{v \in I^\beta, v_1 = i} e(v)$ and $L(i)$ is a 1-dim. simple $R(\alpha_i)$ -module. They satisfy e.g., $E_iF_i = q_i^{-2}F_iE_i + \text{id}$ (*q*-boson relation) and *q*-Serre relations.

Theorem ([Khovanov-Lauda, Rouquier])

Let $\mathcal{K}(R\text{-}\mathrm{gmod})$ (resp. $\mathcal{K}(R\text{-}\mathrm{gproj})$) be the Grothendieck ring of the monoidal category *R*-gmod (resp. *R*-gproj). Then we obtain

$$
\mathcal{K}(R\text{-}\mathrm{gproj}) \cong U_q^-(\mathfrak{g})_{\mathbb{Z}[q,q^{-1}]}, \qquad \mathcal{K}(R\text{-}\mathrm{gmod}) \cong \mathcal{A}_q(\mathfrak{n})_{\mathbb{Z}[q,q^{-1}]}
$$

Categorfication of *B*(∞) **by Lauda and Vazirani**

For a simple module $M \in R(\beta)$ -gmod, define

$$
wt(M) = -\beta,
$$

\n
$$
\varepsilon_i(M) = \max\{n \in \mathbb{Z} \mid E_i^n M \neq 0\}, \quad \varphi_i(M) = \varepsilon_i(M) + \langle h_i, wt(M) \rangle,
$$

\n
$$
\widetilde{E}_i M := q_i^{1 - \varepsilon_i(M)} \operatorname{soc}(E_i M) \quad (q_i := q^{\frac{(\alpha_i, \alpha_i)}{2}}),
$$

\n
$$
\widetilde{F}_i M := q_i^{\varepsilon_i(M)} \operatorname{hd}(F_i M).
$$

Set $\mathbb{B}(R\text{-gmod}) := \{S \mid S \text{ is a self-dual simple module in } R\text{-gmod}\}$

Theorem (Lauda-Vazirani)

The 6-tuple, $(\mathbb{B}(R\text{-gmod}), \{\overline{E}_i\}, \{\overline{F}_i\}, \text{wt}, \{\varepsilon_i\}, \{\varphi_i\})$ holds a crystal structure and there exists the following isomorphism of crystals:

$$
\Psi : \mathbb{B}(R\text{-}\mathsf{gmod}) \quad \stackrel{\sim}{\longrightarrow} \quad B(\infty)
$$

Braiders and Real Commuting Family I

Let Λ be Z-lattice and $\mathcal{T} = \bigoplus_{\lambda \in \Lambda} \mathcal{T}_{\lambda}$ be a k-linear Λ -graded monoidal category with $1 \in \mathcal{T}_0$ and the bifunctor $\circ : \mathcal{T}_\lambda \times \mathcal{T}_\mu \to \mathcal{T}_{\lambda+\mu}$. (Later Λ will be the root lattice *Q*)

Definition ([KKOP])

q: central obj.in \mathcal{T}_0 . A graded braider is a triple (C, R_C, ϕ) , where $C \in \mathcal{T}$, Z-linear map $\phi : \Lambda \to \mathbb{Z}$ and a morphism:

$$
R_C: C \circ X \to q^{\phi(\lambda)} X \circ C \quad (X \in \mathcal{T}_{\lambda}),
$$

which is functorial in *X* and satisfying the commutative diagram

$$
C \circ X \circ Y \xrightarrow{R_C(X) \circ Y} q^{\phi(\lambda)} X \circ C \circ Y \qquad (X \in \mathcal{T}_{\lambda}, Y \in \mathcal{T}_{\mu})
$$

$$
\downarrow^{X \circ R_C(Y)} \qquad \qquad \downarrow^{X \circ R_C(Y)} \qquad (X \in \mathcal{T}_{\lambda}, Y \in \mathcal{T}_{\mu})
$$

$$
q^{\phi(\lambda + \mu)} (X \circ Y) \circ C
$$

Braiders and Real Commuting Family II

Let *I* be an index set and $\Gamma := \oplus_{i \in I} \mathbb{Z} e_i$ and $\Gamma_+ := \oplus_{i \in I} \mathbb{Z}_{\geq 0} e_i$. (Later Γ will be the weight lattice *P* and Γ_+ be the set of dominant weights P_+ .)

