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In this communication, we focus on operators of the type

Ω =
X

α+β=e+1

cα,β(a+)αa(a+)β ,

the integration of the one-parameter groups eλΩ and their combinatorial byprod-
ucts. In particular we show how these groups can be represented as groups of
substitutions with prefunctions.

1. Introduction

This text is the continuation of a series of works overs the combinatorial
and analytic aspects of normal forms of Boson strings and combination of
these [1,2,3,4,5,11,13,14,15,18,19,20].
Let w ∈ {a, a+}∗ be a word in the letters {a, a+} (i.e. a boson string), and
define (as in Blasiak, Penson and Solomon1,2,3,4) by r, s and e, respectively
|w|a+ (the number of creations), |w|a (the number of annihilations) and
r − s (the excess), then the normal form of wn reads

N (wn) = (a+)ne
( ∞∑

k=0

Sw(n, k)(a+)kak
)

(1)

when e is positive (i.e. there is more creations than annihilations).
In the opposite case (i.e. there is more annihilations than creations) the
normal form of wn is

N (wn) =

( ∞∑

k=0

Sw(n, k)(a+)kak
)

(a)n|e| (2)

in each case, the coefficients Sw are well defined by the corresponding equa-
tion (1 and 2).
Now, for any boson string u one has

N (u) = (a+)|u|a+a|u|a +
∑

|v|<|u|
λvv. (3)

It has been observed [12,20] that the numbers λv are indeed rook numbers.
Let us give, as examples, the upper-left corner of these (doubly infinite)

matrices.

For w = a+a, one gets the usual matrix of Stirling numbers of the
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second kind.



1 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 · · ·
0 1 1 0 0 0 0 · · ·
0 1 3 1 0 0 0 · · ·
0 1 7 6 1 0 0 · · ·
0 1 15 25 10 1 0 · · ·
0 1 31 90 65 15 1 · · ·
...

...
...

...
...

...
...

. . .

(4)

For w = a+aa+, we have



1 0 0 0 0 0 0 · · ·
1 1 0 0 0 0 0 · · ·
2 4 1 0 0 0 0 · · ·
6 18 9 1 0 0 0 · · ·

24 96 72 16 1 0 0 · · ·
120 600 600 200 25 1 0 · · ·
720 4320 5400 2400 450 36 1 · · ·

...
...

...
...

...
...

...
. . .

(5)

For w = a+aaa+a+, one gets



1 0 0 0 0 0 0 0 0 · · ·
2 4 1 0 0 0 0 0 0 · · ·

12 60 54 14 1 0 0 0 0 · · ·
144 1296 2232 1296 306 30 1 0 0 · · ·

2880 40320 109440 105120 45000 9504 1016 52 1 · · ·
...

...
...

...
...

...
...

...
...

. . .

(6)

Remark 1.1. In each case, the matrix Sw has a staircase form and the
“step” depends of the number of a’s in the word w. More precisely, due
to equation (3) one can prove that the ones ending each row are have
(n, nr) as addresses (where r = |w|a). Thus all the matrices are row finite
and unitriangular iff r = 1, which case will be of special interest in the
following. Moreover, the first column is (1, 0, 0 · · · , 0, · · · , 0, · · · ) iff w ends
with an a (this means that N (wn) is free of constant for all n > 0).

In this communication, we focus on bonson strings and more generally
(homogeneous) boson operators involving only one “a”. We will see that
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this case is strongly connected with the one-parameter groups of substitu-
tions and their conjugates.
The structure of the paper is the following.
In section 2 we define the framework for our matrices of transformation
(spaces, topology and decomposition), then we concentrate on the Riordan
subgroup (i.e. transformations which are substitutions with prefunctions)
and adaapt the classical theory (Sheffer condition) to our needs. In section
3 we analyse unipotent transformations (Lie group structure and combina-
torial examples). But the divisibility property of the group of unipotent
transformations tells us that every transformation is embedded in a one-
paramater group. This will be analysed in section 4 from the formal and
analytic points of view. Section 5 is devoted to some concluding remarks
and further interesting possibilities.

