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Introduction

Some general observations, questions and goals

Question: Is there a mathematical structure defined by probabilities

of extension of texts and if yes, what is it?

Note that computing text continuations is part of a well know

structure in mathematics.

Consider language as a poset L with the subtext order, either one

sided or two sided. One sided eg: red ≤ red rose . Two sided eg:

red ≤ pretty red rose .

Extensions of a text are an upper set. So to “red” we associate the

set of all texts containing “red”. It is a well known mathematical

object called a filter or a co-presheaf (in categorical language)
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Introduction

Some general observattons, questions and goals

The dual is to consider all texts that are subtexts of a given one.

This is called the lower set or the ideal generated by it or a

presheaf (in categorical language).

The set of lower sets (a subset S of L is a lower set if it is such that,

if x ∈ S and y ≤ x then y ∈ S) or the set of upper sets (filters) are

lattice completions of L.

In fact an ideal or a filter is determined by a collection of non

comparable elements of L, its generators.
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Some general observations, questions and goals

The same if we consider language as a monoid by juxtaposing

texts. Associate to “red” the (one sided or two sided ideal) of all

texts containing “red”.

Distributional semantics says that the ideals or the filters of the

language poset or the language monoid encode something about the

meaning.
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Introduction

Some general observations, questions and goals

The space of ideals in commutative algebra is part of a very

general duality between spaces and algebras. To a space

associate the algebra of functions on it and to a commutative

algebra the space of (prime) ideals, called the spec of the algebra.

Questions: Can we generalize and extend the constructions and

result for posets and monoids to the case of text extensions with

probabilities which LLM compute? What mathematical structure do

these define? Is it something analogous to the set of ideals (co

presheaves) or filters (presheaves)? What can we learn from this

structure ?

This work is about answering these questions.
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Related Experiments
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Contents

From probabilities of texts extensions to distances.

Isometric embedding of the text metric space L to the metric

polyhedron P(L) (Yoneda embedding).

Texts in L are mapped to special extremal rays

Description of all extremal rays.

Description of P(L) as a (min,+) linear space.

(min,+) system of equations satisfied by text vectors (generators of

text extremal rays).
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Contents

P(L) as a representation of a monoid algebra.

Duality of polyhedron P(L) generated by text extensions and

polyhedron P̂(L) generated by restrictions.

Expression of text vectors in terms of word vectors

Relation with Isbell completion (generalizing Dedekind Mac Neille

completion of posets).

Directions for future research and some speculations (Morita

equivalence).
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Probabilistic Language model (a.k.a Syntactic category)

Definition 1

A probabilistic language model is a triple (L,≤,Pr) where,

L := {a0, a1, . . . , an} is a collection of texts, ≤ is the subtext order and

Pr : L × L → [0, 1] is a function such that

ai ≤ aj ≤ ak =⇒ Pr(ak |ai ) = Pr(ak |aj) Pr(aj |ai ).

Definition 2

(X , δ) is called a directed metric space if X is a set and

δ : X × X → (−∞,∞] satisfies the triangle inequality

δ(a, c) ≤ δ(a, b) + δ(b, c) for all a, b, c ∈ X and δ(a, a) = 0,∀a ∈ X
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PLM is a special case of a directed metric space

Definition 3

Given the probabilistic language model (L,≤,Pr) where ≤ is the subtext

order and Pr(aj |ai ) are the probabilities of extension, define the directed

metric d : L × L → [0,∞] by

d(ai , aj) =

 − log Pr(aj |ai ) if ai ≤ aj ,

∞ if ai and aj are not comparable.
(1)

The map d satisfies the triangle inequality:

d(ai , ak) ≤ d(ai , aj) + d(aj , ak) and the equality holds if and only if

ai ≤ aj ≤ ak or ai ̸≤ ak .
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Poset structure, categorical interpretation

The metric determines the poset since we have

ai ≤ aj ≤ ak ⇐⇒ d(ai , aj) + d(aj , ak) = d(ai , ak) and

d(ai , ak) < ∞

Categorically, (X , d) directed metric space means (X , d) is a

category enriched over the monoidal closed category (−∞,∞]

considered as poset (with the opposite of the usual order) and with

monoidal structure given by addition. Indeed :

Hom(ai , aj)⊗ Hom(aj , ak) → Hom(ai , ak) ⇐⇒

d(ai , aj) + d(aj , ak) ≥ d(ai , ak).
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The metric polyhedron P(L)

We equip {R ∪ {∞}}n\{(∞, . . . ,∞)} with the Funk directed metric

D defined by D(x , y) := maxi{yi − xi | xi ̸= ∞} .

