On the integrality of some P-recursive sequences

Anastasia Matveeva

École polytechnique

Combinatorics and Arithmetic for Physics, 19 – 21 November 2025

Joint work with Alin Bostan

Outline

1 Introduction and definitions

2 Motivating example

3 Generalization

4 Algorithm

Conclusion

Definition

A sequence $(s_n)_{n\in\mathbb{N}}$ of rational numbers is called *P-recursive* if it satisfies a linear (homogeneous) recurrence relation with coefficients in $\mathbb{Q}[n]$.

$$P_0(n)s_n + P_1(n)s_{n-1} + \ldots + P_k(n)s_{n-k} = 0, \quad P_0 \neq 0, \ n \geq k.$$

2

Definition

A sequence $(s_n)_{n\in\mathbb{N}}$ of rational numbers is called *P-recursive* if it satisfies a linear (homogeneous) recurrence relation with coefficients in $\mathbb{Q}[n]$.

$$P_0(n)s_n + P_1(n)s_{n-1} + \ldots + P_k(n)s_{n-k} = 0, \quad P_0 \neq 0, \ n \geq k.$$

Examples

- Fibonacci numbers: $F_n = F_{n-1} + F_{n-2}$, $F_0 = F_1 = 1$.
- Catalan numbers: $(n+1)C_n = 2(2n-1)C_{n-1}$, $C_0 = 1$.
- Apéry numbers:

$$n^3A_n = (34n^3 - 51n^2 + 27n - 5)A_{n-1} - (n-1)^3A_{n-2}, \quad A_0 = 1, A_1 = 5.$$

Definition

A sequence $(s_n)_{n\in\mathbb{N}}$ of rational numbers is called *P-recursive* if it satisfies a linear (homogeneous) recurrence relation with coefficients in $\mathbb{Q}[n]$.

Definition

A power series $f(x) \in \mathbb{Q}[[x]]$ is called *D-finite* if it satisfies a linear (homogeneous) differential equation with coefficients in $\mathbb{Q}[x]$.

$$a_r(x)f^{(r)}(x) + \ldots + a_1(x)f'(x) + a_0(x)f(x) = 0, \quad a_r(x) \neq 0.$$

Definition

A sequence $(s_n)_{n\in\mathbb{N}}$ of rational numbers is called *P-recursive* if it satisfies a linear (homogeneous) recurrence relation with coefficients in $\mathbb{Q}[n]$.

Definition

A power series $f(x) \in \mathbb{Q}[[x]]$ is called *D-finite* if it satisfies a linear (homogeneous) differential equation with coefficients in $\mathbb{Q}[x]$.

Theorem [Stanley, 1980]

A power series is D-finite if and only if its coefficient sequence is P-recursive.

Let $(s_n)_n$ be a P-recursive sequence of rational numbers.

Let
$$S(x) = \sum_{n \ge 0} s_n x^n$$
 be the generating function of $(s_n)_n$.

- When are $(s_n)_n$ and S(x) integral?
 - \rightarrow $s_n \in \mathbb{Z}$ for all $n \in \mathbb{N}$.

Let $(s_n)_n$ be a P-recursive sequence of rational numbers.

Let $S(x) = \sum_{n \ge 0} s_n x^n$ be the generating function of $(s_n)_n$.

- When are $(s_n)_n$ and S(x) integral?
 - \rightarrow $s_n \in \mathbb{Z}$ for all $n \in \mathbb{N}$.

Motivations:

Let $(s_n)_n$ be a P-recursive sequence of rational numbers.

Let $S(x) = \sum_{n \ge 0} s_n x^n$ be the generating function of $(s_n)_n$.

- When are $(s_n)_n$ and S(x) integral?
 - \rightarrow $s_n \in \mathbb{Z}$ for all $n \in \mathbb{N}$.

Motivations:

- "I know numbers are beautiful. If they aren't beautiful, nothing is."
 - Paul Erdős.
- Connections with combinatorial objects.
- Questions of irrationality and transcendence: the quest for integer sequences.

Let $(s_n)_n$ be a P-recursive sequence of rational numbers.

Let $S(x) = \sum_{n \ge 0} s_n x^n$ be the generating function of $(s_n)_n$.

- When are $(s_n)_n$ and S(x) integral?
 - \rightarrow $s_n \in \mathbb{Z}$ for all $n \in \mathbb{N}$.
- When is S(x) globally bounded?
 - \to $(s_n)_n$ is almost integral: $\exists C \in \mathbb{Z}^*$ such that $C^n s_n \in \mathbb{Z}$ for all $n \ge 1$.
 - \rightarrow S(x) has a nonzero radius of convergence.

Let $(s_n)_n$ be a P-recursive sequence of rational numbers.

Let
$$S(x) = \sum_{n \ge 0} s_n x^n$$
 be the generating function of $(s_n)_n$.