2. The algebra L(CN) of sequence transformations

Let CN be the vector space of all complex sequences, endowed with the
Frechet product topology. It is easy to check that the algebra L(CN) of
all continuous operators CN → CN is the space of row-finite matrices
with complex coefficients. Such a matrix M is indexed by N × N and
has the property that, for every fixed row index n, the sequence the se-
quence (M(n, k))k≥0 has finite support. For a sequence A = (an)n≥0, the
transformed sequence B = MA is given by B = (bn)n≥0 with

bn =
∑

k≥0

M(n, k)ak (7)

Remark that the combinatorial coefficients Sw defined above are indeed
row-finite matrices.

To a sequence (an)n∈N can be associated (univariate) series. It’s gen-
erating series, formal or not, with a sequence of prescribed (non-zero) de-
nominators (dn)n∈N is

∑

n≥0

an
zn

dn
. (8)

For example, with dn = 1, we get the ordinary generating functions (OGF),
with dn = n!, we get the exponential generating functions (EGF) and
with dn = (n!)2, the doubly exponential generating functions (DEGF) and
so on. Thus, once the denominators have been choosen, to every (linear
continuous) transformation of generating functions, one can associate it’s
matrix.
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The algebra L(CN) possesses many interesting subalgebras and groups
as the algebra of lower triangular transformations T (N,C), the group of
inversible elements of the latter Tinv(N,C) (which is the set of infinite lower
triangular matrices with non-zero elements on the diagonal), the subgroup
of unipotent transformations UT (N,C) (i.e. the set of infinite lower trian-
gular matrices with elements on the diagonal alla equal to 1) and it’s Lie
algebra NT (N,C), the algebra of locally nilpotent transformations (with
zeroes on the diagonal). One has the inclusions (with Dinv(N,C), the set
of invertible diagonal matrices)

UT (N,C) ⊂ Tinv(N,C) ⊂ T (N,C) ⊂ L(CN)
Dinv(N,C) ⊂ Tinv(N,C) and NT (N,C) ⊂ L(CN). (9)

We can remark that Tinv(N,C) = Dinv(N,C) ./ UT (N,C) because UT
is normalized by Dinv and Tinv = Dinv.UT (every invertible transformation
is the product of it’s diagonal by a unipotent transformation).

We will examine now an important class of transformations of T as well
as their diagonals: the substitutions with prefunctions.

2.1. Substitutions with prefunctions

Let (dn)n≥0 bet a fixed set of denominators. We consider, for a generating
function f , the transformation

Φg,φ[f ](x) = g(x)f(φ(x)) (10)

the matrix of this transformation Mg,φ is given by the transforms of the
monomials xk

dk
hence

∑

n≥0

Mg,φ(n, k)
xn

dn
= Φg,φ

[
xk

dk

]
= g(x)

φ(x)k

dk
(11)

If g, φ 6= 0 (otherwise the transformation is trivial), we can write

g(x) = al
xl

dl
+
∑

r>l

ar
xr

dr
, φ(x) = αm

xm

dm
+
∑
s>m

αs
xs

ds
(12)

with al, αm 6= 0 and then, by (11,12)

Φg,φ

[
xk

dk

]
= al(αm)k

xl+mk

dldkmdk
+

∑

t>l+mk

bt
xt

dt
(13)

one has, then
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Mg,φ is row − finite⇐⇒ φ has no constant term (14)

and, in this case, it is always lower triangular.

The converse is true in the following sense. Let T ∈ L(CN) be a matrix
with non-zero two first columns and suppose that the first index n such
that T (n, k) 6= 0 is less for k = 0 than k = 1 (which is, from (11) the case
when T = Mg,φ). Set

g(x) := d0

∑

n≥0

T (n, 0)
xn

dn
; φ(x) :=

d1

g(x)

∑

n≥0

T (n, 1)
xn

dn
(15)

then T = Mg,φ iff
∑

n≥0

T (n, k)
xn

dn
= g(x)

φ(x)k

dk
. (16)

Remark 2.1. Eq. (11) is called Sheffer condition (see [16,19,21,23]) and, for
EGF (dn = n!) it amounts to state

∑

n,k≥0

T (n, k)
xn

n!
yk = g(x)eyφ(x) (17)

From now on, we will suppose that φ has no constant term (α0 = 0).
Moreover Mg,φ ∈ Tinv if and only if f a0, α1 6= 0 and then the diagonal term

with address (n, n) is a0
d0

(
α1
d1

)n
. We get

Mg,φ ∈ UT ⇐⇒ a0

d0
=
α1

d1
= 1 (18)

In particular for the EGF and the OGF, we have the condition that

g(x) = 1 + higher terms and φ(x) = x+ higher terms (19)

Note 2.1. In classical combinatorics (and then for OGF and EGF), the
matrices Mg,φ(n, k) are known under the name of Riordan matrices (see
[16,17] for example).

