https://arxiv.org/abs/2510.00892

An effective proof of the *p*-curvature conjecture for order one linear differential equations joint work with Florian Fürnsinn.

Lucas Pannier

Laboratoire de Mathématiques de Versailles, UVSQ CNRS UMR-8100

November 19th 2025

Combinatorics and Arithmetic for Physics, IHES

$$y(x) = \sum_{n \geq 0} u_n x^n \in \mathbb{Q}[\![x]\!]$$

$$y(x) = \sum_{n>0} u_n x^n \in \mathbb{Q}[\![x]\!]$$

Algebraic series

y(x) is algebraic over $\mathbb{Q}(x)$ if $\exists P(x,Y) \in \mathbb{Z}[x,Y]$, P(x,y(x)) = 0.

Algebraic

$$y(x) = \sum_{n \geq 0} u_n x^n \in \mathbb{Q}[\![x]\!]$$

Algebraic series

y(x) is algebraic over $\mathbb{Q}(x)$ if $\exists P(x, Y) \in \mathbb{Z}[x, Y]$, P(x, y(x)) = 0.

$$y(x) = (1-x)^{2/5} = 1 - \frac{2}{5}x + \frac{6}{50}x^2 + \dots, \ y(x)^5 - (x-1)^2 = 0.$$

Algebraic

$$y(x) = \sum_{n \geq 0} u_n x^n \in \mathbb{Q}[\![x]\!]$$

Algebraic series

$$y(x)$$
 is algebraic over $\mathbb{Q}(x)$ if $\exists P(x,Y) \in \mathbb{Z}[x,Y]$, $P(x,y(x)) = 0$.

$$y(x) = (1-x)^{2/5} = 1 - \frac{2}{5}x + \frac{6}{50}x^2 + \dots, y(x)^5 - (x-1)^2 = 0.$$

D-finite series

$$y(x)$$
 is D-finite if $\exists a_0(x), \dots, a_r(x) \in \mathbb{Z}[x]$ not all zero such that $a_r(x)y^{(r)}(x) + \dots + a_0(x)y(x) = 0$.

D-finite

Algebraic

$$y(x) = \sum_{n \geq 0} u_n x^n \in \mathbb{Q}[\![x]\!]$$

Algebraic series

$$y(x)$$
 is algebraic over $\mathbb{Q}(x)$ if $\exists P(x,Y) \in \mathbb{Z}[x,Y]$, $P(x,y(x)) = 0$.

$$y(x) = (1-x)^{2/5} = 1 - \frac{2}{5}x + \frac{6}{50}x^2 + \dots, y(x)^5 - (x-1)^2 = 0.$$

D-finite series

y(x) is D-finite if $\exists a_0(x), \ldots, a_r(x) \in \mathbb{Z}[x]$ not all zero such that $a_r(x)y^{(r)}(x) + \cdots + a_0(x)y(x) = 0$.

$$\rightarrow y(x) = \exp(x^2 + 1)$$
 satisfies $y'(x) - 2xy(x) = 0$.

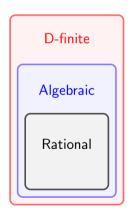
D-finite

Algebraic

$$y(x) = \sum_{n \geq 0} u_n x^n \in \mathbb{Q}[\![x]\!]$$

Theorem (Abel, 1827)

Algebraic series are D-finite.



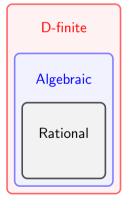
$$y(x) = \sum_{n \geq 0} u_n x^n \in \mathbb{Q}[\![x]\!]$$

Theorem (Abel, 1827)

Algebraic series are D-finite.

$$y(x) = (1-x)^{2/5}, 5(1-x)y' + 2y = 0.$$

$$\rightarrow y(x) = \exp(x^2 + 1)$$
 is not algebraic.



$$y(x) = \sum_{n \ge 0} u_n x^n \in \mathbb{Q}[\![x]\!]$$

Theorem (Abel, 1827)

Algebraic series are D-finite.

$$y(x) = (1-x)^{2/5}, 5(1-x)y' + 2y = 0.$$

$$\rightarrow y(x) = \exp(x^2 + 1)$$
 is not algebraic.

Given a D-finite power series, decide if it is algebraic.

Algebraic

Fuchs' problem

Let
$$\mathcal{L} = a_n(x) \left(\frac{d}{dx}\right)^n + \cdots + a_1(x) \frac{d}{dx} + a_0(x), a_i(x) \in \mathbb{Z}[x].$$

Decide if the differential equation $\mathcal{L}y(x) = 0$ has a basis of algebraic solutions.

Fuchs' problem

Let
$$\mathcal{L} = a_n(x) \left(\frac{d}{dx}\right)^n + \cdots + a_1(x) \frac{d}{dx} + a_0(x), a_i(x) \in \mathbb{Z}[x].$$

Decide if the differential equation $\mathcal{L}y(x) = 0$ has a basis of algebraic solutions.

Abel's problem

Let $u(x) \in \overline{\mathbb{Q}(x)}$, decide if the nonzero solutions of y'(x) = u(x)y(x) are algebraic.

Fuchs' problem

Let $\mathcal{L} = a_n(x) \left(\frac{d}{dx}\right)^n + \cdots + a_1(x) \frac{d}{dx} + a_0(x), a_i(x) \in \mathbb{Z}[x].$

Decide if the differential equation $\mathcal{L}y(x) = 0$ has a basis of algebraic solutions.

Abel's problem

Let $u(x) \in \overline{\mathbb{Q}(x)}$, decide if the nonzero solutions of y'(x) = u(x)y(x) are algebraic.

[Risch, 1971], [Baldassari-Dwork, 1979], [Davenport, 1981], Risch's algorithm.

Fuchs' problem

Let $\mathcal{L} = a_n(x) \left(\frac{d}{dx}\right)^n + \dots + a_1(x) \frac{d}{dx} + a_0(x), a_i(x) \in \mathbb{Z}[x]$. Decide if the differential equation $\mathcal{L}_{V}(x) = 0$ has a basis of algebraic solutions.