Definition 4

Let (P(L),D) be the directed metric polyhedron

P(L) := {x = (x1, . . . , xn) ∈ {R ∪ {∞}}n\{(∞, . . . ,∞)}|xi ≤ xj + di,j}.

Moreover let (P̂(L),Dt) be the directed metric polyhedron

P̂(L) := {y = (y1, . . . , yn) ∈ {R ∪ {∞}}n\{(∞, . . . ,∞)}|yi ≤ yj + dj,i}.

.

P(L) and P̂(L) are alcoved polytopes defined by the root system

An since they are given by x · (ei − ej) ≤ di,j and y · (ei − ej) ≤ dj,i .

Yiannis Vlassopoulos Directed Metric Spaces, Alcoved Polytopes and LLMs p.13



Introduction

Geometric/Categorical description of P(L)

Equip (−∞,∞] with the directed metric

dR(s, t) := t − s if (t, s) ̸= (∞,∞) and dR(∞, t) = −∞ .

Geometrically P(L) is a directed metric space whose points are

non-expansive maps.

P(L) = {x : (L, d t) → ((−∞,∞], dR)|dR(x(aj), x(ai )) ≤ d t(aj , ai )}

P̂(L) = {y : (L, d) → ((−∞,∞], dR)|dR(y(aj), y(ai )) ≤ d(aj , ai )}.

Categorically P(L) is the category of presheaves and P̂(L) is the

category of co-presheaves.
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The Yoneda isometric embedding Y : (L, d) ↪→ (P(L),D)

The map

Y : (L, d) ↪→ (P(L),D) given by Y (ak) := d(−, ak) : L → R is

called the Yoneda embedding and is an isometric embedding,

namely D(Y (ai ),Y (aj)) = d(ai , aj)

The map

Ŷ : (L, d) ↪→ (P̂(L),Dt) given by Ŷ (ak) := d(ak ,−) : L → R is is

called the co-Yoneda embedding. and is an isometric embedding,

namely D(Ŷ (aj), Ŷ (ai )) = d(ai , aj).

The Funk metric D is the Hom on the category of presheaves.
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Yoneda Lemma and P(L) as a Metric span.

If x ∈ P(L) then

xi = D(d(−, ai ), x) = D(Y (ai ), x).

The defining inequalities, xi ≤ xj + di,j of P(L) become

D(Y (ai ), x) ≤ D(Y (ai ),Y (aj)) + D(Y (aj), x).

Namely they are triangle inequalities for maps

x : L → ((−∞,∞], dR) and for the maps

Y (ak) = d(−, ak) : L → ((−∞,∞], dR).
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co-Yoneda Lemma and P̂(L) as a Metric span.

If y ∈ P̂(L) then

yi = Dt(d(ai ,−), y) = D(y , Ŷ (ai ))

The defining inequalities, yi ≤ yj + dj,i of P̂(L) become

D(y , Ŷ (ai )) ≤ D(y , Ŷ (aj)) + D(Ŷ (aj), Ŷ (ai ))

namely the triangle inequalities for maps y : L → ((−∞,∞], dR).
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Q(L): The multiplicative versions of P(L)

To further understand the polyhedron P(L) we consider the change

of variables zi := e−xi and introduce the following:

Let Q(L) be the polyhedral cone

Q(L) := {z = (z1, . . . zn) ∈ [0,∞)n\{(0, . . . , 0)}|zi ≥ Pr(aj |ai )zj}.

We see that

Q(L) = {z := (z1, . . . zn) ∈ [0,∞)n|zi := e−xi for x = (x1, . . . , xn) ∈

P(L)}

For Pr(aj |aI ) taking values only 0 or 1 it is a cone version of

Stanley’s order polytope.
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The Probabilistic language model as enriched category

The Probabilistic language model L is a category enriched over the

monoidal category [0,∞) considered as a poset with the usual order

and monoidal structure given by multiplication. Indeed put

L(ai , aj) := Pr(aj |ai ) then

L(ai , ak) ≥ L(ai , aj)L(aj , ak)

with equality if ai ≤ aj ≤ aK .