3. Unipotent transformations

3.1. Lie group structure

We first remark that n× n truncations (i.e. the fact of taking the [0..n]×
[0..n] submatrix of a matrix) are algebra morphisms

τn : T (N,C)→M([0..n]× [0..n],C) (20)
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we can endow T (N,C) with the Frechet topology given by these morphisms.
We will not develop this point in details here, but this topology is metrisable
and given by the following convergence criterium :

a sequence (Mk) of matrices in T (N,C) converges iff
for all fixed n ∈ N

the sequence of truncated matrices (τn(Mk)) converges.

This topology is compatible with the structure of C-algebra of T (N,C).

The two maps exp : NT (N,C) → UT (N,C) and log : UT (N,C) →
NT (N,C) are continous and mutually inverse.

3.2. Examples

3.2.1. Provided by the exponential formula

The “classical exponential formula” [7,?,21] says us that, for a class a of
finite labelled graphs C, denoting Cc, the subclass of connected graphs in
C, the exponential generating series of C,we have

EGF (C) = eEGF (Cc). (21)

The following examples gives us a taste of why combinatorial matrices of
the type:

T (n, k) = Number of grahs of C on n vertices having k connected components

give us substitution transformations.

Example 3.1. Stirling numbers.
We here use the class of graphs of equivalence relations. Then using the
statistics x(number of points)y(number of connected components) we get

∑

n,k≥0

S(n, k)
xn

n!
yk =

∑

all equivalence graphs Γ

x(number of points of Γ)

(number of points of Γ)!
y(number of connected components of Γ) =

exp

( ∑

Γ connected

x(number of vertices of Γ)

(number of points of Γ)!
y(number of connected components of Γ)

)
=

aClosed under relabelling (of the vertices), disjoint union, and taking connected compo-
nents.
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exp


∑

n≥1

y
xn

n!


 = ey(ex−1) (22)

we will see that the transformation associated with the matrix S(n, k)
is
f → f(ex − 1).

Example 3.2. Idempotent numbers.
We consider the graphs of endofunctionsb. Then, using the statis-
tics x(number of points of the set)y(number of connected components of the graph) and
denoting I(n, k) the number of endofunctions of a given set with n ele-
ments having k connected components, we get

∑

n,k≥0

I(n, k)
xn

n!
yk =

∑

all graphs of endofunctions Γ

x(number of vertices of Γ)

(number of vertices of Γ)!
y(number of connected components of Γ) =

exp

( ∑

Γ connected

x(number of vertices of Γ)

(number of vertices of Γ)!
y(number of connected components of Γ)

)
=

exp


∑

n≥1

y
nxn

n!


 = eyxe

x

(23)

for these numbers, we get the (doubly) infinite matrix




1 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 · · ·
0 2 1 0 0 0 0 · · ·
0 3 6 1 0 0 0 · · ·
0 4 24 12 1 0 0 · · ·
0 5 80 90 20 1 0 · · ·
0 6 240 540 240 30 1 · · ·
...

...
...

...
...

...
...

. . .

(24)

we will see that the transformation associated with this matrix is f →
f(xex)

bFunctions from a finite set into itself.
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3.2.2. Provided by normal ordering powers of boson strings

To get unipotent matrices, one has to consider boson strings with only one
annihilation operator. In the introduction, we have given examples with
a+a, a+aa+ (the matrix of the third string, with two derivations, a+aaa+a+

is not unipotent). Such a string then reads w = (a+)r−pa(a+)p and we will
see in a moment that

• if p = 0, Sw(n, k) is the matrix of a unipotent substitution
• if p > 0, Sw(n, k) is the matrix of a unipotent substitution with

prefunction

To cope with the matrices coming from the normal ordering of powers
of boson strings we have to do a small excursion to analysis and formal
groups.