Abel's problem

Let $u(x) \in \overline{\mathbb{Q}(x)}$, decide if the nonzero solutions of y'(x) = u(x)y(x) are algebraic.

[Risch, 1971], [Baldassari-Dwork, 1979], [Davenport, 1981], Risch's algorithm. [Singer, 1980], relying on Risch's algorithm.

$$\mathcal{L} = a_n(x) \left(\frac{d}{dx}\right)^n + \cdots + a_1(x) \frac{d}{dx} + a_0(x), \qquad a_i(x) \in \mathbb{Z}[x], \qquad \mathcal{L}_p \coloneqq \mathcal{L} \bmod p.$$

$$\mathcal{L} = a_n(x) \left(\frac{d}{dx}\right)^n + \cdots + a_1(x) \frac{d}{dx} + a_0(x), \qquad a_i(x) \in \mathbb{Z}[x], \qquad \mathcal{L}_p \coloneqq \mathcal{L} \bmod p.$$

Grothendieck's conjecture

 $\mathcal{L}y(x)$ has a basis of algebraic solutions over $\mathbb{Q}(x)$ if and only if for almost all prime numbers p, $\mathcal{L}_p y(x)$ has a basis of algebraic solutions over $\mathbb{F}_p(x)$.

$$\mathcal{L} = a_n(x) \left(\frac{d}{dx}\right)^n + \cdots + a_1(x) \frac{d}{dx} + a_0(x), \qquad a_i(x) \in \mathbb{Z}[x], \qquad \mathcal{L}_p \coloneqq \mathcal{L} \bmod p.$$

Grothendieck's conjecture

 $\mathcal{L}y(x)$ has a basis of algebraic solutions over $\mathbb{Q}(x)$ if and only if for almost all prime numbers p, $\mathcal{L}_p y(x)$ has a basis of algebraic solutions over $\mathbb{F}_p(x)$.

• Picard-Fuchs equations [Katz, 1972], order one [Honda, 1974; Chudnovsky², 1985], *q*-difference equations [Di Vizio, 2001],...

$$\mathcal{L} = a_n(x) \left(\frac{d}{dx}\right)^n + \cdots + a_1(x) \frac{d}{dx} + a_0(x), \qquad a_i(x) \in \mathbb{Z}[x], \qquad \mathcal{L}_p \coloneqq \mathcal{L} \bmod p.$$

Grothendieck's conjecture

 $\mathcal{L}y(x)$ has a basis of algebraic solutions over $\mathbb{Q}(x)$ if and only if for almost all prime numbers p, $\mathcal{L}_p y(x)$ has a basis of algebraic solutions over $\mathbb{F}_p(x)$.

• Picard-Fuchs equations [Katz, 1972], order one [Honda, 1974; Chudnovsky², 1985], *q*-difference equations [Di Vizio, 2001],...

Attach to \mathcal{L}_p (hence to \mathcal{L}) an $\mathbb{F}_p(x)$ -linear map called the *p*-curvature.

$$\mathcal{L} = a_n(x) \left(\frac{d}{dx}\right)^n + \cdots + a_1(x) \frac{d}{dx} + a_0(x), \qquad a_i(x) \in \mathbb{Z}[x], \qquad \mathcal{L}_p \coloneqq \mathcal{L} \bmod p.$$

Grothendieck's conjecture

Motivation and intuition

 $\mathcal{L}y(x)$ has a basis of algebraic solutions over $\mathbb{Q}(x)$ if and only if for almost all prime numbers p, $\mathcal{L}_p y(x)$ has a basis of algebraic solutions over $\mathbb{F}_p(x)$.

• Picard-Fuchs equations [Katz, 1972], order one [Honda, 1974; Chudnovsky², 1985], *q*-difference equations [Di Vizio, 2001],...

Attach to \mathcal{L}_p (hence to \mathcal{L}) an $\mathbb{F}_p(x)$ -linear map called the *p*-curvature.

Theorem (Cartier's Lemma)

The p-curvature of \mathcal{L}_p vanishes iff $\mathcal{L}_p y(x)$ has a basis of algebraic solutions over $\mathbb{F}_p(x)$.

Motivation and intuition

Differential equations in positive characteristic

$$\mathcal{L} = a_n(x) \left(\frac{d}{dx}\right)^n + \cdots + a_1(x) \frac{d}{dx} + a_0(x), \qquad a_i(x) \in \mathbb{Z}[x], \qquad \mathcal{L}_p \coloneqq \mathcal{L} \bmod p.$$

Grothendieck's p-curvature conjecture

 $\mathcal{L}_{V}(x)$ has a basis of algebraic solutions over $\mathbb{Q}(x)$ if and only if for almost all prime numbers p, the p-curvature of the equation vanishes.

• Picard-Fuchs equations [Katz, 1972], order one [Honda, 1974; Chudnovsky², 1985]. q-difference equations [Di Vizio, 2001],...

Attach to \mathcal{L}_p (hence to \mathcal{L}) an $\mathbb{F}_p(x)$ -linear map called the *p*-curvature.

Theorem (Cartier's Lemma)

The p-curvature of \mathcal{L}_p vanishes iff $\mathcal{L}_p y(x)$ has a basis of algebraic solutions over $\mathbb{F}_p(x)$.

Indefinite integration - Inhomogeneous case

Let
$$u(x) \in \mathbb{Q}(x)$$
, decide if $y(x) := \int u(x) dx$ is algebraic.

$$\rightarrow y'(x) = u(x)$$

Indefinite integration - Inhomogeneous case

Let
$$u(x) \in \mathbb{Q}(x)$$
, decide if $y(x) := \int u(x) dx$ is algebraic.

$$\rightarrow y'(x) = u(x)$$

Proposition

The power series $\int u(x)dx$ is algebraic if and only if all residues of u(x) are zero.

Indefinite integration - Inhomogeneous case

Let $u(x) \in \mathbb{Q}(x)$, decide if $y(x) := \int u(x) dx$ is algebraic.

$$\rightarrow y'(x) = u(x)$$

Proposition

The power series $\int u(x)dx$ is algebraic if and only if all residues of u(x) are zero.

