1) Endofunctions by number of cycles. -

For $f: F \rightarrow F$, we define $f^{n}=\underbrace{f \circ f \circ \cdots \circ f}_{n \text { factors }}$. Let p be a prime and set

$$
\begin{equation*}
\mathcal{J}_{p}(n)=\#\left\{f:[[n]] \rightarrow[[n]] \text { s.t. } f^{1+p}=f\right\} \tag{1}
\end{equation*}
$$

where $[[n]]:=[1 . . n]$. One has the following characterization $f^{1+p}=f$ iff every connected component of the graph has

- a 1- or a p-cycle
- for all $x, f(x)$ is in the cycle
then the EGF for connected components with a 1-cycle is

$$
\begin{equation*}
\sum_{n \geq 1} \frac{n t^{n}}{n!}=t e^{t} \tag{2}
\end{equation*}
$$

the EGF for connected components with a p-cycle is

$$
\begin{equation*}
\sum_{n \geq p}\binom{n}{p}(p-1)!p^{(n-p)} \frac{t^{n}}{n!} t^{n}=\frac{t^{p}}{p} e^{p t} \tag{3}
\end{equation*}
$$

Hence, having analyzed the connected components, one gets, with the exponential formula,

$$
\begin{equation*}
\sum_{n \geq 0} \mathcal{J}_{p}(n) \frac{t^{n}}{n!}=e^{t e^{t}+\frac{t^{p}}{p} e^{p t}} \tag{4}
\end{equation*}
$$

If, one wants to count these endofonctions more finely, we can get the EGF again with the exponential formula. with

$$
\begin{equation*}
\sum_{n \geq 1} \frac{x n t^{n}}{n!}=x t e^{t} \tag{5}
\end{equation*}
$$

instead of (2) and

$$
\begin{equation*}
\sum_{n \geq p} y\binom{n}{p}(p-1)!p^{(n-p)} \frac{t^{n}}{n!} t^{n}=y \frac{t^{p}}{p} e^{p t} \tag{6}
\end{equation*}
$$

instead of (3), we get

$$
\begin{equation*}
\sum_{n \geq 0} \alpha_{k, l}^{(n)} x^{k} y^{l} \frac{t^{n}}{n!}=\sum_{n \geq 0} H_{n}^{(p)}(x, y) \frac{t^{n}}{n!}=e^{x t e^{t}+y \frac{t^{p}}{p} e^{p t}} \tag{7}
\end{equation*}
$$

2) Élémentary computation of the $\alpha_{k, l}^{(n)}$. -

By elementary counting, we get

$$
\begin{equation*}
\alpha_{k, l}^{(n)}=\binom{n}{k}\binom{n-k}{p l} \frac{(p l)!}{p^{l} l!}(k+p l)^{n-k-p l} \tag{8}
\end{equation*}
$$

and, from (7)

$$
\begin{equation*}
H_{n}^{(p)}(x, y)=\sum_{k+3 l \leq n} \alpha_{k, l}^{(n)} x^{k} y^{l} \tag{9}
\end{equation*}
$$

if we glue the two types of cycles, one gets the numbers $\mathcal{J}_{p}(n, k)$ which is the number of such endofunctions with k cycles. These numbers fill a lower triangular matrix ($\mathcal{J}_{p}(n, k)=0$ for $k>n$). We have

$$
\begin{equation*}
\sum_{n \geq 0} \mathcal{J}_{p} n, k^{(n)} x^{k} \frac{t^{n}}{n!}=e^{x\left(t e^{t}+\frac{t^{p}}{p} e^{p t}\right)} \tag{10}
\end{equation*}
$$

and this proves that we are in presence of a substitution matrix.