4. One-parameter subgroups of UT (N,C)

4.1. Exponential of elements of NT (N,C)

Let M = I +N ∈ UT (N,C) (I = IN is the indentity matrix). One has

M t =
∑

k≥0

(
t

k

)
Nk (25)

where
(
t

k

)
is the generalized binomial coefficient defined by

(
t

k

)
=
t(t− 1) · · · (t− k + 1)

k!
(26)

one can see that, for k ≤ n, due to the local nilpotency of N , the ma-
trix coefficient M t(n, k) is well defined and, in fact, a polynomial of degree
n − k in t (for k > n, this coefficient is 0). We have the additive property
M t1+t2 = M t1M t2 and the correspondence t → M t is continuous. Con-
versely, let t → Mt is a continous local one-parameter group in UT (N,C)
that is, for some real ε > 0

|t1| and |t2| < ε =⇒Mt1Mt2 = Mt1+t2 (27)

then there exists a unique matrix H ∈ NT (N,C) such that Mt =
exp(tH) (one can prove it using the projections τn and the theorem about
continous one-parameter groups in Lie groups, see [10], for example).
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In case Mt = M t is defined by formula (25) we have
H = log(I +N) =

∑
k≥1

(−1)k−1

k Nk.

The mapping t→M t will be called a one parameter group of UT (N,C).

Proposition 4.1. Let M be the matrix of a substitution with prefunction,
so is M t for all t ∈ C.

The proof will be detailed in a forthcoming paper and uses the fact
that “to be the matrix of a substitution with prefunction” is a property of
polynomial type. But, using composition, it is straightforward that M t is
the matrix of a substitution with prefunction for all t ∈ N. Thus, using a
“Zariski-type” argument, we get the fact that the property is true for all
t ∈ C.

4.2. Link with local Lie groups : Straightening vector fields

on the line

Let us treat first the case of p = 0. The string (a+)ra corrresponds, in
the Bargmann-Fock representation, to the vector field xr ddx defined on the
whole line.
Now, we can try (at least locally) to straighten this vector field by a dif-
feomorphism u to get the constant vector field (this procedure has been
introduced by G. Goldin in the context of algebras of currents [8]). As
the one-parameter group generated by a constant field is the shift, the one-
parameter (local) group of transformations should read, on a suited domain

Uλ[f ](x) = f
(
u−1 (u(x) + λ)

)
(28)

Now, we know from section (4.1) that, if two one-parameter groups have the
same tangent vector at the origin, then they coincide (tangent paradigm).
Direct computation gives this tangent vector :

d

dλ

∣∣∣∣
λ=0

f
(
u−1 (u(x) + λ)

)
=

1
u′(x)

f ′(x) (29)

so the local one-parameter group Uλ has 1
u′(x)

d
dx as tangent vector field.

Here, we have to solve 1
u′(x) = xr in order to get the diffeomorphism u.

In the case r 6= 1, we have (with D =]0,+∞[ as domain

u(x) =
x1−r

1− r = y; u−1(y) = ((1− r)y)
1

1−r (30)
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and

eλx
r d
dx [f ](x) = f

(
x

(1− λ(r − 1)xr−1)
1
r−1

)
(31)

The substitution factor sλ(x) = x

(1−λ(r−1)xr−1)
1
r−1

has been already

obtained by other means in [1]. The computation is similar for the case
when r = 1 and, for this case, we get

eλx
d
dx [f ](x) = f

(
eλx
)

(32)

with sλ(x) = eλx as substitution factor.
The first examples are summarized in the following table

r = sλ(x) = Name
0 x+ λ Shift
1 eλx Dilation
2 x

1−λx Homography
3 x√

1−2λx2 -

Comment 4.1. If one uses classical analysis (i.e. convergent Taylor series),
one must be careful about the domain where the substitutions are defined
and the one-parameter groups are defined only locally.
On each of these examples, one can check by hand that, for suitable (and
small) values of λ, µ, one has sλ(sµ(x)) = sλ+µ(x) (one-parameter group
property).
It is possible to get rid of the discussion over the domains by considering
λ, µ as new variables and applying the “substitution principle” saying that
it is possible to substitute a series without constant term in a series (in the
algebra C[[x, λ, µ]]).