Theorem (Rothstein, 1976; Trager, 1976)

Let $u(x) \in \mathbb{Q}(x)$ be a rational function of the form

$$u(x) = \frac{a(x)}{b(x)} = F'(x) + \sum_{i=1}^{r} \frac{\alpha_i}{x - \beta_i},$$

with $a(x), b(x) \in \mathbb{Z}[x]$, $F(x) \in \mathbb{Q}(x)$. Then the residues α_i are precisely the roots of

$$R(w) := \operatorname{res}_{x}(b(x), a(x) - w \cdot b'(x)) \in \mathbb{Z}[w].$$

$$y'(x) = u(x)y(x)$$
 (Eq)

$$y'(x) = u(x)y(x)$$
 (Eq)

with
$$u(x) = F'(x) + \sum_i \frac{\alpha_i}{x - \beta_i} \in \overline{\mathbb{Q}}(x)$$
, $\alpha_i, \beta_i \in \overline{\mathbb{Q}}$, $F(x) \in \overline{\mathbb{Q}}(x)$.

$$y'(x) = u(x)y(x)$$
 (Eq)

with
$$u(x) = F'(x) + \sum_i \frac{\alpha_i}{x - \beta_i} \in \overline{\mathbb{Q}}(x)$$
, $\alpha_i, \beta_i \in \overline{\mathbb{Q}}$, $F(x) \in \overline{\mathbb{Q}}(x)$.
A nonzero solution of (Eq) is $y(x) := \exp(\int u(x) dx) = \exp(F(x)) \cdot \prod_i (x - \beta_i)^{\alpha_i}$.

$$y'(x) = u(x)y(x)$$
 (Eq)

with
$$u(x) = \sum_{i} \frac{\alpha_{i}}{x - \beta_{i}} \in \overline{\mathbb{Q}}(x)$$
, $\alpha_{i}, \beta_{i} \in \overline{\mathbb{Q}}$.

A nonzero solution of (Eq) is $y(x) \coloneqq \exp(\int u(x) dx) = \prod_i (x - \beta_i)^{\alpha_i}$.

$$y'(x) = u(x)y(x)$$
 (Eq)

with
$$u(x) = \sum_{i} \frac{\alpha_{i}}{x - \beta_{i}} \in \overline{\mathbb{Q}}(x), \ \alpha_{i}, \beta_{i} \in \overline{\mathbb{Q}}.$$

A nonzero solution of (Eq) is $y(x) := \exp(\int u(x) dx) = \prod_i (x - \beta_i)^{\alpha_i}$.

Theorem (Jacobson, 1937)

The p-curvature of (Eq) is $u^{(p-1)}(x) + u(x)^p \mod p \in \mathbb{F}_p(x)$.

$$y'(x) = u(x)y(x)$$
 (Eq)

with
$$u(x) = \sum_{i} \frac{\alpha_i}{x - \beta_i} \in \overline{\mathbb{Q}}(x), \ \alpha_i, \beta_i \in \overline{\mathbb{Q}}.$$

A nonzero solution of (Eq) is $y(x) := \exp(\int u(x) dx) = \prod_i (x - \beta_i)^{\alpha_i}$.

Theorem (Jacobson, 1937)

The p-curvature of (Eq) is $u^{(p-1)}(x) + u(x)^p \mod p \in \mathbb{F}_p(x)$.

• With u(x) as above the p-curvature is

$$\sum_{i} \frac{\alpha_{i}^{p} - \alpha_{i}}{(x - \beta_{i})^{p}} \bmod p.$$

$$y'(x) = u(x)y(x)$$
 (Eq)

with
$$u(x) = \sum_{i} \frac{\alpha_{i}}{x - \beta_{i}} \in \overline{\mathbb{Q}}(x), \ \alpha_{i}, \beta_{i} \in \overline{\mathbb{Q}}.$$

A nonzero solution of (Eq) is $y(x) := \exp(\int u(x) dx) = \prod_i (x - \beta_i)^{\alpha_i}$.

Theorem (Jacobson, 1937)

The p-curvature of (Eq) is $u^{(p-1)}(x) + u(x)^p \mod p \in \mathbb{F}_p(x)$.

• With u(x) as above the p-curvature is

$$\sum_{i} \frac{\alpha_{i}^{p} - \alpha_{i}}{(x - \beta_{i})^{p}} \bmod p.$$

Kronecker and residues

Theorem (Rothstein, 1976; Trager, 1976)

Let $u(x) \in \mathbb{Q}(x)$ be a rational function of the form

$$u(x) = \frac{a(x)}{b(x)} = \sum_{i=1}^{r} \frac{\alpha_i}{x - \beta_i},$$

with $a(x), b(x) \in \mathbb{Z}[x]$. Then the residues α_i are precisely the roots of

$$R(w) := \operatorname{res}_{x}(b(x), a(x) - w \cdot b'(x)) \in \mathbb{Z}[w].$$

Kronecker and residues

Theorem (Rothstein, 1976; Trager, 1976)

Let $u(x) \in \mathbb{Q}(x)$ be a rational function of the form

$$u(x) = \frac{a(x)}{b(x)} = \sum_{i=1}^{r} \frac{\alpha_i}{x - \beta_i},$$

with $a(x), b(x) \in \mathbb{Z}[x]$. Then the residues α_i are precisely the roots of

$$R(w) := \operatorname{res}_{x}(b(x), a(x) - w \cdot b'(x)) \in \mathbb{Z}[w].$$

Theorem (Kronecker, 1880; Chebotarev, 1926)

Let $R(w) \in \mathbb{Q}[w]$ be irreducible. If for almost all prime numbers p the polynomial R(w) mod p has a root in \mathbb{F}_p , then R(w) has a root in \mathbb{Q} , hence is linear.

$$y'(x) = u(x)y(x)$$
 (Eq) with $u(x) = \frac{a(x)}{b(x)}$, and $R(w) := res_x(b(x), a(x) - w \cdot b'(x))$.

$$y'(x) = u(x)y(x)$$
 (Eq) with $u(x) = \frac{a(x)}{b(x)}$, and $R(w) := \text{res}_x(b(x), a(x) - w \cdot b'(x))$.