- When are $(s_n)_n$ and S(x) integral?
 - \rightarrow $s_n \in \mathbb{Z}$ for all $n \in \mathbb{N}$.
- When is S(x) globally bounded?
 - \to $(s_n)_n$ is almost integral: $\exists C \in \mathbb{Z}^*$ such that $C^n s_n \in \mathbb{Z}$ for all $n \ge 1$.
 - \rightarrow S(x) has a nonzero radius of convergence.
- When is S(x) algebraic?
 - $\rightarrow \exists P(x,y) \in \mathbb{Q}[x,y] \setminus \{0\} \text{ such that } P(x,S(x)) = 0.$

Outline

1 Introduction and definitions

2 Motivating example

3 Generalization

4 Algorithm

5 Conclusion

A sequence $(m_n)_n$ that satisfies the recurrence relation

$$(n+2)m_n = (2n+1)m_{n-1} + (3n-3)m_{n-2}, \quad n \ge 2$$
 (1)

with some $m_0, m_1 \in \mathbb{Q}$ is called a *Motzkin-type sequence*.

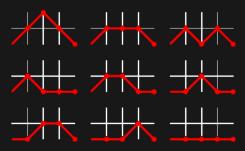
4

A sequence $(m_n)_n$ that satisfies the recurrence relation

$$(n+2)m_n = (2n+1)m_{n-1} + (3n-3)m_{n-2}, \quad n \ge 2$$
 (1)

with some $m_0, m_1 \in \mathbb{Q}$ is called a *Motzkin-type sequence*.

$$m_0 = m_1 = 1 \rightsquigarrow Motzkin numbers: 1, 1, 2, 4, 9, 21, 51, 127, ...$$



A sequence $(m_n)_n$ that satisfies the recurrence relation

$$(n+2)m_n = (2n+1)m_{n-1} + (3n-3)m_{n-2}, \quad n \ge 2$$
 (1)

with some $m_0, m_1 \in \mathbb{Q}$ is called a *Motzkin-type sequence*.

For which (m_0, m_1) is $\sum_{n\geq 0} m_n x^n$ algebraic/globally bounded/integral?

4

A sequence $(m_n)_n$ that satisfies the recurrence relation

$$(n+2)m_n = (2n+1)m_{n-1} + (3n-3)m_{n-2}, \quad n \ge 2$$
 (1)

with some $m_0, m_1 \in \mathbb{Q}$ is called a *Motzkin-type sequence*.

For which (m_0, m_1) is $\sum_{n\geq 0} m_n x^n$ algebraic/globally bounded/integral?

algebraic \implies globally bounded \iff integral + nonzero radius of convergence

A sequence $(m_n)_n$ that satisfies the recurrence relation

$$(n+2)m_n = (2n+1)m_{n-1} + (3n-3)m_{n-2}, \quad n \ge 2$$
 (1)

with some $m_0, m_1 \in \mathbb{Q}$ is called a *Motzkin-type sequence*.

For which (m_0, m_1) is $\sum_{n\geq 0} m_n x^n$ algebraic/globally bounded/integral?

algebraic \implies globally bounded \iff integral + nonzero radius of convergence

- ▶ Eisenstein's theorem/criterion. [Eisenstein 1852], [Heine 1853, 1854]
- The converse is not true! For example, $\sum_{n\geq 0} {2n \choose n}^2 x^n$ is transcendental.

A sequence $(m_n)_n$ that satisfies the recurrence relation

$$(n+2)m_n = (2n+1)m_{n-1} + (3n-3)m_{n-2}, \quad n \ge 2$$
 (1)

with some $m_0, m_1 \in \mathbb{Q}$ is called a *Motzkin-type sequence*.

For which (m_0, m_1) is $\sum_{n\geq 0} m_n x^n$ algebraic/globally bounded/integral?

Theorem [Klazar, Luca, 2005]

A Motzkin-type sequence is integral if and only if $m_0=m_1\in\mathbb{Z}$. If $m_0\neq m_1$, the sequence is not globally bounded.

4

The original proof of Klazar-Luca theorem

A sequence $(m_n)_n$ that satisfies the recurrence relation

$$(n+2)m_n = (2n+1)m_{n-1} + (3n-3)m_{n-2}, \quad n \ge 2$$
 (1)

with some $m_0, m_1 \in \mathbb{Q}$ is called a *Motzkin-type sequence*.

- $m_0 = m_1$
 - $m_0 = m_1 = 1 \implies \mathsf{Motzkin}$ numbers.
 - $m_0 = m_1 \in \mathbb{Z} \implies \mathsf{Motzkin}$ numbers, scaled.
- $m_0 \neq m_1$
 - Convert (1) to a first-order inhomogeneous ODE satisfied by $\sum_{n>0} m_n x^n$.
 - Study one cleverly chosen pair (m_0, m_1) .
 - Show that global boundedness fails.

The original proof of Klazar-Luca theorem

"Study one cleverly chosen pair (m_0, m_1) and show that global boundedness fails".

- 1 Find a, b, m_0, m_1 such that $S(x) := a + bx + \sum_{n \ge 0} m_n x^{n+2}$ satisfies $gS'(x) \frac{1}{2}g'S(x) = g$, S(0) = 0, where $g := 1 2x 3x^2$.
- **2** Consequently, $S(x) = \sqrt{g} \int \frac{dx}{\sqrt{g}}$. Observe that \sqrt{g} is globally bounded.
- 3 Write $\int \frac{dx}{\sqrt{g}}$ as a power series $\sum_{n\geq 1} \frac{d_{n-1}}{n} x^n$, where $\sum_{n\geq 0} d_n x^n \coloneqq \frac{1}{\sqrt{g}}$.
- **4** Show that $p \nmid d_{p-1}$ for prime p > 3 since $\binom{2i}{i} \not\equiv 0 \pmod{p}$ iff $i \leq \frac{p-1}{2}$, and $d_n := [x^n](1 2x 3x^2)^{-1/2} = \frac{(-1)^n}{4^n} \sum_{i=0}^n (-3)^i \binom{2i}{i} \binom{2n-2i}{n-i}.$
- **5**) Conclude by using the fact that $[x^n]S(x) = m_{n-2}$ for $n \ge 2$.