Q(L) is the category of presheaves on L and Q̂(L) is the category

of copresheaves.
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The metric DQ on Q(L)

Using the map − log : Q(L) → P(L) we can define a directed

metric DQ on Q(L) using the Funk metric D on P(L). We put

DQ(z , z
′) := max

i
{log( zi

z ′i
)|z ′i ̸= 0}.

By definition we have

DQ(z , z
′) = D(− log z ,− log z ′) and D(x , x ′) = DQ(e

−x , e−x′
).
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Q̂(L): The multiplicative version of P̂(L)

Moreover let Q̂(L) be the polyhedral cone

Q̂(L) := {u = (u1, . . . un) ∈ [0,∞)n\{(0, . . . , 0)}|ui ≥ Pr(ai |aj)uj}

Q̂(L) = {u := (u1, . . . un) ∈ [0,∞)n|ui := e−yi for y =

(y1, . . . , yn) ∈ P̂(L)}

Clearly the transpose Dt
Q defines a directed metric on Q̂(L).

We have isometric embeddings

e−Y : L → Q( L) and e−Ŷ : L → Q̂( L)
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Extremal Rays of P(L) and Q(L)

An extremal ray of a polyhedral cone in Rn is a ray generated by a

vector that cannot be expressed as a positive linear combination of

two non-proportional vectors in the polyhedral cone.

A vector in a polyhedral cone in Rn generates an extremal ray if and

only if it satisfies n − 1 linearly independent conditions.

An additive extremal ray of P(L) (respectively P̂(L)) is defined to

be the image under − log of a usual extremal ray of the

polyhedral cone Q(L) (respectively Q̂(L)).
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Texts define special Extremal Rays

Theorem 5

The isometric embedding Y : L ↪→ P(L), maps points of L to extremal

rays of the polyhedron P(L) namely Y (ak) = d(−, ak) generates an

extremal ray in P(L). Moreover the isometric embedding Ŷ : L ↪→ P̂(L),

maps points of L to extremal rays of the polyhedron P̂(L) namely

Ŷ (ak) = d(ak ,−) generates an extremal ray in P̂(L).

The reason is that, if ai ≤ aj ≤ ak then

d(ai , ak) = d(ai , aj) + d(aj , ak) i.e. Y (ak)i = di,j + Y (ak)j .
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Extremal Rays of P(L)

Let Q̃(L) := {ỹ = (ỹ1, . . . , ỹn) ∈ [0,∞)n\{(0, . . . , 0)}|ỹi ≥

ỹj whenever ai ≤ aj}.

Let (L,≤,Pr) be a probabilistic language model then there is a

diagonal change of variables mapping Q(L) to Q̃(L).

Easy case if the empty text a0 is included. Then if a0 ≤ ai ≤ aj , we

have Pr(aj |a0)) = Pr(ai |a0)Pr(aj |ai ). Then yi ≥ P(aj |ai )yj becomes

yi ≥ P(aj |a0)
Pr(ai |a0)yj . Setting ỹi := Pr(ai |a0)yi we get ỹi ≥ ỹj . However

can also prove without assuming a0.
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Extremal Rays of P(L) correspond to connected lower sets

of L

Theorem 6

The vector ỹ := (ỹ1, . . . ỹn) ∈ Q̃(L) generates an extremal ray of Q̃(L) if

and only if the function ai 7→ ỹ(ai ) := yi is a positive scalar multiple of

the characteristic function of a lower set in L whose Hasse diagram is

connected.

Therefore extremal rays of Q(L) correspond to connected lower

sets of L and the ones in the image of the Yoneda embedding

correspond to principle lower sets.
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Extremal Rays of P(L) correspond to collections of texts

in L.

Note that a connected lower set is generated by its maximal

elements.

Analogously extremal rays of P̃(L) correspond to connected upper

sets of L.
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Directed metric d is (min,+) idempotent

Recall the (min,+) semifield: On (−∞,∞] consider operations

s ⊕ t := min{s, t} and λ⊙ s := λ+ s. Think of it as log algebra.