Definition ([KKOP])

We say $(C_i, R_{C_i}, \phi_i)_{i\in I}$ a real commuting family(RCF)of graded braiders in ${\mathcal T}$ if

- **1** $C_i \in \mathcal{T}_{\lambda_i}$ for some $\lambda_i \in \Lambda$, and $\phi_i(\lambda_i) = 0$, $\phi_i(\lambda_j) + \phi_j(\lambda_i) = 0$ $(i, j \in I)$.
- **3** $R_{C_i}(C_i) \in \mathbf{k}^{\times} \text{id}_{C_i \circ C_i}$ $(i \in I)$, $R_{C_i}(C_j) \circ R_{C_j}(C_i) \in \mathbf{k}^{\times} \text{id}_{C_i \circ C_j}$ $(i, j \in I)$. (Note: $R_{C_i}(C_j)$'s satisfy the "Yang-Baxter equation" on $C_i \circ C_j \circ C_k$.)

Lemma ([KKOP])

For a RCF $(C_i, R_{C_i}, \phi_i)_{i \in I}$, ∃bilin.map $H : \Gamma \times \Gamma \rightarrow \mathbb{Z}$ such that $\phi_i(\lambda_j) = H(e_i, e_j) - H(e_j, e_i)$ and there exist ${C^{\alpha} \in \mathcal{T} \mid \alpha \in \Gamma_+ \}$ and isom. $\xi_{\alpha,\beta}: C^{\alpha} \circ C^{\beta} \longrightarrow q^{H(\alpha,\beta)} C^{\alpha+\beta} ({}^{\lambda} \alpha, \beta \in \Gamma_+).$

Localization I

Define for *α*, *β* ∈ Γ, *D_{αβ}* := {*δ* ∈ Γ| *α* + *δ*, *β* + *δ* ∈ Γ₊}
[∃]Inductive system {*H*_δ((*X*, *α*), (*Y*, *β*))}_{δ∈ *D*_{αβ} ⊂ Hom(*C*^{α+δ} ∘ *X*, *Y* ∘ *C*^{β+δ})}

Definition (Localization [KKOP])

We define the localization of monoid.cat. $\mathcal T$ denoted by $\widetilde{\mathcal T}$ or $\mathcal T[C_i^{\circ -1}\mid i\in I]$:

 $Ob(\widetilde{\mathcal{T}}) := Ob(\mathcal{T}) \times \Gamma,$ $\text{Hom}_{\widetilde{\mathcal{T}}}(X,\alpha), (Y,\beta)) := \text{lim}$ $\overrightarrow{\delta \in \mathcal{D}(\alpha,\beta)}, \overrightarrow{\lambda + L(\alpha)} = \mu + L(\beta)$ $H_{\delta}((X,\alpha),(Y,\beta)),$ $(X, \alpha) \circ (Y, \beta) := (q^{-\phi(\beta, \lambda) + H(\alpha, \beta)} (X \circ Y), \alpha + \beta),$

where $X \in \mathcal{T}_{\lambda}$, $Y \in \mathcal{T}_{\mu}$ and $L : \Gamma \to \Lambda$ $(e_i \mapsto \lambda_i)$

Determinantial Modules

To localize *R*-gmod let us find "**real commuting family of graded braiders**". Take a simple $R(n\alpha_i)$ -module $L(i^n) := q_i^{\frac{n(n-1)}{2}} L(i)^{\circ n}$ satisfying $\text{qdim}(L(i^n)) = [n]_i!$. **Definition** For $M \in R$ -gmod, define $\widetilde{F}_i^n(M) := L(i^n)\nabla M.$ For a Weyl group element w , let $s_{i_1}\cdots s_{i_l}$ be its reduced expression. For $\Lambda \in P_+$ and w, set $m_k = m_k(\Lambda) := \langle h_{i_k}, s_{i_{k+1}} \rangle$ $(k = 1, \dots, l)$. We define the **determinantial module** M(*w*Λ, Λ) associated with *w* and Λ by $M(w \Lambda, \Lambda) := \widetilde{F}_{i_1}^{m_1} \cdots \widetilde{F}_{i_l}^{m_l} \mathbf{1},$ which does not depend on the choice of reduced word $i_1 \ldots i_l$.