>
$$rec := \{(n+2)m(n)-(2n+1)m(n-1)-(3n-3)m(n-2), m(0) = m_0, m(1) = m_1\}$$
:

> dsolve(gfun: -rectodiffeq(rec, m(n), M(x)), M(x));

$$M(x) = \frac{\left(\int \frac{x(3xm_0 - 3xm_1 - 2m_0)}{(3x^2 + 2x - 1)^{3/2}} dx + c_1\right)\sqrt{3x^2 + 2x - 1}}{x^2}$$

- $> rec := \{(n+2)m(n)-(2n+1)m(n-1)-(3n-3)m(n-2), m(0) = m_0, m(1) = m_1\}$:
- > dsolve(gfun: rectodiffeq(rec, m(n), M(x)), M(x));

$$M(x) = \frac{\left(\int \frac{x(3xm_0 - 3xm_1 - 2m_0)}{(3x^2 + 2x - 1)^{3/2}} dx + c_1\right)\sqrt{3x^2 + 2x - 1}}{x^2}$$

Theorem [André, 1989]

A power series y is algebraic iff y is globally bounded and $\frac{dy}{dx}$ is algebraic.

Corollary of André's theorem

The primitive of an algebraic power series is globally bounded iff it is algebraic.

$$M(x) = \frac{\left(\int \frac{x(3xm_0 - 3xm_1 - 2m_0)}{(3x^2 + 2x - 1)^{3/2}} dx + c_1\right)\sqrt{3x^2 + 2x - 1}}{x^2}$$

$$\int \frac{x(3xm_0 - 3xm_1 - 2m_0)}{(3x^2 + 2x - 1)^{3/2}} dx = \frac{m_0(3 - 7x) + m_1(5x - 1)}{4\sqrt{3x^2 + 2x - 1}}$$

$$\implies M(x)$$
 is algebraic iff $m_0 = m_1 \implies M(x)$ is globally bounded iff $m_0 = m_1$.

 $+\frac{(m_0-m_1)\log(\sqrt{9x^2+6x-3}+3x+1)}{\sqrt{2}}+const$

Corollary of André's theorem

The primitive of an algebraic power series is globally bounded iff it is algebraic.

M(x) is globally bounded if and only if $m_0 = m_1$. But when is it integral?

If $m_1 = m_0$, then

$$M(x) = \frac{m_0 \left(1 - x - \sqrt{1 - 2x - 3x^2}\right)}{2x^2}.$$

Need: $m_n \in \mathbb{Z}$ for all n. Hence, $m_0 \in \mathbb{Z}$ is necessary. It is also sufficient because

$$\frac{1-x-\sqrt{1-2x-3x^2}}{2x^2}=1+x+2x^2+4x^3+9x^4+21x^5+\ldots\in\mathbb{Z}[[x]]$$

Proofs: Motzkin numbers, inductive coefficient matching, criteria for the integrality of n^{th} roots of power series [Pomerat, Straub, 2024]...

Diagonals of multivariate rational functions (Christol, Deligne, Lipschitz...)

Definition

Let $R = \sum_{n_1, \dots, n_k \geq 0} c(n_1, \dots, n_k) x_1^{n_1} \dots x_k^{n_k} \in \mathbb{Q}[[x_1, \dots, x_k]] \cap \mathbb{Q}(x_1, \dots, x_k).$

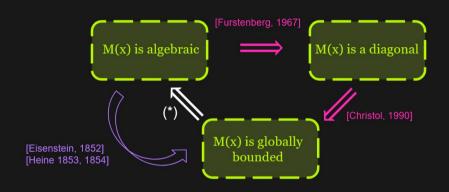
The diagonal of R is a univariate power series defined by

$$\mathsf{Diag}(R) = \sum_{n \geq 0} c(n, \ldots, n) t^n \in \mathbb{Q}[[t]].$$

Example:
$$R = \frac{1}{1 - x_1 - x_2} = \sum_{i,j \ge 0} {i + j \choose i} x_1^j x_2^j$$
,

$$\mathsf{Diag}(R) = \sum_{n \ge 0} \binom{2n}{n} t^n = \frac{1}{\sqrt{1 - 4t}}.$$

Klazar-Luca theorem for Motzkin-type sequences: refinement



Pink and purple implications hold for any functions! But (*) is only true because M(x) is a product of algebraic functions and a primitive of an algebraic function.