Proposition (Folklore; Honda, 1981)

The following are equivalent:

- (1) (Eq) has an algebraic solution.
- (2) We have $\deg a(x) < \deg b(x)$, all poles of u(x) are simple, and R(w) splits completely in $\mathbb{Q}[w]$.

$$y'(x) = u(x)y(x)$$
 (Eq) with $u(x) = \frac{a(x)}{b(x)}$, and $R(w) := res_x(b(x), a(x) - w \cdot b'(x))$.

Proposition (Folklore; Honda, 1981)

The following are equivalent:

- (1) (Eq) has an algebraic solution.
- (2) We have $\deg a(x) < \deg b(x)$, all poles of u(x) are simple, and R(w) splits completely in $\mathbb{Q}[w]$.

Proposition (Honda, 1981)

Let p be a prime number. TFAE:

- $(1)_p$ (Eq)_p has an algebraic solution in $\mathbb{F}_p[\![x]\!]$.
- (2)_p We have $\deg a(x) < \deg b(x)$, all poles of u(x) are simple, and R(w) splits completely in $\mathbb{F}_p[w]$.
- (3)_p We have $u(x)^p + u^{(p-1)}(x) \mod p = 0$.

$$y'(x) = u(x)y(x)$$
 (Eq) with $u(x) = \frac{a(x)}{b(x)}$, and $R(w) := \operatorname{res}_x(b(x), a(x) - w \cdot b'(x))$.

Proposition (Folklore; Honda, 1981)

The following are equivalent:

- (1) (Eq) has an algebraic solution.
- (2) We have deg $a(x) < \deg b(x)$, all poles of u(x) are simple, and R(w) splits completely in $\mathbb{Q}[w]$.

Proposition (Honda, 1981)

Let p be a prime number. TFAE:

- $(1)_p$ (Eq)_p has an algebraic solution in $\mathbb{F}_p[\![x]\!]$.
- (2)_p We have $\deg a(x) < \deg b(x)$, all poles of u(x) are simple, and R(w) splits completely in $\mathbb{F}_p[w]$.
- (3)_p We have $u(x)^p + u^{(p-1)}(x) \mod p = 0$.

Kronecker's Theorem: $(2)_p$ for almost all prime numbers p implies (2).

Motivation and intuition

$$y'(x) = u(x)y(x)$$
 (Eq) with $u(x) = \frac{a(x)}{b(x)}$, and $R(w) := res_x(b(x), a(x) - w \cdot b'(x))$.

Proposition (Folklore; Honda, 1981)

The following are equivalent:

- (1) (Eq) has an algebraic solution.
- (2) We have deg $a(x) < \deg b(x)$, all poles of u(x) are simple, and R(w) splits completely in $\mathbb{Q}[w]$.

Proposition (Honda, 1981)

Let p be a prime number. TFAE:

- $(1)_p$ (Eq)_p has an algebraic solution in $\mathbb{F}_p[\![x]\!]$.
- (2)_p We have $\deg a(x) < \deg b(x)$, all poles of u(x) are simple, and R(w) splits completely in $\mathbb{F}_p[w]$.
- (3)_p We have $u(x)^p + u^{(p-1)}(x) \mod p = 0$.

Kronecker's Theorem: $(2)_p$ for almost all prime numbers p implies (2).

Can we deduce (2) from $(2)_p$ for a *finite* number of primes?

Examples

Example

The equation y'(x) = y(x) has no solution in $\mathbb{F}_p[\![x]\!]$, and $\exp(x)$ is transcendental. Moreover, $1^p + 1^{(p-1)} = 1 \neq 0$ for all primes p.

Examples

Example

The equation y'(x) = y(x) has no solution in $\mathbb{F}_p[\![x]\!]$, and $\exp(x)$ is transcendental. Moreover, $1^p + 1^{(p-1)} = 1 \neq 0$ for all primes p.

Example

Consider $y(x) = \exp(\arctan(x))$ satisfies $y'(x) = \frac{1}{1+x^2} \cdot y(x)$. We have

$$u(x)^p + u^{(p-1)}(x) = \begin{cases} 0 & \text{if } p \equiv 1 \mod 4 \\ \frac{2}{(x+1)^p} & \text{if } p \equiv 3 \mod 4. \end{cases}$$

So y(x) is not algebraic.

Effective Kronecker

Theorem (Chudnovsky², 1985)

Let $R(w) \in \mathbb{Z}[w]$ with leading coefficient $\Delta \in \mathbb{Z}$.

There exists $\sigma \in \mathbb{N}$ such that R(w) splits completely over \mathbb{Q} if and only if R(w) mod p splits completely over \mathbb{F}_p for all primes p:

- not dividing Δ ,
- at most σ .

Effective Kronecker

Theorem (Chudnovsky², 1985)

Let $R(w) \in \mathbb{Z}[w]$ with leading coefficient $\Delta \in \mathbb{Z}$.

There exists $\sigma \in \mathbb{N}$ such that R(w) splits completely over \mathbb{Q} if and only if R(w) mod p splits completely over \mathbb{F}_p for all primes p:

- not dividing ∆,
- ullet at most σ .

Theorem (Fürnsinn-P., 2025+)

In the previous theorem, one can choose $\sigma=(2M+1)N+2M$ with $M:=\lceil 2.826\cdot \Delta^3\cdot t(\Delta)\rceil$, $N:=\lceil 6.076BM\rceil$, where $t(\Delta):=\prod_{p\mid \Delta}p^{1/(p-1)}$ and $B\in\mathbb{R}$ is an upper bound on the modulus of all complex roots of R(w).

Effective Kronecker

Theorem (Chudnovsky², 1985)

Let $R(w) \in \mathbb{Z}[w]$ with leading coefficient $\Delta \in \mathbb{Z}$.

There exists $\sigma \in \mathbb{N}$ such that R(w) splits completely over \mathbb{Q} if and only if R(w) mod p splits completely over \mathbb{F}_p for all primes p:

- not dividing Δ ,
- ullet at most σ .