 $C_i := M(w\Lambda_i, \Lambda_i)$ affords an affinization \Rightarrow [∃] R-matrix R_{C_i} : $C_i \circ X \to q^{\phi} X \circ C_i$.

Localization *R***-gmod**] **I**

Set $C_\Lambda := \mathsf{M}(w_0\Lambda,\Lambda)$. In particular, for $i \in I$ set $C_i = C_{\Lambda_i}$. Then we obtain

Theorem ([KKOP])

Define the function $\phi_{C_i}: Q \to \mathbb{Z}$ by $\phi_{C_i}(\beta) := -(\beta, w_0 \Lambda_i + \Lambda_i)$ \Longrightarrow $\{(C_i, R_{C_i}, \phi_{C_i})\}_{i \in I}$ a real comm. family of graded braiders in *R*-gmod. Take $\Gamma = P$ and $\Gamma_+ = P_+$. Then, we obtain the localization of *R*-gmod

 $R \cdot \widetilde{gmod} := R \cdot \text{gmod}[C_i^{\circ -1} \mid i \in I]$

by {(C_i, R_{C_i}, ϕ_{C_i})}_{i∈}*I*.

Its Grothendieck ring $K(R\text{-}\overline{\text{gmod}})$ defines the **localized quantum coordinate ring** $\widetilde{\mathcal{A}_q(\mathfrak{n})} := \mathbb{Q}(q) \otimes_{\mathbb{Z}[q,q^{-1}]} \widetilde{\mathcal{K}}(R \text{-}\widetilde{\text{gmod}}).$

Localization *R***-gmod**] **II**

Definition

For ^a ring *R*(not necessarily commutative) and ^a multiplicative set *S* ⊂ *R*, ^a ring *R* ′ \forall is said to be a left ring of quotients of *R* w.r.t. *S* if ∃hom. $\varphi : R \to R'$ s.t.

- $\bigcup \forall s' \in \varphi(S)$ is invertible in *R'*.
- 2 $\forall m \in R'$ is in the form $m = \varphi(s)^{-1} \varphi(a)$ for some $s \in S$, $a \in R$.
- \bullet Ker $\varphi = \{r \in R \mid sr = 0 \text{ for some } s \in S\}.$

 R' is denoted by $S^{-1}R$.

Proposition (KKOP)

We get $\mathcal{K}(R \cdot \widetilde{gmod}) \cong \mathcal{S}^{-1} \mathcal{K}(R \cdot \widetilde{gmod})$ = the left ring of quotients of the ring $\mathcal{K}(R\text{-}\mathsf{gmod})(\cong\mathcal{A}_q(\mathfrak{n})_{\mathbb{Z}[q,q^{-1}]})$ with respect to the multiplicative set $S := \{q^k \prod_{i \in I} [C_i]^{a_i} \mid k \in \mathbb{Z}, \ (a_i)_{i \in I} \in \mathbb{Z}_{\geq 0}^I\}$

Localization *R***-gmod**] **III**

Proposition (KKOP)

Let Φ : *R*-gmod \rightarrow *R*-gmod be the canonical functor. Then,

- **1** *R*-gmod is an abelian category and the functor Φ is exact.
- $2 \widetilde{C}_i := \Phi(C_i)$ ($i \in I$) is invertible central graded braider in *R*-gmod.
- \bullet *S* \in *R*-gmod is simple \Longrightarrow $\Phi(S)$ is simple in *R*-gmod.

For $v \in P$, define \widetilde{C}_v by $\widetilde{C}_{\lambda+\mu} = \widetilde{C}_{\lambda} \circ \widetilde{C}_{\mu}$ (up to grading) and $\widetilde{C}_{-\Lambda_i} = C_i^{\circ -1}$

⁴ For ∀simple *M* ∈ *R*-gmod, simple] ∃*S* ∈ *R*-gmod and ∃Λ ∈ *P* s.t. $M \cong \widetilde{C}_{\Lambda} \circ \Phi(S)$ (Λ and *S* are not necessarily unique).

Crystal Structure on *R***-gmod**] **I**

For a simple object $\widetilde{C}_{\Lambda} \circ \Phi(S) \in R$ -gmod we write simply $C_{\Lambda} \circ S$. Set $\mathbb{B}(R\widetilde{\text{-gmod}}) := \{S \mid S \text{ is a self-dual simple object in } R\widetilde{\text{-gmod}}\}$

Lemma (KKOP)

 \forall simple module $M \in R$ - $\widetilde{gmod}, \exists ! n \in \mathbb{Z}$ such that q^nM is self-dual, denoted by $\delta(M)$.