Outline

1 Introduction and definitions

2 Motivating example

3 Generalization

4 Algorithm

5 Conclusion

Generalization

Conjecture

Let $(s_n)_n$ be a sequence of rational numbers that satisfies a linear homogeneous recurrence relation with polynomial coefficients of degree 1:

$$\sum_{k=0}^d (a_k n + b_k) s_{n-k} = 0, \quad a_0 = 1, \ a_i \in \mathbb{Q} \setminus \{0\} \ ext{for} \ i = 1, \ldots, d \quad d \in \mathbb{N}.$$

Let $S(x) = \sum_{n \ge 0} s_n x^n$ be its generating function. The following are equivalent:

- 1 S(x) is algebraic.
- (2) S(x) is a diagonal.
- $\mathfrak{S}(x)$ is globally bounded.

Hypergeometric functions

The hypergeometric function with parameters

 $a_1, \ldots, a_p \in \mathbb{C}, \quad b_1, \ldots, b_q \in \mathbb{C} \setminus -\mathbb{N}$ for some $p, q \in \mathbb{N}$ is defined as:

$$_{p}F_{q}\begin{bmatrix}a_{1}\dots a_{p}\\b_{1}\dots b_{q}\end{bmatrix} = \sum_{n=0}^{\infty} \frac{(a_{1})_{n}\dots (a_{p})_{n}}{(b_{1})_{n}\dots (b_{q})_{n}} \frac{x^{n}}{n!},$$

where $(k)_n$ is the rising factorial (also known as *Pochhammer symbol*):

$$(k)_n = \begin{cases} 1 & \text{if } n = 0, \\ k(k+1)\dots(k+n-1) & \text{if } n > 0. \end{cases}$$

Gaussian hypergeometric functions correspond to p = 2, q = 1:

$$_{2}F_{1}\begin{bmatrix} a_{1} & a_{2} \\ b_{1} \end{bmatrix}; x = \sum_{n=0}^{\infty} \frac{(a_{1})_{n}(a_{2})_{n}}{(b_{1})_{n}} \frac{x^{n}}{n!}.$$

Recurrences of **order 1** (with linear polynomial coefficients):

$$(n+b_0)s_n+(a_1n+b_1)s_{n-1}=0, \quad a_1\neq 0.$$

Closed-form expression of the generating function is:

$$S(x) = s_0 {}_2F_1 \left[\begin{array}{cc} 1 + rac{b_1}{a_1} & 1 \\ 1 + b_0 \end{array} ; -a_1x \right].$$

Apply Euler transformation ${}_2F_1(a,b;c;z)=(1-z)^{c-a-b}{}_2F_1(c-a,c-b;c;z)$:

$$S(x) = s_0(1+a_1x)^{b_0-1-\frac{b_1}{a_1}} {}_{2}F_{1} \left[\begin{array}{c} b_0 - \frac{b_1}{a_1} & b_0 \\ 1+b_0 & ; -a_1x \end{array} \right].$$

Recurrences of **order 1** (with linear polynomial coefficients):

$$(n+b_0)s_n+(a_1n+b_1)s_{n-1}=0, \quad a_1\neq 0.$$

Closed-form expression of the generating function is:

$$S(x) = s_0 (1 + a_1 x)^{b_0 - 1 - \frac{b_1}{a_1}} {}_{2}F_{1} \begin{bmatrix} b_0 - \frac{b_1}{a_1} & b_0 \\ 1 + b_0 & ; -a_1 x \end{bmatrix}.$$
 (2)

One can show that the hypergeometric function ${}_{2}F_{1}$ in (2) is:

- either a polynomial
- ullet or of "height 1" (equal number of integer top and bottom parameters).

$$S(x) = s_0 (1 + a_1 x)^{b_0 - 1 - \frac{b_1}{a_1}} {}_{2}F_{1} \begin{bmatrix} b_0 - \frac{b_1}{a_1} & b_0 \\ 1 + b_0 & ; -a_1 x \end{bmatrix}.$$
 (2)

One can show that the hypergeometric function ${}_{2}F_{1}$ in (2) is:

- either a polynomial
- ullet or of "height 1" (equal number of integer top and bottom parameters).

Theorem [Christol, 1986]

A hypergeometric function of height ${\bf 1}$ is globally bounded iff it is algebraic.

Corollary

S(x) is globally bounded iff it is algebraic, iff it is a diagonal.

Theorem [Bostan, M., 2025]

Let $(s_n)_n$ be a sequence of rational numbers that satisfies:

$$(n+b_0)s_n+(a_1n+b_1)s_{n-1}+(a_2n+b_2)s_{n-2}=0, \quad a_1,a_2\neq 0.$$

Let $S(x) = \sum_{n>0} s_n x^n$ be its generating function. The following are equivalent:

- $\mathfrak{S}(x)$ is algebraic,
- (2) S(x) is a diagonal,
- $\mathfrak{S}(x)$ is globally bounded,

provided that $b_2 = (2a_2b_1 - a_1a_2b_0)/a_1$.

The only direction we *really* need to prove is globally bounded \implies algebraic.