Theorem (Fürnsinn-P., 2025+)

In the previous theorem, one can choose $\sigma=(2M+1)N+2M$ with $M:=\lceil 2.826\cdot \Delta^3\cdot t(\Delta)\rceil$, $N:=\lceil 6.076BM\rceil$, where $t(\Delta):=\prod_{p\mid \Delta}p^{1/(p-1)}$ and $B\in\mathbb{R}$ is an upper bound on the modulus of all complex roots of R(w).

Criterion: If $p \leq \sigma$, $p \not\mid \Delta$ and $R(w) \mod p$ does not split completely in \mathbb{F}_p , then R(w) does not split completely in \mathbb{Q} .

Given power series $f_1(x), \ldots, f_r(x) \in \mathbb{Q}[\![x]\!]$ and $n, s \in \mathbb{N}$, find polynomials $P_i(x) \in \mathbb{Q}[\![x]\!]$ such that $\deg(P_i(x)) \leq n$ and

$$P_1(x)f_1(x)+\cdots+P_r(x)f_r(x)\in x^s\mathbb{Q}[\![x]\!].$$

Given power series $f_1(x), \ldots, f_r(x) \in \mathbb{Q}[\![x]\!]$ and $n, s \in \mathbb{N}$, find polynomials $P_i(x) \in \mathbb{Q}[\![x]\!]$ such that $\deg(P_i(x)) \leq n$ and

$$P_1(x)f_1(x)+\cdots+P_r(x)f_r(x)\in \mathbf{x}^{\mathbf{5}}\mathbb{Q}[\![x]\!].$$

• r(n+1) indeterminates, s linear homogeneous equations

Given power series $f_1(x), \ldots, f_r(x) \in \mathbb{Q}[\![x]\!]$ and $n, s \in \mathbb{N}$, find polynomials $P_i(x) \in \mathbb{Q}[\![x]\!]$ such that $\deg(P_i(x)) \leq n$ and

$$P_1(x)f_1(x)+\cdots+P_r(x)f_r(x)\in x^s\mathbb{Q}[\![x]\!].$$

• r(n+1) indeterminates, s linear homogeneous equations $\Rightarrow s = r(n+1) - 1$.

Given power series $f_1(x), \ldots, f_r(x) \in \mathbb{Q}[\![x]\!]$ and $n, s \in \mathbb{N}$, find polynomials $P_i(x) \in \mathbb{Q}[\![x]\!]$ such that $\deg(P_i(x)) \leq n$ and

$$P_1(x)f_1(x)+\cdots+P_r(x)f_r(x)\in x^s\mathbb{Q}[\![x]\!].$$

• r(n+1) indeterminates, s linear homogeneous equations $\Rightarrow s = r(n+1) - 1$. [Hermite, 1873] e is transcendental, [Padé, 1894].

Given power series $f_1(x), \ldots, f_r(x) \in \mathbb{Q}[\![x]\!]$ and $n, s \in \mathbb{N}$, find polynomials $P_i(x) \in \mathbb{Q}[x]$ such that $\deg(P_i(x)) \leq n$ and

$$P_1(x)f_1(x)+\cdots+P_r(x)f_r(x)\in x^s\mathbb{Q}[\![x]\!].$$

• r(n+1) indeterminates, s linear homogeneous equations $\Rightarrow s = r(n+1) - 1$. [Hermite, 1873] e is transcendental, [Padé, 1894].

Idea to prove algebraicity: With $f_i(x) = f^{i-1}(x)$, f(x) is algebraic if and only if for the optimal P_i 's, the remainder $P_1(x) + P_2(x)f(x) + \cdots + P_r(x)f^{r-1}(x)$ vanishes for large n, r.

Proof.

Proof. By contradiction, assume R(w) has a root $\alpha \notin \mathbb{Q}$. Write $L := \mathbb{Q}(\alpha)$.

Proof. By contradiction, assume R(w) has a root $\alpha \notin \mathbb{Q}$. Write $L := \mathbb{Q}(\alpha)$. We know **explicit** Hermite-Padé approximants $P_i(z) \in L[z]$, $\deg(P_i(z)) \leq N$ to the powers of $(1-z)^{\alpha}$

$$P_0(z) + P_1(z)(1-z)^{\alpha} + \cdots + P_{2M}(z)(1-z)^{2M\alpha} = gz^{\sigma} + O(z^{\sigma+1})$$

Proof. By contradiction, assume R(w) has a root $\alpha \notin \mathbb{Q}$. Write $L := \mathbb{Q}(\alpha)$. We know **explicit** Hermite-Padé approximants $P_i(z) \in L[z]$, $\deg(P_i(z)) \leq N$ to the powers of $(1-z)^{\alpha}$

$$P_0(z) + P_1(z)(1-z)^{\alpha} + \cdots + P_{2M}(z)(1-z)^{2M\alpha} = gz^{\sigma} + O(z^{\sigma+1})$$

with
$$\sigma = (2M+1)N + 2M$$
, $g = \frac{N!^{2M+1}}{\sigma!} \in \mathbb{Q}^*$, $P_0(0) = \left(\prod_{j=1}^{2M} {j\alpha+N-1 \choose N}\right)^{-1}$.