The actions of the Kashiwara operators [N]

Define the Kashiwara operators \widetilde{F}_i and \widetilde{E}_i ($i \in I$) on $\mathbb{B}(R\widetilde{\text{-gmod}})$:

$$
\widetilde{F}_i(C_\Lambda \circ S) = q^{\delta(C_\Lambda \circ F_i S)} C_\Lambda \circ \widetilde{F}_i S,
$$
\n
$$
\widetilde{E}_i(C_\Lambda \circ S) = \begin{cases}\nq^{\delta(C_\Lambda \circ \widetilde{E}_i S)} C_\Lambda \circ \widetilde{E}_i S & \text{if } E_i S \neq 0, \\
q^{\delta(C_\Lambda \circ \Lambda_{i^*} \circ (\widetilde{E}_i C_{\Lambda_{i^*}} \circ S))} C_{\Lambda - \Lambda_{i^*}} \circ (\widetilde{E}_i C_{\Lambda_{i^*}} \circ S) & \text{if } E_i S = 0,\n\end{cases}
$$

where δ is given in the above lemma and $i^* \in I$ is the index satisfying $\Lambda_{i^*} = -w_0 \Lambda_{i^*}$.

Crystal Structure on *R***-gmod**] **II**

Crystal structure: ε*ⁱ* and wt [N]

Let Ψ : B(*R*-gmod) ∼ −→*B*(∞) (Lauda-Vazirani). For *C*^Λ ◦ *S* ∈ B(*R*-gmod]), define

$$
wt(C_{\Lambda} \circ S) = wt(\Psi(S)) + w_0 \Lambda - \Lambda,
$$

\n
$$
\varepsilon_i(C_{\Lambda} \circ S) = \varepsilon_i(\Psi(S)) - \langle h_i, w_0 \Lambda \rangle,
$$

\n
$$
\varphi_i(C_{\Lambda} \circ S) = \varepsilon_i(\Psi(C_{\Lambda} \circ S)) + \langle h_i, wt(C_{\Lambda} \circ S) \rangle.
$$

Theorem ([N])

The 6-tuple ($\mathbb{B}(R\text{-}\overline{\text{gmod}})$, wt, $\{\varepsilon_i\}$, $\{\varphi_i\}$, $\{\widetilde{F}_i\}$, $\{\widetilde{F}_i\}$ *is a crystal.*

Indeed, we should show that well-definedness, i.e.,all data do not depend on the $\mathsf{presentation}\ C_{\Lambda}\circ\mathsf{S}\cong C_{\Lambda'}\circ\mathsf{S}'\ \text{and for}\ b = C_{\Lambda}\circ\mathsf{S},$

$$
\widetilde{E}_i \widetilde{F}_i b = \widetilde{F}_i \widetilde{E}_i b = b,
$$
\n
$$
\varepsilon_i(\widetilde{F}_i(b)) = \varepsilon_i(b) + 1, \qquad \varepsilon_i(\widetilde{E}_i(b)) = \varepsilon_i(b) - 1,
$$
\n
$$
\text{wt}(\widetilde{E}_i b) = \text{wt}(b) + \alpha_i, \qquad \text{wt}(\widetilde{F}_i b) = \text{wt}(b) - \alpha_i.
$$

Cellular Crystal Bⁱ **and** B(*R***-gmod**]) **^I**

As we have seen above that the set $\mathcal{H}_{\mathbf{i}} \subset \mathbb{B}_{\mathbf{i}}$ is presented by

$$
\mathcal{H}_{\mathbf{i}}=\bigoplus_{i\in I}\mathbb{Z}\mathbf{h}_i,\quad \mathbf{h}_i=((h_i^{(k)}:=\langle h_{i_k},s_{i_{k+1}}\cdot\cdot\cdot s_{i_N}\Lambda_i\rangle)_{k=1,\cdots,N}
$$

Lemma ([N])