The only direction we *really* need to prove is globally bounded \implies algebraic.

$$> rec := \{ (n+b_0)s(n) + (a_1n+b_1)s(n-1) + (a_2n+b_2)s(n-2), s(0) = s_0, s(1) = s_1 \} :$$

$$> dsolve(gfun: -rectodiffeq(rec, s(n), S(x)), S(x));$$

$$S(x) = (1 + a_1x + a_2x^2)^{-\frac{b_2}{2a_2} - 1 + \frac{b_0}{2}} \left(\int (a_1s_0x + b_0s_1x + b_1s_0x + b_0s_0 + s_1x)(1 + a_1x + a_2x^2)^{-\frac{a_2b_0 - b_2}{2a_2}} x^{b_0 - 1} \right)$$

$$= \frac{a^{rtanh} \left(\frac{2a_2x + a_1}{\sqrt{a_1^2 - 4a_2}} \right) (a_1a_2b_0 + a_1b_2 - 2a_2b_1)}{a_2\sqrt{a_1^2 - 4a_2}} dx + c_1 \right) x^{-b_0} e^{-\frac{a^{rtanh} \left(\frac{2a_2x + a_1}{\sqrt{a_1^2 - 4a_2}} \right) (a_1a_2b_0 + a_1b_2 - 2a_2b_1)}{a_2\sqrt{a_1^2 - 4a_2}}}.$$

<u>Proof of "algebraic \iff globally bounded \iff diagonal"</u>

The only direction we *really* need to prove is globally bounded \implies algebraic.

> dsolve(gfun: - rectodiffeq(rec, s(n), S(x)), S(x));

$$S(x) = (1 + a_1x + a_2x^2)^{-\frac{b_2}{2a_2} - 1 + \frac{b_0}{2}} \left(\int (a_1s_0x + b_0s_1x + b_1s_0x + b_0s_0 + s_1x)(1 + a_1x + a_2x^2)^{-\frac{a_2b_0 - b_2}{2a_2}} x^{b_0 - 1} \right)$$

$$e^{\frac{\operatorname{artanh}\left(\frac{2a_2x + a_1}{\sqrt{a_1^2 - 4a_2}}\right)(a_1a_2b_0 + a_1b_2 - 2a_2b_1)}{a_2\sqrt{a_1^2 - 4a_2}}} dx + c_1 x^{-b_0} e^{-\frac{\operatorname{artanh}\left(\frac{2a_2x + a_1}{\sqrt{a_1^2 - 4a_2}}\right)(a_1a_2b_0 + a_1b_2 - 2a_2b_1)}{a_2\sqrt{a_1^2 - 4a_2}}}.$$

$$>$$
 simplify(subs($b_2=rac{2a_2b_1-a_1a_2b_0}{a_1},\%)$);

$$S(x) = \left(1 + a_1 x + a_2 x^2\right)^{b_0 - 1 - \frac{b_1}{a_1}} \left(\int x^{b_0} (1 + a_1 x + a_2 x^2)^{-b_0 + \frac{b_1}{a_1}} \left(a_1 s_0 + b_0 s_1 + b_1 s_0 + \frac{b_0 s_0}{x} + s_1 \right) dx + c_1 \right) x^{-b_0}.$$

The only direction we *really* need to prove is globally bounded \implies algebraic.

$$>$$
 simplify(subs($b_2=rac{2a_2b_1-a_1a_2b_0}{a_1},\%)$);

$$S(x) = \left(1 + a_1x + a_2x^2\right)^{b_0 - 1 - \frac{b_1}{a_1}} \left(\int x^{b_0} (1 + a_1x + a_2x^2)^{-b_0 + \frac{b_1}{a_1}} \left(a_1s_0 + b_0s_1 + b_1s_0 + \frac{b_0s_0}{x} + s_1\right) dx + c_1\right) x^{-b_0}.$$

Corollary of André's theorem

The primitive of an algebraic power series is globally bounded iff it is algebraic.

The integrand is algebraic \implies this special subcase of the conjecture is proved.

Linearity of the coefficients: why it matters

Consider the recurrence relation for *Apéry numbers*:

$$n^3 A_n = (34n^3 - 51n^2 + 27n - 5)A_{n-1} - (n-1)^3 A_{n-2}.$$

• $A_0 = 1, A_1 = 5 \Leftrightarrow \text{integral sequence of Apéry numbers:}$

$$A_0=1, \ A_1=5 \implies A_n=\sum_{k=0}^n \binom{n}{k}^2 \binom{n+k}{k}^2 \in \mathbb{Z}.$$

Hence, the generating function of Apéry numbers is globally bounded. [Mimura, 1983]: $A_1 = 5A_0 \iff \sum_{n \geq 0} A_n x^n$ is globally bounded. [Mimura, 1983]: $A_1 = 5A_0 \iff \sum_{n \geq 0} A_n x^n$ is globally bounded.

- At the same time, the generating function of Apéry numbers is transcendental.
 - \rightarrow Many proofs, e.g. via "minimization" [Bostan, Rivoal, Salvy, 2024].

There exist 2-order linear recurrence relations with (nonlinear) polynomial coefficients that admit a *basis* of globally bounded yet transcendental solutions.

(Conjecturally) not possible if "linear recurrence relations" is replaced by "linear differential equations" (corollary of the Grothendieck–Katz p-curvature conjecture).

There exist 2-order linear recurrence relations with (nonlinear) polynomial coefficients that admit a *basis* of globally bounded yet transcendental solutions.