Important identity using T temperature:

lim
T→0

−Tlog(e−
s
T + e−

t
T ) = min{s, t}

(L, d) directed metric space means di,k = minj{di,j + dj,k}. Define

dmin : Rn → Rn by dmin(x)i := minj{di,j + xj}. We have d2
min = dmin

so dmin is a projection.
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P(L) as a (min,+) linear space

Let Fix(dmin) := {x : dmin(x) = x}.

We have

P(L) = Fix(dmin) = Im(dmin)

i.e P(L) is the (min,+) column span of d .

Proof: But dminx = x ⇐⇒ xi = minj{di,j + xj} ⇐⇒ xi ≤

xj + di,j ⇐⇒ x ∈ P(L).

d2
min = dmin ⇐⇒ Im(dmin) = Fix(dmin).
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P(L) as a (min,+) linear space.

x ∈ P(L) = Im(dmin) = Fix(dmin) ⇐⇒ dmin(x) = x . Therefore we

have the (min,+) linear expression for x in terms of the columns of

d :

x = ⊕jxj ⊙ d(−, aj) = ⊕jxj ⊙ Y (aj) = ⊕jD(Y (aj), x)⊙ Y (aj).

This is a (min,+) linear system of equations defining P(L).

P̂(L) = Im(d t), is the (min,+) span of the rows of d .
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Categorical interpretation

The categorical interpretation of the fact that P(L) is the (min,+)

column span of d is that any presheaf can be expressed as a

weigted colimit of representable presheaves, namely the Yoneda

images Y (ak) := d(−, ak).

Analogously the fact that P̂(L) is the (min,+) row span of d means

that any co-presheaf can be expressed as a weighted colimit of

representable co-presheaves, namely the Yoneda images

Y (ak) := d(ak ,−).

We will see that not every presheaf can be expressed as a weighted

limit of representables. .
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Equations for Y (ak), Ŷ (ak).

Since d(ai , ak) = minj{d(ai , aj) + d(aj , ak)} we have

d(−, ak) = minj{d(−, aj) + d(aj , ak)} namely

Y (ak) = ⊕aj≤akdj,k ⊙ Y (aj)

d(ai ,−) = minj{d(ai , aj) + d(aj ,−)} namely

Ŷ (ai ) = ⊕ai≤ajdi,j ⊙ Ŷ (aj)

Can consider that the neural net is finding a solution to these

systems of equations.
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D as tropical inner product.

The Funk metric D(x , y) := maxi{yi − xi} has the property that

D(−,w) is tropically antilinear, namely

D(λ1 ⊙ x ⊕min λ2 ⊙ y , z) = −λ1 ⊙ D(x , z)⊕max −λ2 ⊙ D(y , z)

while D(w ,−) is linear, namely

D(x , λ1 ⊙ y ⊕max λ2 ⊙ z) = λ1 ⊙ D(x , z)⊕max λ2 ⊙ D(y , z).
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Q̂(L) as Monoid algebra representation

We now make the assumption that a0, the empty text, is in L = A∗,

the free monoid. Then if ai ≤ aj we have a0 ≤ ai ≤ aj and therefore

P(aj |a0) = Pr(ai |a0)Pr(aj |ai )

For ai ∈ L, let Ŷ(ai ) : L → [0,∞) be the Yoneda embedding of ai ,

namely

Ŷ(ai ) := L(ai ,−) = eŶ (ai ) = Pr(−|ai ).

The (max, ·) span of Ŷ(ai ) is the polyhedral cone Q̂(L).

Consider the function L : A∗ → [0, 1], defined by

L(x) := Pr(x |a0) = L(a0, x) = Ŷ(a0)(x)
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Q̂(L) as Monoid algebra representation

Denote by S the semiring ([0,∞),max, ·) and by S [A∗] the monoid

algebra generated by the free monoid A∗ over the semiring S .

Recall that an element of S [A∗] can be considered equivalently as a

formal sum of elements in A∗ or as a function F : A∗ → [0,∞).

Indeed given F we can construct the formal sum f :=
∑

ai
F (ai )ai .
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Q̂(L) as Monoid algebra representation

Note that the function L : A∗ → [0,∞) defines an element of S [A∗].

Consider the left regular representation of A∗. Namely denote aiL

the action of ai ∈ A∗ on L given by

aiL(x) := L(aix).
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Q̂(L) as Monoid algebra representation

We see that

aiL(x) = L(aix) = L(a0, aix) = P(aix |a0) = Pr(ai |a0)Pr(aix |ai ) =

= Pr(ai |a0)Ŷ(ai )(aix).