For any reduced longest word $\mathbf{i} = i_1 i_2 \cdots i_N$ and $\Lambda \in P_+$, set $m_k = m_k(\Lambda) := \langle h_{i_k}, s_{i_{k+1}} \cdots s_{i_N} \Lambda \rangle)_{k=1,\cdots,N}$. Then, we obtain

$$
\begin{array}{rcl}\n\tilde{f}_{i_1}^{m_1}\tilde{f}_{i_2}^{m_2}\cdots\tilde{f}_{i_N}^{m_N}((0)_{i_1}\otimes (0)_{i_2}\otimes \cdots \otimes (0)_{i_N}) & = & \tilde{f}_{i_1}^{m_1}(0)_{i_1}\otimes \tilde{f}_{i_2}^{m_2}(0)_{i_2}\otimes \cdots \otimes \tilde{f}_{i_N}^{m_N}(0)_{i_N} \\
& = & (m_1, m_2, \cdots, m_N) =: \mathbf{h}_{\Lambda} \in \mathcal{H}_{\mathbf{i}},\n\end{array}
$$

where note that for $\Lambda = \Lambda_i$, one has $m_k(\Lambda_i) = h_i^{(k)}$. Then in this case we obtain

$$
\tilde{f}_{i_1}^{m_1(\Lambda_i)}\tilde{f}_{i_2}^{m_2(\Lambda_i)}\cdots\tilde{f}_{i_N}^{m_N(\Lambda_i)}((0)_{i_1}\otimes(0)_{i_2}\otimes\cdots\otimes(0)_{i_N})=\mathbf{h}_i
$$

Cellular Crystal Bⁱ **and** B(*R***-gmod**]) **II**

Observation: Determinantial modules $\{C_\Lambda = M(w_0\Lambda, \Lambda)\}\longleftrightarrow \mathcal{H}_i$

$$
\{C_{\Lambda} | \Lambda \in P_{+}\}\subset R\text{-gmod} \quad \longleftrightarrow \quad \mathcal{H}_{\mathbf{i}}C_{\Lambda} = \widetilde{F}_{i_{1}}^{m_{1}} \cdots \widetilde{F}_{i_{N}}^{m_{N}} \mathbf{1} \quad \longleftrightarrow \quad \mathbf{h}_{\Lambda} = \widetilde{f}_{i_{1}}^{m_{1}} \widetilde{f}_{i_{2}}^{m_{2}} \cdots \widetilde{f}_{i_{N}}^{m_{N}}((0)_{i_{1}} \otimes (0)_{i_{2}} \otimes \cdots \otimes (0)_{i_{N}})
$$

Theorem ([N])

For any reduced longest word $\mathbf{i} = i_1 i_2 \cdots i_N$, \exists *isomorphism of crystals:*

$$
\widetilde{\Psi}: \mathbb{B}(R\widetilde{\text{-gmod}}) \quad \xrightarrow{\sim} \quad \mathbb{B}_{\mathbf{i}} = \bigcup_{h \in \mathcal{H}_{\mathbf{i}}} B^h(\infty)
$$
\n
$$
C_{\Lambda} \circ S \quad \longmapsto \quad \mathbf{h}_{\Lambda} + \Psi(S) \in B^{\mathbf{h}_{\Lambda}}(\infty),
$$

 $where Ψ : ℝ(R\text{-}gmod) \rightarrow B(∞)$ (Lauda-Vazirani), *S* is simple in ℝ(*R*-gmod) and for $\Lambda = \sum_i a_i \Lambda_i$ we have $\mathbf{h}_{\Lambda} = \sum_i a_i \mathbf{h}_i$.

Localized Quantum Unipotent Coordinate Category I

In an arbitrary "symmetrizable Kac-Moody" setting, for any Weyl group element $w \in W$, there exists the full subcategory \mathcal{C}_w of *R*-gmod defined as follows: For *M* ∈ *R*($β$)-gmod, set W(*M*) := { $γ ∈ Q_+ ∩ (β - Q_+) | e(γ, β - γ)M ≠ 0$ } ⊂ $Q_+.$

Define the category $\mathcal{C}_w := \{M \in R\text{-gmod} \mid W(M) \subset Q_+ \cap wQ_-\}$

Note: $\mathcal{C}_{w_0} = R$ -gmod for a semi-simple g.