Example found by Armin Straub:

$$(n+2)^2u_{n+2}-3(3n^2+9n-2)u_{n+1}+27(n+4)(n-2)u_n=0, \quad n\geq 0.$$

The recurrence on $(u_n)_n$ comes from the DE satisfied by $y(x) = \sum_{n \geq 0} u_n x^n$:

$$((c+d)x-b)y(x) + (3x^2c - 2ax + 1)\frac{dy(x)}{dx} + (cx^3 - ax^2 + x)\frac{d^2y(x)}{dx^2} = 24u_0 + u_1$$

with $a = 9$, $b = -24$, $c = 27$, $d = -243$.

There exist 2-order linear recurrence relations with (nonlinear) polynomial coefficients that admit a *basis* of globally bounded yet transcendental solutions.

Example found by Armin Straub:

$$(n+2)^2 u_{n+2} - 3(3n^2 + 9n - 2)u_{n+1} + 27(n+4)(n-2)u_n = 0, \quad n \ge 0.$$

$$u_0 = 1, u_1 = 0 \longrightarrow 1, 0, 54, 180, 945, 4536, 19656, 74520, 227205...$$

$$u_0 = 0, \ u_1 = 1 \quad \rightsquigarrow \quad 0, 1, -\frac{3}{2}, 10, \frac{105}{2}, 252, 1092, 4140, \frac{25245}{2}, 21340...$$

It can be shown that the first sequence is integral, and the second one takes values in $\frac{1}{2}\mathbb{Z}$!

There exist 2-order linear recurrence relations with (nonlinear) polynomial coefficients that admit a *basis* of globally bounded yet transcendental solutions.

$$u_0 = 1, \ u_1 = 0 \rightsquigarrow \sum_{n \ge 0} u_n x^n = 4(9x - 1)^2 - 3 \, {}_2F_1 \begin{bmatrix} -2/3 & 4/3 \\ 1 & ; \ 27x(1 - 9x + 27x^2) \end{bmatrix},$$

$$u_0 = 0, \ u_1 = 1 \rightsquigarrow \sum_{n \ge 0} u_n x^n = \frac{(9x - 1)^2}{6} - \frac{{}_2F_1 \begin{bmatrix} -2/3 & 4/3 \\ 1 & ; \ 27x(1 - 9x + 27x^2) \end{bmatrix}}{6}.$$

One can show that this ${}_{2}F_{1}$ lies in $1 + 3x\mathbb{Z}[[x]]$ and is transcendental.

Algebraicity of ₂F₁: [Schwarz, 1873], [Beukers, Heckman, 1989], [Fürnsinn, Yurkevich, 2024].

There exist 2-order linear recurrence relations with (nonlinear) polynomial coefficients that admit a *basis* of globally bounded yet transcendental solutions.

In fact, Armin Straub's example

$$(n+2)^2u_{n+2}-3(3n^2+9n-2)u_{n+1}+27(n+4)(n-2)u_n=0, \quad n\geq 0.$$

can be used to obtain an *infinite* family of recurrences with the boxed property:

$$(n+2)^2 \tilde{u}_{n+2} - 3a(3n^2 + 9n - 2)\tilde{u}_{n+1} + 27a^2(n+4)(n-2)\tilde{u}_n = 0, \quad a \in \mathbb{Q}, \ n \ge 0.$$

because $\tilde{u}_n = a^n u^n$ for all n.

Outline

1 Introduction and definitions

2 Motivating example

3 Generalization

4 Algorithm

5 Conclusion

Effective version

In practice, how to decide for which values of s_0 , s_1 the generating function S(x) of

$$(n+b_0)s_n+(a_1n+b_1)s_{n-1}+(a_2n+b_2)s_{n-2}=0$$

is algebraic/globally bounded?

Effective version

In practice, how to decide for which values of s_0 , s_1 the generating function S(x) of

$$(n+b_0)s_n + (a_1n+b_1)s_{n-1} + (a_2n+b_2)s_{n-2} = 0$$

is algebraic/globally bounded?

Possible cases:

Alg: S(x) is algebraic for all $(s_0, s_1) \in \mathbb{Q}^2$.

Transc: S(x) is transcendental for all $(s_0, s_1) \in \mathbb{Q}^2 \setminus \{(0, 0)\}$.

Mixed: The set of pairs (s_0, s_1) such that S(x) is algebraic forms a one-dimensional \mathbb{Q} -vector subspace of \mathbb{Q}^2 .

Effective version

In practice, how to decide for which values of s_0 , s_1 the generating function S(x) of

$$(n+b_0)s_n+(a_1n+b_1)s_{n-1}+(a_2n+b_2)s_{n-2}=0$$

is algebraic/globally bounded?

→ Algorithm:

 $\underline{\textbf{Input:}}\ b_0, a_1, b_1, a_2, b_2 \text{ such that } a_1, a_2 \neq 0, \ b_2 = (2a_2b_1 - a_1a_2b_0)/a_1, \ b_0 \in \mathbb{N}.$

Output: Alg; Transc; or Mixed, (s_0, s_1) .

The condition $b_2 = (2a_2b_1 - a_1a_2b_0)/a_1$ guarantees algebraicity \iff global boundedness. So we found all algebraic and all globally bounded solutions!