Recall that Q̂(L) is the (max, ·) span of the representable

copresheaves Ŷ(ai ). Therefore the orbit of L under the left

regular representation of S [A∗] generates Q̂(L) over S . This

means that the category of copresheaves Q̂(L) is a representation of

S [A∗].
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Duality between text extensions P̂(L) and text restrictions

P(L)

Easy way to see how they are related:

xi ≤ di,j + xj ⇐⇒ −xj ≤ di,j + (−xi ).

Namely

dx = x ⇐⇒ d t(−x) = −x .

To use this for our duality we need to use the completed (min,+)

semiring [−∞,∞] where +∞ is absorbing element so,

−∞+ (+∞) = +∞.
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Adjunction between P(L) and P̂(L)

There are two inverse maps

B : P(L) = Im(dmin) → Im(d t
min) = P̂(L) given by B(x) := −x and

A : P̂(L) = Im(d t
min) → Im(dmin) = P(L) given by A(y) := −y .

A and B form an adjunction: D(Ax , y) = Dt(x ,By), namely

D(−x , y) = D(−y , x)
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Equivalence between P(L) and P̂(L)

A and B are isometries, namely

D(−x ,−y) = Dt(x , y)

Moreover they are anti-linear

A(λ⊙ x) = −λ⊙ A(x) and

A(x ⊕max y) = A(x)⊕min A(y),

A(x ⊕min y) = A(x)⊕max A(y) and similarly for B.

Note that the map e−B : Q(L) → Q̂(L) is zi → ui :=
1
zi
.
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Duality in coordinates

d(−, ak) = ⊕aj≤akd(aj , ak)⊙ d(−, aj)

B(d(−, ak)) = −d(−, ak) = ⊕aj≤ak − d(aj , ak)⊙ d(aj ,−)

d(ak ,−) = ⊕ak≤aid(ak , ai )⊙ d(ai ,−)

A(d(ak)− = −d(ak ,−) = ⊕ak≤ai − d(ak , ai )⊙ d(−, ai ).
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Example:“red colour”

d =



r c rc

r 0 ∞ log 2

c ∞ 0 log 3

rc ∞ ∞ 0

 (2)
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Example:“red colour”

Pr =



r c rc

r 1 0 1
2

c 0 1 1
3

rc 0 0 1

 (3)
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Example:“red colour”

We consider the corpus to be L := {red, colour, red colour}. Denote

lower set generated by “a” by (a)l and the upper set by (a)u.

Extremal rays of Q(L) correspond to connected lower sets of

L. There are three and they are all principle:

(r)l = {r}, (c)l = {c}, (rc)l = {r , c , rc}. (Note that (r , c)l is not

connected so it does not correspond to an extremal ray of Q(L).)

Extremal rays of Q̂(L) correspond to connected upper sets of

L. The principle ones are (r)u = {r , rc}, (c)u = {c , rc}, (rc)u = {rc}

and a non-principle one (r , c)u = {r , c , rc}. This extremal ray is

not in the image of the Yoneda embedding.

Yiannis Vlassopoulos Directed Metric Spaces, Alcoved Polytopes and LLMs p.43



Introduction

Example:“red colour”, figures

Let ∆ be the unit simplex. We have polyhedra Q0(L) := Q(L) ∩∆

and Q̂0(L) := Q̂(L) ∩∆.

Extremal rays of Q(L) define vertices of Q0(L).
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u1 u2

u3

r
c

rc

z1 z2

z3

r c

rc

Figure: The cross section Q̂0(L) of the polyhedral cone Q̂(L) arising from the
metric of d (left). Every vector d(r ,−), d(c,−), d(rc,−) determines an
extreme point of the cross section, denoted by r , c, or rc. There is a fourth
extreme point (shown in gray) corresponding to a non-principal upper set. The
cross section Q0(L) (right). There are three extreme points, which correspond
to the vectors d(−, r), d(−, c), d(−, rc).
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Compatibility of P(L) with extending L
Theorem 7

If a probabilistic language model (L1, d1) is extended to (L2, d2) by an

isometric embedding ϕ : (L1, d1) ↪→ (L2, d2) then there is an isometric

embedding ϕ̃ : (P(L1)),D1) ↪→ (P(L2),D2) such that

ϕ̃(Y1(a)) = Y2(ϕ(a)). Moreover ϕ̃(P(L1)) is a retraction (i.e. a

non-expansive (min,+) projection) of P(L2).

