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Abstract
This work defines multiple divided Bernoulli polynomials by solving a system of difference

equations that generalizes the classical Bernoulli case. These polynomials are required to span
an algebra whose product matches the M basis of QSym. Although not unique, an explicit
and notable solution is constructed using the reflection equation for Bernoulli polynomials.

1 Introduction
The aim of this paper is to define a family of polynomials Bn1,··· ,nr , for r ∈ N, depending on

non-negative integers n1, · · · , nr, generalizing the classical family
(
Bn+1

n+ 1

)
n≥0

. We will call them

divided multiple Bernoulli polynomials and define the associated multiple divided Bernoulli numbers

bn1,··· ,nr , r ∈ N,  as their constant terms, generalizing the divided Bernoulli numbers
(
Bn+1(0)

n+ 1

)
n≥0

.

The Riemann and Hurwitz zeta functions extend to multiple cases, respectively as multiple
zeta values (MZV) and the Hurwitz multiple zeta function, (HMZF) , for s1, · · · , sr ∈ C such that
<(s1+· · ·+sk) > k, k ∈ [[ 1 ; r ]] (See [6] for the MZV; see [1] for the Hurwitz multiple zeta functions):

Zes1,··· ,sr =
∑

0<nr<···<n1

1

n1
s1 · · ·nr

sr
, Hes1,··· ,sr : z 7−→

∑
0<nr<···<n1

1

(n1 + z)s1 · · · (nr + z)sr
. (1)

It is well known that the Riemann zeta function (resp. the Hurwitz zeta function) has a mero-
morphic continuation to C with a unique pole at 1, whose values at negative integers are related
to the divided Bernoulli numbers (resp. the divided Bernoulli polynomials). Similarly, MZVs and
HMZFs also have meromorphic continuations (see e.g., [3], [5]), suggesting that their values at
non-positive integers define respectively multiple divided Bernoulli numbers and polynomials.

2 Required conditions on multiple divided Bernoulli poly-
nomials

On the one hand, Hurwitz multiple zeta functions specialize the monomial quasi-symmetric func-
tions basis M of QSym. Therefore, MZVs and HMZFs multiply accordint to the product of the
M ’s, namely the stuffle product (see [4]).

1



Multiple Divided Bernoulli Polynomials and Numbersr TBA

On the other hand, the Hurwitz multiple zeta functions satisfy a difference equation:

Lemma 1 For all non-negative integers r and all positive integers s1, · · · , sr with s1 ≥ 2, we have:

Hes1,··· ,sr(z − 1)−Hes1,··· ,sr(z) =


1

zsr
if r = 1 .

Hes1,··· ,sr−1(z) · 1

zsr
if r ≥ 2 .

(2)

Reinterpreted at negative integers, this suggests basing the study of multiple divided Bernoulli
polynomials on an analogue of Equation (2) and on multiplication via the stuffle product, i.e.
defining polynomials that satisfy:

Be∅(z) = 1 and Ben(z) =
Bn+1(z)

n+ 1
, where n ≥ 0 ,

Ben1,··· ,nr(z + 1)−Ben1,··· ,nr(z) = Ben1,··· ,nr−1(z)znr , where r ≥ 1 and n1, · · · , nr ≥ 0 ,

the Ben1,··· ,nr multiply by the stuffle product.

(3)

3 Algebraic reformulation of System (3)
Let us consider an infinite (commutative) alphabet of indeterminates X = {X1, X2, X3, · · · }.

To any family of polynomials Ben1,··· ,nr satisfying System (3), we associate a family of exponential
generating functions (BeegY1,··· ,Yr), with r ∈ N and Y1, · · · , Yr ∈ X:

BeegXi1
,··· ,Xir (z) =

∑
n1,··· ,nr≥0

Ben1,··· ,nr(z)
Xn1

i1

n1!
· · ·

Xnr
ir

nr!
, for all r ∈ N∗ , Xi1 , · · · , Xir ∈ X . (4)

Then, extending the commutative alphabet X to

Y = NX− {0} =

{∑
X∈X

λX ·X ; (λX)X∈X ∈ NX has finitely nonzero terms

}
− {0} , (5)

we define the noncommutative series Beeg over an infinite alphabet A = {aY ; Y ∈ Y}, i.e. a
formal mould (see [?]) by:

Beeg(z) = 1 +
∑
r>0

∑
Y1,··· ,Yr∈Y

BeegY1,··· ,Yk(z) aY1 · · · aYr ∈C[z][[Y]]〈〈A〉〉 . (6)

The algebra C[z][[Y]]〈〈A〉〉 turns out to be a Hopf algebra, with its coproduct defined by:

∆ (aY ) = 1⊗ aY +
∑
U,V ∈Y

U+V =Y

aU ⊗ aV + aY ⊗ 1 , where Y ∈ Y . (7)

Therefore, System (3) is equivalent to
B(z + 1) = B(z) · E(z) , where E(z) = 1 +

∑
Y ∈Y

ezY aY ,

B is a group-like element of C[z][[Y]]〈〈A〉〉 ,

〈B(z)|aY 〉 =
ezY

eY − 1
− 1

Y
for all Y ∈ Y .

(8)
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4 A particular solution of Systems (3) and (8)
System (3) admits a unique solution (Ben1,··· ,nr

0 (z)) of polynomials with zero constant term. Us-
ing these polynomials and their associated series Beeg0 ∈ C[z][[Y]]〈〈A〉〉, we fully characterize the
solutions of System (8).
Theorem 1 A family of polynomials (Ben1,··· ,nr) r>0

n1,··· ,nr∈N
is a solution of System (3) if, and only if,

Beeg(z) = X ·Beeg0(z) where X ∈ C[[Y]]〈〈A〉〉 is a group-like element satisfying 〈X |aY 〉 =
1

eY − 1
− 1

Y
for all Y ∈ Y.

From this, we obtain a notable solution, called the multiple divided Bernoulli polynomials:

Definition 1 Define √
sg ∈ C[[Y]]〈〈A〉〉 by √

sg = 1 +
∑
r>0

∑
Y1,··· ,Yr∈Y

(−1)r

22r

(
2r

r

)
aY1 · · · aYr .

Let v be the primitive nonconmmutative series of C[[Y]]〈〈A〉〉 defined by:

〈v|aY1 · · · aYr〉 =
(−1)r−1

r

(
1

eSr − 1
− 1

Sr

+
1

2

)
, where Sr = Y1 + · · ·+ Yr (9)

We call multiple divided Bernoulli polynomials (resp. numbers) the coefficients of the noncom-
mutative series Beeg(z) = exp(v) · √sg · Beeg0(z) (resp. b = exp(v) · √sg).

For a generic series s ∈ C[z][[X]]〈〈A〉〉 defined by s(z) = 1 +
∑
r>0

∑
k1,··· ,kr>0

sXk1
,··· ,Xkr (z) ak1 · · · akr ,

we denote respectively by s(z) and s̃(z) the reverse and retrograde series of s(z):

s(z) = 1 +
∑
r>0

∑
k1,··· ,kr>0

sYr,··· ,Y1(z) aY1 · · · aYr , s̃(z) = 1 +
∑
r>0

∑
k1,··· ,kr>0

s−Y1,··· ,−Yr(z) aY1 · · · aYr .

(10)
Thus, the solution Beeg generalizes the reflection formula of Bernoulli polynomials.
Proposition 1 B̃eeg(1− z) · Beeg(z) = 1 .
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