Indeed, \mathcal{C}_w categorifies $\mathcal{A}_q(\mathfrak{n}(w)) =$ quantum unipotent coordinate ring ass w, that is, $\mathcal{K}(\mathscr{C}_w) \cong \mathcal{A}_q(\mathfrak{n}(w))$. It admits a localization

 $\widetilde{\mathscr{C}}_w = \mathscr{C}_w[C_i^{\circ -1} \mid i \in I], \quad (C_i = M(w \Lambda_i, \Lambda_i)),$

called localized quantum unipotent coordinate category ass.*w* ∈ *W*. Let Q_w : *R*-gmod $\rightarrow \widetilde{e_w}$ be the localization functor.

Localized Quantum Unipotent Coordinate Category II

Proposition (KKOP2, KKOP3)

- \mathbf{D} $Q_{w|\mathscr{C}_w}:\mathscr{C}_w\to\mathscr{C}_w$ is fully faithful.
- **2** There exists the category equivalence R -gmod[$C_i^{\circ-1} \nmid i \in I$] → $\widetilde{\mathscr{C}}_w$
- \bullet We obtain $\text{Ker}(Q_w) = R$ -gmod $\setminus \mathcal{B}_w$ where $\mathscr{B}_w = \{ M \in R$ -gmod | \forall simple subquotient *S* of *M*, $\Psi(S) \in B_w(\infty) \}$ and $B_w(\infty)$ *is a Demazure crystal in B*(∞).

Problem

Q: Does the category $\widetilde{\mathscr{C}}_w$ hold a crystal $\mathbb{B}(\widetilde{\mathscr{C}}_w) := \{\text{self-dual simple } \in \widetilde{\mathscr{C}}_w\}$? If so,

 $\mathbb{B}(\widetilde{\mathscr{C}_{w}}) \longrightarrow B_{i_{1}} \otimes \cdots \otimes B_{i_{m}}$?

where $i_1 \cdots i_m$ is a reduced word of w .

Localized Quantum Unipotent Coordinate Category III

Rigid category

Definition

X, *Y* \in *T* monoidal category, and ε : *X* \circ *Y* \to 1 and η : 1 \to *Y* \circ *X* morphisms in *T*. ^A pair (*X*, *Y*) is ^a dual pair or *X* is ^a left dual to *Y*, denoted D[−]¹ (*Y*) and *Y* is ^a right dual to *X*, denoted $\mathcal{D}(X)$ if the following compositions are identities:

$$
X \simeq X \circ 1 \xrightarrow{\text{id} \circ \eta} X \circ Y \circ X \xrightarrow{\text{eoid}} 1 \circ X \simeq X, \ Y \simeq 1 \circ Y \xrightarrow{\eta \circ id} Y \circ X \circ Y \xrightarrow{\text{id} \circ \varepsilon} Y \circ 1 \simeq Y
$$

Definition

A monoidal cat. T is left rigid (resp. right rigid) if $\forall X \in \mathcal{T}$, $\exists \mathcal{D}^{-1}(X)$ (resp. $\mathcal{D}(X)$). We say $\mathcal T$ is rigid if $\mathcal T$ is left and right rigid, .

Theorem ([KKOP,KKOP2])

For ^a quiver Hecke algebra *R* associated with an arbitrary symmetrizable Kac-Moody Lie algebra and any $w ∈ W$, the category $\widetilde{\mathscr{C}}_w$ is rigid, i.e., ${}^{\forall}X ∈ \widetilde{\mathscr{C}}_w$, ∃ $\mathcal{D}(X)$, $\mathcal{D}^{-1}(X)$. (*X*). (*C*e*w*,*^v* is right rigid, but not yet known to be left rigid.)

Affinzation in *C*e*^w* **and R-matrix I**

In [KKOP4], for a monoidal category C with several "good" conditions, the following categories are defined

 $C \subset \text{Pro}(C) = \{\text{pro-object} = \text{some projective limit}\},\$

$$
\mathsf{U} =
$$

 $\text{Modg}(k[z], \text{Pro}(C))$ ⊃ $\text{Pro}_{coh}(k[z], C)$ ⊃ $\text{Aff}_z(C)$.

An object $(M, z) \in Aff$ _{*z}*(C) is called an affine object of $M = M/zM \in C$ and an affine</sub> object (M, z) of $M = M/zM$ with a "rational center R_M " is called an affinization of M.