Proof. By contradiction, assume R(w) has a root $\alpha \notin \mathbb{Q}$. Write $L := \mathbb{Q}(\alpha)$. We know **explicit** Hermite-Padé approximants $P_i(z) \in L[z]$, $\deg(P_i(z)) \leq N$ to the powers of $(1-z)^{\alpha}$

$$P_0(z) + P_1(z)(1-z)^{\alpha} + \cdots + P_{2M}(z)(1-z)^{2M\alpha} = gz^{\sigma} + O(z^{\sigma+1})$$

with
$$\sigma = (2M+1)N + 2M$$
, $g = \frac{N!^{2M+1}}{\sigma!} \in \mathbb{Q}^*$, $P_0(0) = \left(\prod_{j=1}^{2M} {j\alpha+N-1 \choose N}\right)^{-1}$.

$$\text{For all } \gamma \in L \setminus \{0\}, \ \underline{\left| \operatorname{den}(\gamma)^{[L:\mathbb{Q}]} \operatorname{Norm}_{L/\mathbb{Q}}(\gamma) \right|} \geq 1.$$

Proof. By contradiction, assume R(w) has a root $\alpha \notin \mathbb{Q}$. Write $L := \mathbb{Q}(\alpha)$. We know **explicit** Hermite-Padé approximants $P_i(z) \in L[z]$, $\deg(P_i(z)) \leq N$ to the powers of $(1-z)^{\alpha}$

$$P_0(z) + P_1(z)(1-z)^{\alpha} + \cdots + P_{2M}(z)(1-z)^{2M\alpha} = gz^{\sigma} + O(z^{\sigma+1})$$

with
$$\sigma = (2M+1)N + 2M$$
, $g = \frac{N!^{2M+1}}{\sigma!} \in \mathbb{Q}^*$, $P_0(0) = \left(\prod_{j=1}^{2M} {j\alpha + N - 1 \choose N}\right)^{-1}$.

$$\text{For all } \gamma \in L \setminus \{0\}, \ \underbrace{\left| \text{den}(\gamma)^{[L:\mathbb{Q}]} \operatorname{\mathsf{Norm}}_{L/\mathbb{Q}}(\gamma) \right|} \geq 1.$$

Construct $\gamma_{M,N} \in L$, $\gamma_{M,N} \neq 0$, such that when N >> M >> 0,

$$\left| \mathsf{den}(\gamma_{M,\mathsf{N}})^{[L:\mathbb{Q}]} \, \mathsf{Norm}_{L/\mathbb{Q}}(\gamma_{M,\mathsf{N}})
ight| < 1.$$

Effective Honda

Corollary [Chudnovsky², 1985; Fürnsinn-P., 2025+]

Let $a(x), b(x) \in \mathbb{Z}[x]$, $\deg(a(x)) < n \coloneqq \deg(b(x))$ and

$$R(w) := \operatorname{res}_{x}(b(x), a(x) - w \cdot b'(x)) \in \mathbb{Q}[w],$$

with leading coefficient $\Delta := \operatorname{res}_{x}(b(x), -b'(x)), \ t := \prod_{p \mid \Delta} p^{1/(p-1)}$.

Let $B \in \mathbb{R}$ be an upper bound on the modulus of all complex roots of R(w).

Let $M := [2.826 \cdot \Delta^3 \cdot t(\Delta)]$ and N := [6.076BM].

All solutions of $y'(x) = \frac{\partial(x)}{\partial(x)}y(x)$ are algebraic if and only if the p-curvatures of the differential equation vanish for all primes p:

- not dividing Δ ;
- at most $\sigma := (2M+1)N + 2M$.

The smallest prime that does not split

Theorem (Kronecker, 1880; Chebotarev, 1926)

Let $R(w) \in \mathbb{Z}[w]$, R(w) splits completely in $\mathbb{Q}[w]$ if and only if for almost all prime number p, R(w) mod p splits completely in $\mathbb{F}_p[w]$.

The smallest prime that does not split

Theorem (Kronecker, 1880; Chebotarev, 1926)

Let $R(w) \in \mathbb{Z}[w]$, R(w) splits completely in $\mathbb{Q}[w]$ if and only if for almost all prime number p, R(w) mod p splits completely in $\mathbb{F}_p[w]$.

Proposition

Let $R(w) \in \mathbb{Z}[w]$, Δ its leading coefficient, and let L/\mathbb{Q} be the splitting field of R(w) and D = Disc(L), $n = [L : \mathbb{Q}]$.

The smallest prime $p \in \mathbb{Z}$, $p \not\mid \Delta D$, such that $R(w) \mod p$ does not split completely in $\mathbb{F}_p[w]$ is the smallest prime $p \in \mathbb{Z}$, $p \not\mid \Delta D$, that does not split completely in L.

Theorem (Kronecker, 1880; Chebotarev, 1926)

Let $R(w) \in \mathbb{Z}[w]$, R(w) splits completely in $\mathbb{Q}[w]$ if and only if for almost all prime number p, R(w) mod p splits completely in $\mathbb{F}_p[w]$.

Effectivity

Proposition

Motivation and intuition

Let $R(w) \in \mathbb{Z}[w]$, Δ its leading coefficient, and let L/\mathbb{Q} be the splitting field of R(w)and $D = \operatorname{Disc}(L)$, $n = [L : \mathbb{Q}]$.

The smallest prime $p \in \mathbb{Z}$, $p \not\mid \Delta D$, such that $R(w) \mod p$ does not split completely in $\mathbb{F}_p[w]$ is the smallest prime $p \in \mathbb{Z}$, $p \not\mid \Delta D$, that does not split completely in L.

Theorem (Effective Chebotarev, Vaaler, Voloch, 2000)

If $\exp(\max\{105, 25(\log(n))^2\}) \le 8D^{\frac{1}{2(n-1)}}$ then there exists a prime p such that p does not split completely in L and $p < 26n^2D^{\frac{1}{2(n-1)}}$.

Input $a(x), b(x) \in \mathbb{Z}[x], b(x)$ squarefree, $\deg(a(x)) < \deg(b(x))$.

Input $a(x), b(x) \in \mathbb{Z}[x], b(x)$ squarefree, $\deg(a(x)) < \deg(b(x))$.

Output The nature (algebraic or transcendental) of the solutions of $y'(x) = \frac{a(x)}{b(x)}y(x)$.

1. $R(w) := \operatorname{res}_{x}(b(x), a(x) - w \cdot b'(x)) \in \mathbb{Q}[w], \Delta, t, B;$

 $\underline{\mathsf{Input}} \ \ \mathsf{a}(x), \mathsf{b}(x) \in \mathbb{Z}[x], \ \mathsf{b}(x) \ \mathsf{squarefree}, \ \mathsf{deg}(\mathsf{a}(x)) < \mathsf{deg}(\mathsf{b}(x)).$

- 1. $R(w) := \operatorname{res}_{x}(b(x), a(x) w \cdot b'(x)) \in \mathbb{Q}[w], \Delta, t, B;$
- 2. $M := [2.826 \cdot \Delta^3 \cdot t(\Delta)], N := 10BM, \sigma := (2M+1)N + 2M, p \leftarrow 2;$

Input
$$a(x), b(x) \in \mathbb{Z}[x], b(x)$$
 squarefree, $\deg(a(x)) < \deg(b(x))$.