Key idea: linear combination of certain integrals

The generating function $S(x) = \sum_{n>0} s_n x^n$ writes as:

$$S(x) = \underbrace{x^{-b_0}(1 + a_1x + a_2x^2)^{\frac{(b_0-1)a_1-b_1}{a_1}}}_{\text{algebraic}}(c_1 + b_0s_0l_1 + (a_1s_0 + b_0s_1 + b_1s_0 + s_1)l_2)$$

with

$$I_1 = \int x^{b_0-1} (1 + a_1 x + a_2 x^2)^{-b_0 + \frac{b_1}{a_1}} dx,$$
 $I_2 = \int x^{b_0} (1 + a_1 x + a_2 x^2)^{-b_0 + \frac{b_1}{a_1}} dx.$

General shape of l_1, l_2 (for $b_0 \neq 0$):

$$\int x^n (1+a_1x+a_2x^2)^q dx, \quad a_1, a_2 \in \mathbb{Q}^*, \ n \in \mathbb{N}, \ q \in \mathbb{Q}.$$

Algorithm outline

- 1 Handle $a_1^2 4a_2 = 0$ or $b_0 = 0$ separately.
- 2 Decide algebraicity of l_1 and l_2 .
- 3 Proceed according to the table below:

l ₁	I_2	Conclusion
Algebraic	Algebraic	Alg
Algebraic	Transcendental	Mixed, $(b_0 + 1, -a_1 - b_1)$
Transcendental	Algebraic	Mixed, (0,1)
Transcendental	Transcendental	Check if $b_0s_0l_1+(a_1s_0+b_0s_1+b_1s_0+s_1)l_2$ is algebraic for some $(\tilde{s_0},\tilde{s_1})\in\mathbb{Q}^2\setminus\{(0,0)\}$. Yes \Longrightarrow Mixed, $(\tilde{s_0},\tilde{s_1})$ No \Longrightarrow Transc

Algorithm outline

$$S(x) = A(x)(c_1 + b_0s_0l_1 + (a_1s_0 + b_0s_1 + b_1s_0 + s_1)l_2), \quad A(x)$$
 algebraic

<i>l</i> ₁	l ₂	Conclusion
Algebraic	Algebraic	Alg
Algebraic	Transcendental	Mixed, $(b_0 + 1, -a_1 - b_1)$
Transcendental	Algebraic	Mixed, (0,1)
Transcendental	Transcendental	Check if $b_0s_0l_1+(a_1s_0+b_0s_1+b_1s_0+s_1)l_2$ is algebraic for some $(\tilde{s_0},\tilde{s_1})\in\mathbb{Q}^2\setminus\{(0,0)\}$. Yes \Longrightarrow Mixed, $(\tilde{s_0},\tilde{s_1})$ No \Longrightarrow Transc

Demonstration: a déjà vu moment

The recurrence for *Motzkin-type sequences*:

$$(n+2)m_n - (2n+1)m_{n-1} - (3n-3)m_{n-2} = 0$$

corresponds to

$$b_0 = 2$$
, $a_1 = -2$, $b_1 = -1$, $a_2 = -3$, $b_2 = 3$.

Demonstration: a déjà vu moment

The recurrence for *Motzkin-type sequences*:

$$(n+2)m_n - (2n+1)m_{n-1} - (3n-3)m_{n-2} = 0$$

corresponds to

$$b_0 = 2$$
, $a_1 = -2$, $b_1 = -1$, $a_2 = -3$, $b_2 = 3$.

$$I_1 = \underbrace{\int x(1-2x-3x^2)^{-\frac{3}{2}} dx}_{ ext{algebraic}}, \qquad I_2 = \underbrace{\int x^2(1-2x-3x^2)^{-\frac{3}{2}} dx}_{ ext{transcendental}}.$$

The algorithm returns Mixed with $(b_0 + 1, -(a_1 + b_1)) = (3, 3)$.

Another example

The recurrence for large Schröder numbers:

$$(n+1)s_n - (6n-3)s_{n-1} + (n-2)s_{n-2} = 0$$

corresponds to

$$b_0 = 1$$
, $a_1 = -6$, $b_1 = 3$, $a_2 = 1$, $b_2 = -2$.

$$I_1 = \underbrace{\int (1-6x+x^2)^{-\frac{3}{2}} dx}_{ ext{algebraic}}, \qquad I_2 = \underbrace{\int x(1-6x+x^2)^{-\frac{3}{2}} dx}_{ ext{algebraic}}.$$

The algorithm returns Alg, proving that $S(x) = \sum_{n>0} s_n x^n$ is always algebraic.

Outline

1 Introduction and definitions

2 Motivating example

3 Generalization

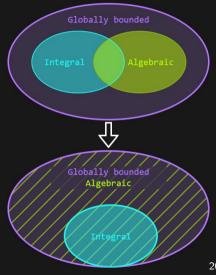
4 Algorithm

Conclusion

Back to the integrality problem. Are we in $\mathbb{Z}[[x]]$?

Motivation: reduce the search for integral solutions to studying algebraic ones.