If L1 := {a1 . . . an} and L2 := {b1 . . . bn, bn+1, . . . bn+k}, where

bj = ϕ(aj) for j = 1 . . . n then the retraction is

R :=
n⊕

j=1

D2(−,Y (bj))⊙ D2(Y (bj),−)
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Text vectors in terms of word vectors

Corollary 8

Let L := {b1, . . . , bN} be a probabilistic language model and let

W := {w1 . . . ,wm} be the set of words. Let Y : L → P(L) be the

Yoneda embedding. Let R : P(L) → P(L) be the non-expansive

projection

Let Y (bk) ∈ P(L) be an extremal ray corresponding to a text bk ∈ L

then

R(Y2(bk)) =
N⊕
i=1

d2(wi , bk)⊙ Y2(wi ) =
⊕
wi≤bk

d2(wi , bk)⊙ Y2(wi ).
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Text vectors in terms of word vectors

Corollary 9

Let L := {b1, . . . , bN} be a probabilistic language model and let

W := {w1 . . . ,wm} be the set of words. Let Y : L → P(L) be the

Yoneda embedding. Let T ≥ 0 be a parameter which will be called

temperature, then we have

R(Y (bk)) = lim
T→0

−T log(
∑
wi≤bk

e−
d(wi ,bk )

T e−
Y (wi )

T ) (4)

Therefore for small T we have

e−
R(Y (bk ))

T ≈
∑
wi≤bk

e−
d(wi ,bk )

T e−
Y (wi )

T (5)
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Isbell completion or directed tight span

Consider dmax(x)i := maxj{di,j + xj}.

The (max,+) span I (L) := Im(dmax) is called the Isbell completion.

There is an adjunction L(x) := dmax(−x), R(y) := d t
max(−y). The

fixed part of the adjunction gives isomorphisms between

I (L) := Im(dmax) and Î (L) := Im(d t
max).

We have that P(L) is the lattice closure of I (L)
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Categorical and geometric meaning of I (L)

I (L) is not convex. It is a polyhedral cell complex.

Categorically it is the set of presheaves that can be expressed as

weighted limits of representables.

If we take [0,∞] values then we get the directed tight span of Hirai

and Koichi (Willerton). (Generalizes Dedekind-Mac Neille

completion of poset.)
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Overall picture

Isometrically embed the finite, discrete, directed metric space

(L, d) in to the continuous directed metric space P(L). (Note that

we cannot do that in general if we want to use Euclidean metric on

Rn but here we can because we use D, the sup norm.)

Texts correspond to special extremal rays of the polyhedron

P(L) (or the polyhedral cone Q(L)) which (min,+) span P(L).

P(L) is convex and therefore easy to learn.
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Overall picture

Projection of text vectors (extremal rays in the image of the Yoneda

embedding) onto the word space is a Boltzmann weighted linear

combination of word vectors, analogously to the expression a text

value vector in the attention layer.

The transformer neural net from this point of view looks like it’s

learning the projection R : P(L) → P(W ) where P(W) is the space

spanned by word vectors.

There is a duality between P(L) and P̂(L), namely between the

space of texts restrictions and that of text extension.
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Some questions and speculations for next steps

Since we can translate between languages, if the spaces P(L) (of

presheaves -generalizing ideals) encode meaning then they should be

isomorphic (in some appropriate sense) for different languages L1

and L2.

In math the name for such an isomorphism is Morita equivalence.

Question: What is the right notion of Morita equivalence for the

structure we have here?

There are also Morita invariants (called Hochschild cohomology)

which should be invariants of meaning. (Candidate for that is

Magnitude homology.)
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Some questions and speculations for next steps

Following the duality between functions (coordinates) on a space

and recovering the space by considering the ideals of the

(commutative) algebra of functions, we could think that texts are

non-commutative coordinates on some space of meanings.

In fact this cannot be a usual geometric space but it could be a

more sophisticated mathematical object. For example, In the case of

non-commutive algebras the role of space is played by the category

of Modules (they are presheaves).
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