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Abstract

Special functions such as polyzetas, multiple harmonic sums and polylogarithms are defined
over Hr := {(s1, . . . , sr) ∈ Nr

≥1, s1 > 1}. Polyzetas values are given by the formula:

ζ(s1, . . . , sr) =
∑

n1>...>nr>0

n−s1
1 . . . n−sr

r , (1)

polylogarithms (denoted (Lis1,...,sr) with sj ≥ 1, r ≥ 1) and multiple harmonic sums (denoted
(Hs1,...,sr) with sj ≥ 1, r ≥ 1). They are defined as follows (with n ∈ N≥1):

Lis1,...,sr(z) =
∑

n1>···>nr>0

n−s1
1 . . . n−sr

r zn1 (2)

and
Hs1,...,sr(n) =

∑
n≥n1>···>nr>0

n−s1
1 . . . n−sr

r . (3)

They are compatible with algebraic structures of quasi-shuffle products, in some different cases
of the parameter q:

u 1Y ∗ = 1Y ∗ u = u, yiu yjv = yi(u yjv) + yj(yiu v) + qyi+j(u v), (4)

where ϵ is the empty word, yi, yj , yi+j are letters of the alphabet Y = {yk}k∈N≥1
, and u, v are

words in the monoid Y ∗.
For a commutative ring A containing the field of rational numbers Q, we examine the set

of noncommutative formal series, denoted by A⟨⟨X ⟩⟩. Within this set, representative series,
that are closed under various products, form a module. This is a central focus of our research.

In this presentation, we will delve into how to factorize and decompose these noncommu-
tative rational series and explore their relevance to theoretical computer science.
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