- 1. $R(w) := \operatorname{res}_{x}(b(x), a(x) w \cdot b'(x)) \in \mathbb{Q}[w], \Delta, t, B;$
- 2. $M := [2.826 \cdot \Delta^3 \cdot t(\Delta)], N := 10BM, \sigma := (2M+1)N + 2M, p \leftarrow 2;$
- 3. while $p \leq \sigma$:
 - i. if $p \not\mid \Delta$, then compute the p-curvature;
 - ii. **if** p-curvature $\neq 0$, **then** return transcendental, **else** $p \leftarrow \text{nextprime}(p)$;

Input
$$a(x), b(x) \in \mathbb{Z}[x], b(x)$$
 squarefree, $\deg(a(x)) < \deg(b(x))$.

- 1. $R(w) := \operatorname{res}_{x}(b(x), a(x) w \cdot b'(x)) \in \mathbb{Q}[w], \Delta, t, B;$
- 2. $M := [2.826 \cdot \Delta^3 \cdot t(\Delta)], N := 10BM, \sigma := (2M+1)N + 2M, p \leftarrow 2;$
- 3. while $p \leq \sigma$:
 - i. **if** $p \not\mid \Delta$, **then** compute the *p*-curvature;
 - ii. **if** p-curvature $\neq 0$, **then** return transcendental, **else** $p \leftarrow \text{nextprime}(p)$;
- 4. return algebraic.

Input $a(x), b(x) \in \mathbb{Z}[x], b(x)$ squarefree, $\deg(a(x)) < \deg(b(x)) = n$. Coefficients bounded by H.

- 1. $R(w) := \operatorname{res}_{x}(b(x), a(x) w \cdot b'(x)) \in \mathbb{Q}[w], \Delta, t, B; \tilde{O}(n^{2} \log(H))$ bit operations
- 2. $M := [2.826 \cdot \Delta^3 \cdot t(\Delta)], N := 10BM, \sigma := (2M+1)N + 2M, p \leftarrow 2;$
- 3. while $p \leq \sigma$:
 - i. **if** $p \not\mid \Delta$, **then** compute the *p*-curvature;
 - ii. **if** p-curvature $\neq 0$, **then** return transcendental, **else** $p \leftarrow \text{nextprime}(p)$;
- 4. return algebraic.

Input $a(x), b(x) \in \mathbb{Z}[x], b(x)$ squarefree, $\deg(a(x)) < \deg(b(x)) = n$. Coefficients bounded by H.

- 1. $R(w) := \operatorname{res}_{x}(b(x), a(x) w \cdot b'(x)) \in \mathbb{Q}[w], \Delta, t, B; \tilde{O}(n^{2} \log(H))$ bit operations
- 2. $M := \lceil 2.826 \cdot \Delta^3 \cdot t(\Delta) \rceil$, N := 10BM, $\sigma := (2M+1)N + 2M$, $p \leftarrow 2$;
- 3. while $p \le \sigma$: $\tilde{O}(n^2\sigma)$ bit operations
 - i. **if** $p \not\mid \Delta$, **then** compute the *p*-curvature;
 - ii. **if** p-curvature $\neq 0$, **then** return transcendental, **else** $p \leftarrow \text{nextprime}(p)$;
- 4. return algebraic.
- Computing p-curvatures, [Bostan-Schost, 2009], \tilde{O} hides logarithmic factors.

Input $a(x), b(x) \in \mathbb{Z}[x], b(x)$ squarefree, $\deg(a(x)) < \deg(b(x)) = n$. Coefficients bounded by H.

- 1. $R(w) := \operatorname{res}_{x}(b(x), a(x) w \cdot b'(x)) \in \mathbb{Q}[w], \Delta, t, B; \tilde{O}(n^{2} \log(H))$ bit operations
- 2. $M := \lceil 2.826 \cdot \Delta^3 \cdot t(\Delta) \rceil$, N := 10BM, $\sigma := (2M+1)N + 2M$, $p \leftarrow 2$;
- 3. while $p \le \sigma$: $\tilde{O}(n^2\sigma)$ bit operations
 - i. **if** $p \not\mid \Delta$, **then** compute the *p*-curvature;
 - ii. **if** p-curvature $\neq 0$, **then** return transcendental, **else** $p \leftarrow \text{nextprime}(p)$;
- 4. return algebraic.
- Computing p-curvatures, [Bostan-Schost, 2009], \tilde{O} hides logarithmic factors.
- $\sigma = \tilde{O}((Hn)^{12n}).$

Input $a(x), b(x) \in \mathbb{Z}[x], b(x)$ squarefree, $\deg(a(x)) < \deg(b(x)) = n$. Coefficients bounded by H.

- 1. $R(w) := \operatorname{res}_{x}(b(x), a(x) w \cdot b'(x)) \in \mathbb{Q}[w], \ \Delta, t, B; \ \tilde{O}(n^{2} \log(H))$ bit operations
- 2. $M := \lceil 2.826 \cdot \Delta^3 \cdot t(\Delta) \rceil$, N := 10BM, $\sigma := (2M+1)N + 2M$, $p \leftarrow 2$;
- 3. while $p \le \sigma$: $\tilde{O}((Hn)^{12n})$ bit operations
 - i. **if** $p \not\mid \Delta$, **then** compute the *p*-curvature;
 - ii. **if** p-curvature $\neq 0$, **then** return transcendental, **else** $p \leftarrow \text{nextprime}(p)$;
- 4. return algebraic.
- Computing p-curvatures, [Bostan-Schost, 2009], \tilde{O} hides logarithmic factors.
- $\sigma = \tilde{O}((Hn)^{12n}).$

Other approach: finding rational roots

Input $a(x), b(x) \in \mathbb{Z}[x], b(x)$ squarefree, $\deg(a(x)) < \deg(b(x)) = n$ and coefficients bounded by H.