Using the same method, one can start wiith more complicated operators.
Examples and substitution factors are given below
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Operator Substitution Factor Description

(
1 + (a+)2

)
a sλ(x) =

xcos(λ) + sin(λ)
cos(λ)− xsin(λ)

One-parameter group

of homographies

√
1 + (a+)2

a+
sλ(x) =

√
x2 + 2λ

√
1 + x2 + λ2 Composition of quadratic

direct and inverse functions

4.3. Case p > 0: another conjugacy trick and a shocking

formula

Now, seing vector fields as infinitesimal generators of one-parameter groups,
leads to conjugacy as, if Uλ is a one-parameter group of transforma-
tion, so is V UλV −1 (V being a continous invertible operator). The case
(a+)r−pa(a+)p; p > 0 belongs to this setting as (a+)−p

(
(a+)ra

)
(a+)p.

More generally, supposing all the terms defined, with

Ω = u1(x)
d

dx
u2(x) =

1
u2(x)

(
u1(x)u2(x)

d

dx

)
u2(x)

one has

eλΩ =
1

u2(x)

(
eλu1(x)u2(x) ddx

)
u2(x) (33)

This shocking formula (33) may be understood as an operator equality.
Now, the tangent paradigm (see section 4.2) tels us that, if we adjust this
tangent vector to coincide with xr−p d

dxx
p (recall that the original problem

was the integration of the operator Ω = (a+)r−pa(a+)p; p > 0), then we
get the right one-parameter group. Using this “conjugacy trick” we get

eλΩ[f ](x) =
(
sλ(x)
x

)
f(sλ(x)) with sλ(x) =

x

(1− λ(r − 1)xr−1)
1
r−1

(34)

Remark 4.1. (i) It can be checked that, if sλ(x) is a substitution factor
(i.e. at least locally sλ(sµ(x)) = sλ+µ(x)) such that sλ(0) = 0 for evary
λ (which is the case in most of our examples) then the transformations
defined by Uλ[f ](x) =

(
sλ(x)
x

)
f(sλ(x)) form a one-parameter (possibly

local) group.
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(ii) It is also possible to use the “ad” operator (Lie adjoint) instead of “Ad”
(conjugacy) to obtain integration formulas (see Dattoli 6).

4.4. Characteristic series ↔ one parameter group

correspondence

In fact, what precedes allows us to extend integration process to linear
combination of boson strings in the following sense. The algebra W1,∞
generated by a+, (a+)−1, a is graded by

weight(a+) = 1, weight
(
(a+)−1

)
= weight(a) = −1 (35)

and every homogeneous operator of this algebra which is of the form

Ω =
∑

|w|a=1, weight(w)=e

αww (36)

(there is only one derivative in each monomial) can be integrated in the
preceding manner. So one would like to reconstruct the characteristic series

∑

n,k

SΩ(n, k)
xn

n!
yk (37)

from the knowledge of the one-parameter subgroup eλΩ.
This is the aim of the following paragraph.

For every homogeneous operator as above with e ≥ 0, one defines the
coefficients SΩ(n, k) as in the introduction of this text by

N (Ωn) = (a+)ne
∞∑

k=0

SΩ(n, k)(a+)kak (38)

One has the following proposition

Proposition 4.2. With the preceding denotations, the following conditions
are equivalent:

∑

n,k≥0

SΩ(n, k)
xn

n!
yk = g(x)eyφ(x) (39)

Uλ[f ](x) = g(λxe)f (x (1 + φ(λxe))) (40)

Which solves the problem.
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5. Conclusion and remaining problems

We have considered a class of elements of W1,∞ (see section 4.4 for a def-
inition) which describe some rational vector fields on the line. For these
operators, we have established a correspondence

One-parameter group (=integration of the field) ↔
Characteristic series (=coefficients of the normal ordering)

We have then seen families of combinatorial matrices giving rise through
the exponential formula, to substitutions.
Remains to study the vector fields associated with these combinatorial ma-
trices. Also one would desire to adapt this machinery to other algebras
(quons, several Bosons).

Acknowledgments

We thank Daniel Barsky, Christophe Tollu, Fréderic Toumazet and Jean-
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