Affinzation in $\widetilde{\mathcal{C}}_w$ and R-matrix **II**

Theorem (KKOP4, Prop 6.2, Thm 6.10, Prop 6.18)

Let C be an abelian rigid monoidal category with bi-exact tensor product.

1 For an affreal(=real and admits affinization) $M \in \mathbb{C}$ and a simple $N \in \mathbb{C}$, $M \circ N$ and *N* ∘ *M* have simple heads and simple socles, moreover,

 $\text{Hom}_{\mathcal{C}}(M \circ N, N \circ M) = \text{Hom}_{\mathcal{C}}(N \circ M, M \circ N) = k^{\exists} R_{M,N}$ (*R*-matrix).

2 Let (M, z_M)be the affinization of *M* as in ① and *N* ∈ C a simple. Then in $\text{Pro}_{coh}(k[z], C)$ $^{\exists!}$ renormailzed R-matrix $R_{\mathsf{M},N}^{\text{ren}}$ s.t.

 $k[z] \cdot R^{\text{ren}}_{\mathsf{M},N} = \text{Hom}_{k[z]}(\mathsf{M} \circ N, N \circ \mathsf{M})$

satisfying YB-eq. and $R_{M,N}^{\text{ren}}|_{z=0} = R_{M,N}$, etc.

Affinzation in $\widetilde{\mathscr{C}}_w$ and R-matrix III

Applying the above results to $C = \widetilde{C}_w$, we obtain R-matrix and rigidity of the category $\text{Aff}_{z}(\mathscr{C}_{w})$.

Then by the theorem above, for any affreal object $M \in \mathscr{C}_{w}$, its affinization (M, z, R_M) and a simple $N \in \mathscr{C}_{w}$, we obtain renormalized R-matrix and R-matrix

 $R_{M,N}^{\text{ren}} \in \text{Hom}_{k[z]}(M \circ N, N \circ M)$ *R_{M,N}* = $R_{M,N}^{\text{ren}} |_{z=0} \in \text{Hom}_{\widetilde{\mathscr{C}}_w}(M \circ N, N \circ M)$

 $R: M \circ N \to N \circ M$ be an R-matrix in \mathscr{C}_w . Then, we define $\Lambda(M,N) := \deg(R)$. Similarly, for an R-matrix $R: X \circ Y \to Y \circ X$ in \mathcal{C}_w , define $\Lambda(X, Y) := \deg(R)$, and

$$
\widetilde{\Lambda}(X,Y) := \frac{1}{2}(\Lambda(X,Y) + (\text{wt}(X), \text{wt}(Y))).
$$

Partially joint WOTK Localized Quantum Unipotent Coordinate Category (South Movember 21, 2024 36 / 38

Crystal Structure on $\widetilde{\mathscr{C}}_w$

Using the rigidity and R-matrix of $\widetilde{\mathscr{C}_{w}}$, we can define the crystal structure on $\mathbb{B}(\widetilde{\mathscr{C}}_w) := \{ M \in \widetilde{\mathscr{C}}_w \mid M \cong M^* \text{ is self-dual simple object} \}$ by defining for $X \in \mathbb{B}(\widetilde{\mathscr{C}}_w)$, e.g., $\widetilde{E}_i X := q_i^{\varphi_i(X)} X \nabla \mathscr{D} Q_w(L(i)),$ $\varepsilon_i(X)$, $\varphi_i(X)$, $\widetilde{F}_i X$, $\widetilde{E}_i^* X$, $\widetilde{F}_i^* X$, *etc....* Note that $\tilde{E}_i = \tilde{F}_i^{-1}$ and $\tilde{E}_i^* = \tilde{F}_i^{*-1}$. **Theorem** $\mathbb{B}(\widetilde{\mathscr{C}}_w)$ becomes a crystal and we obtain an isomorphism of crystals : $\mathbb{B}(\widetilde{\mathscr{C}_{w}}) \longrightarrow B_{i_{1}} \otimes \cdots \otimes B_{i_{m}}$ where $i_1 \cdots i_m$ is a reduced word of $w \in W$. **Corollary**

For any reduced word $i_1 \cdots i_m$ of any $w \in W$, the cellular crystal $B_{i_1} \otimes \cdots \otimes B_{i_m}$ is connected as ^a crystal graph.

Merci beaucoup pour votre attention