- 1. $R(w) := \operatorname{res}_{x}(b(x), a(x) w \cdot b'(x)) \in \mathbb{Q}[w]; \tilde{O}(n^{2} \log(H))$ bit operations
- 2. Compute the rational roots of R(w); $\tilde{O}(n^3 \log(H))$ bit operations
- 3. **If** there are *n* rational roots, **then** return algebraic, **else** return transcendental.

Other approach: finding rational roots

Input $a(x), b(x) \in \mathbb{Z}[x], b(x)$ squarefree, $\deg(a(x)) < \deg(b(x)) = n$ and coefficients bounded by H.

- 1. $R(w) := \operatorname{res}_{x}(b(x), a(x) w \cdot b'(x)) \in \mathbb{Q}[w]; \tilde{O}(n^{2} \log(H))$ bit operations
- 2. Compute the rational roots of R(w); $\tilde{O}(n^3 \log(H))$ bit operations
- 3. **If** there are *n* rational roots, **then** return algebraic, **else** return transcendental.
- Complexity $\tilde{O}(n^3 \log(H))$ bit operations, polynomial in n and $\log(H)$.

Other approach: finding rational roots

Input $a(x), b(x) \in \mathbb{Z}[x], b(x)$ squarefree, $\deg(a(x)) < \deg(b(x)) = n$ and coefficients bounded by H.

- 1. $R(w) := \operatorname{res}_{x}(b(x), a(x) w \cdot b'(x)) \in \mathbb{Q}[w]; \tilde{O}(n^{2} \log(H))$ bit operations
- 2. Compute the rational roots of R(w); $\tilde{O}(n^3 \log(H))$ bit operations
- 3. **If** there are *n* rational roots, **then** return algebraic, **else** return transcendental.
- Complexity $\tilde{O}(n^3 \log(H))$ bit operations, polynomial in n and $\log(H)$.
- Other approach with indicial equations, polynomial complexity in n and log(H).

What did we do that for?

a(x)/b(x)	σ	Output	<i>p</i> -curv	ist	fact	RR
$\frac{3x-4}{2x^2-6x+4}$	265	algebraic	120 ms	45 ms	$< 1 \; \mathrm{ms}$	25 ms
$\frac{2x+1}{x^2+x+1}$	1926284	algebraic	8 min 9 s	19 ms	$< 1 \; \mathrm{ms}$	24 ms
$\frac{1}{x^2-4}$	$pprox 10^{11}$	algebraic	DNF	15 ms	$< 1 \; \mathrm{ms}$	22 ms
$\frac{7x^2-3x-4}{2x^3+4x^2-6x+4}$	$\approx 6\cdot 10^{27}$	transcendental	5 ms	38 ms	$< 1 \; \mathrm{ms}$	30 ms

What did we do that for?

a(x)/b(x)	σ	Output	<i>p</i> -curv	ist	fact	RR
$\frac{3x-4}{2x^2-6x+4}$	265	algebraic	120 ms	45 ms	$< 1 \; \mathrm{ms}$	25 ms
$\frac{2x+1}{x^2+x+1}$	1926284	algebraic	8 min 9 s	19 ms	$< 1 \; \mathrm{ms}$	24 ms
$\frac{1}{x^2-4}$	$pprox 10^{11}$	algebraic	DNF	15 ms	$< 1 \; \mathrm{ms}$	22 ms
$\frac{7x^2 - 3x - 4}{2x^3 + 4x^2 - 6x + 4}$	$pprox 6 \cdot 10^{27}$	transcendental	5 ms	38 ms	$< 1 \; \mathrm{ms}$	30 ms

Observation 1: If solutions are not algebraic, a p-curvature is nonzero for a small p.

What did we do that for?

a(x)/b(x)	σ	Output	<i>p</i> -curv	ist	fact	RR
$\frac{3x-4}{2x^2-6x+4}$	265	algebraic	120 ms	45 ms	$< 1 \; \mathrm{ms}$	25 ms
$\frac{2x+1}{x^2+x+1}$	1926284	algebraic	8 min 9 s	19 ms	$< 1 \; \mathrm{ms}$	24 ms
$\frac{1}{x^2-4}$	$pprox 10^{11}$	algebraic	DNF	15 ms	$< 1 \; \mathrm{ms}$	22 ms
$\frac{7x^2 - 3x - 4}{2x^3 + 4x^2 - 6x + 4}$	$\approx 6\cdot 10^{27}$	transcendental	5 ms	38 ms	$< 1 \; \mathrm{ms}$	30 ms

Observation 1: If solutions are not algebraic, a p-curvature is nonzero for a small p.

Observation 2: Random inputs return transcendental.

Timings on random examples

Degree	Height	<i>p</i> -curv	ist	RT+RR	
10	2^{10}	1 ms	12 ms	3 ms	
20	2^{10}	2 ms	24 ms	10 ms	
20	2^{20}	2 ms	25 ms	21 ms	
160	2^{10}	0.4 s	1.8 s	2.4 s	
160	2 ²⁰	0.4 s	1.9 s	4.0 s	

Table: Average computation time of algorithms deciding transcendence of solutions on random rational function inputs of prescribed degree and height.

Timings on random examples

Degree	Height	<i>p</i> -curv	ist	RT+RR	
10	2^{10}	1 ms	12 ms	3 ms	
20	2^{10}	2 ms	24 ms	10 ms	
20	2^{20}	2 ms	25 ms	21 ms	
160	2^{10}	0.4 s	1.8 s	2.4 s	
160	2 ²⁰	0.4 s	1.9 s	4.0 s	

Table: Average computation time of algorithms deciding transcendence of solutions on random rational function inputs of prescribed degree and height.

Takeaway

Proving transcendence is efficient.

Perspectives

Make all proved cases of Grothendieck's p-curvature conjecture effective.

Perspectives

Make all proved cases of Grothendieck's p-curvature conjecture effective.

Thank you for your attention.