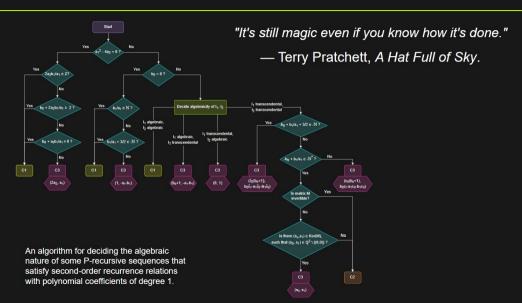
- [Fatou, 1906]: → Integrality criteria for rational functions.
- [Pomerat, Straub, 2024]: \rightsquigarrow Integrality criteria for n^{th} roots of power series of type $1 + x\mathbb{Z}[[x]]$.
- Work in progress by Bostan and M.: → Integrality criteria for algebraic power



The road ahead

- Case $b_2 \neq \frac{2a_2b_1 a_1a_2b_0}{a_1} \implies$ exponentials raised to nonzero powers in the generating function.
- ullet Case $b_0
 otin \mathbb{N}$ is not currently treated by the algorithm.
- Higher-order recurrence relations.
- Nonlinear polynomial coefficients.
- Deciding when an algebraic function belongs to $\mathbb{Z}[[x]]$.

Thank you for your attention!



Outline

6 Appendix

Deciding the algebraic nature of l_1, l_2 .

$$I_1 = \int x^{b_0-1} (1+a_1x+a_2x^2)^{-b_0+\frac{b_1}{a_1}} dx, \qquad I_2 = \int x^{b_0} (1+a_1x+a_2x^2)^{-b_0+\frac{b_1}{a_1}} dx.$$

General shape of l_1 , l_2 (for $b_0 \neq 0$):

$$I(n,q) := \int x^n (1+a_1x+a_2x^2)^q dx, \quad a_1, a_2 \in \mathbb{Q}^*, \ n \in \mathbb{N}, \ q \in \mathbb{Q}.$$

I(n, q) decomposes as a combination of:

- Algebraic functions and I(0, q), or
- Algebraic functions, I(0,q) and I(-2q-1,q), or
- Algebraic functions and logs multiplied by (computable) constants that depend on the recurrence parameters.

Integrality analysis: example

Consider a recurrence relation

$$ns_n + (2n+3)s_{n-1} + 9(n+3)s_{n-2} = 0.$$

Apply the algorithm $\implies S(x) = \sum_{n \geq 0} s_n x^n$ is globally bounded if and only if $s_1 = -5s_0$. In that case, one has

$$S(x) = s_0(1+2x+9x^2)^{-\frac{5}{2}}.$$

For which values of $s_0 \in \mathbb{Z}$ does $s_0(1+2x+9x^2)^{-\frac{5}{2}}$ lie in $\mathbb{Z}[[x]]$?

Integrality analysis: example

For which values of $s_0 \in \mathbb{Z}$ does $s_0(1+2x+9x^2)^{-\frac{5}{2}}$ lie in $\mathbb{Z}[[x]]$?

Lemma [Pomerat, Straub, 2025]

Let $a, b \in \mathbb{Z}, \ \lambda \in \mathbb{Q}$. Let k be the denominator of λ brought to the lowest terms. Then $(1 + ax + bx^2)^{\lambda} \in \mathbb{Z}[[x]]$ if and only if

- $a, b \in k \ rad(k)\mathbb{Z}$, or
- $k=2\kappa$ and $a,b\in\kappa$ $rad(\kappa)\mathbb{Z}$ as well as $(a,b)\equiv(2,1)\pmod{4}.$

Here rad(k) denotes the largest squarefree integer dividing k. For example, rad(4) = 2, rad(24) = 6.

Integrality analysis: example

For which values of $s_0 \in \mathbb{Z}$ does $s_0(1+2x+9x^2)^{-\frac{5}{2}}$ lie in $\mathbb{Z}[[x]]$?

Lemma [Pomerat, Straub, 2025]

Let $a, b \in \mathbb{Z}, \ \lambda \in \mathbb{Q}$. Let k be the denominator of λ brought to the lowest terms. Then $(1 + ax + bx^2)^{\lambda} \in \mathbb{Z}[[x]]$ if and only if

- $a, b \in k \ rad(k)\mathbb{Z}$, or
- $k=2\kappa$ and $a,b\in\kappa$ $rad(\kappa)\mathbb{Z}$ as well as $(a,b)\equiv(2,1)\pmod{4}.$

In our case $a=2, b=9, \lambda=-\frac{5}{2}, k=2, \kappa=1 \implies (1+2x+9x^2)^{-\frac{5}{2}} \in \mathbb{Z}[[x]].$ Hence, $s_0(1+2x+9x^2)^{-\frac{5}{2}} \in \mathbb{Z}[[x]]$ for all $s_0 \in \mathbb{Z}$.

What if $b_2 \neq \frac{2a_1b_1 - a_1a_2b_0}{a_1}$?...

- ullet No counterexample to the claim "globally bounded \Longrightarrow algebraic" found.
- There could still be algebraic and globally bounded solutions! Consider the following recurrence:

$$ns_n + (3n + 2)s_{n-1} + (2n + 2)s_{n-2} = 0,$$

so that

$$b_0 = 0$$
, $a_1 = 3$, $b_1 = 2$, $a_2 = 2$, $b_2 = 2$.

One has $b_2 = 2 \neq 4 = (2a_1b_1 - a_1a_2b_0)/a_1$. At the same time, the generating function is rational (\Longrightarrow algebraic \Longrightarrow globally bounded):

$$\sum_{n\geq 0} s_n x^n = \frac{(5s_0 + s_1)(x^2 + x) + s_0}{(x+1)(2x+1)^2}.$$