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Normal ordering and generalized combinatorial numbers versus Lie
groups
Résuḿe

We consider the normal ordering problem of powers of strings of boson creation (a+)
and annihilation (a) operators satisfying[a,a+] = 1, which (?? correspond to unipotent
trranssformations). These strings are monomials in the form(a+)r−pa(a+)p. We give the
solution of the normal ordering problem for every set of parameters{r,p}, r ≥ p. In par-
ticular it can be expressed through the sets of generalized Stirling numbers of the second
kind and generalized Bell numbers for which we give exact expressions, generating func-
tions as well as combinatorial interpretations.
We demonstrate that the above is equivalent to a problem of an action of exponentials of
certain differential operators on Taylor expandable functions. We formulate conditions that
such an action be a substitution of variables. In the general case these operators form a
group which, in turn, is equivalent to a Frechet Lie group structure of infinite dimension.
We show that, such a formalism can be expressed in terms of so called Sheffer-type po-
lynomials, thereby establishing a link between quantum statistics, combinatorics and Lie
groups of infinite dimension. Many concrete and detailed examples of such structures are
explicitly worked out in detail. In particular, we show that the one-parameter subgroups
induced by these operators are conjugate of groups of homographic substitutions which are
here explicitely given.

1 Introduction

2 .../...

3 First order boson strings as differential operators

3.0.1 General definitions

In this section, we deal with theword Stirling numbers. In the followinga+,a are the generators
of the Heisenberg-Weyl algebra i.e.[a,a+] = 1.

|w|u = r; |w|d = s; r − s = e; then,

if e ≥ 0, one has N (wn) = une
ns∑

k=0

Sw(n,k)ukdk

if e < 0, one has

N (wn) = (
nr∑

k=0

Sw(n,k)ukdk)d−ne (1)

Definition 3.1 For any wordw ∈ {a+,a}∗ with |w|a+ = r ≥ |w|a = s, denotinge = r− s, one
has

N (wn) = (a+)ne
∞∑

k=0

Sw(n,k)(a+)kak (2)

Remark that, due to the reordering relationaa+ = a+a + 1, the sum above is finite. In fact, the
“last” coefficient isSw(n,ns) = 1 andSw(n,k) = 0 for k > ns. Then, the numberSw form a
unipotent matrix iffs = 1. This case is very rich and will be treated below.
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3.1 The numbersS(a+)r−pa(a+)p(n,k)

Proposition 3.2 Letwp = (a+)r−pa(a+)p then

Swp(n,k) =
p∑

l=0

(
p
l

)
(k + 1)lSr1(n,k + l) (3)

Proof — The formula is of course true forp = 0. We first remark thata+wn
p+1 = wn

p a+, then,
supposingn > 0, one has on the one hand

a+(a+)ne
∞∑

k=0

Swp+1(n,k)(a+)kak = N (a+wn
p+1) = N (wn

p a+) = (a+)ne
∞∑

k=0

Swp(n,k)(a+)kaka+ =

(a+)ne
∞∑

k=1

Swp(n,k)(a+)k(aka+) = (a+)ne
∞∑

k=1

Swp(n,k)(a+)k(a+ak + kak−1) =

(a+)(a+)ne

( ∞∑

k=1

Swp(n,k)(a+)kak +
∞∑

k=1

Swp(n,k)(k)(a+)k−1ak−1

)
=

(a+)(a+)ne

( ∞∑

k=1

Swp(n,k)(a+)kak +
∞∑

k=0

Swp(n,k + 1)(k + 1)(a+)kak)

)
=

(a+)(a+)ne




∞∑

k=0

Swp(n,k) + Swp(n,k + 1)(k + 1)︸ ︷︷ ︸
F (n,k)


 (a+)kak) = A (4)

Let us compute separately the factorF (n,k), then, by induction hypothesis,

F (n,k) =
p∑

l=0

(
p
l

)
(k + 1)lSr1(n,k + l) + (k + 1)

p∑

l=0

(
p
l

)
(k + 2)lSr1(n,k + l + 1) =

p∑

l=0

(
p
l

)
(k + 1)lSr1(n,k + l) +

p∑

l=0

(
p
l

)
(k + 1)l+1Sr1(n,k + l + 1) =

Sr1(n,k) +
p∑

l=1

(
p
l

)
(k + 1)lSr1(n,k + l) +

p∑

l=0

(
p
l

)
(k + 1)l+1Sr1(n,k + l + 1) =

Sr1(n,k) +
p−1∑

l=0

(
p

l + 1

)
(k + 1)l+1Sr1(n,k + l + 1) +

p∑

l=0

(
p
l

)
(k + 1)l+1Sr1(n,k + l + 1) =

Sr1(n,k) +
( p−1∑

l=0

(
p + 1
l + 1

)
(k + 1)l+1Sr1(n,k + l + 1)

)
+ (k + 1)p+1Sr1(n,k + p + 1) =

p+1∑

l=0

(
p + 1

l

)
(k + 1)lSr1(n,k + l) (5)

Hence

A = (a+)(a+)ne




∞∑

k=0

p+1∑

l=0

(
p + 1

l

)
(k + 1)lSr1(n,k + l)


 (a+)kak) (6)

which proves the equality (3).

The characteristic series of the numbersSwp(n,k) is then given by

∑

n,k≥0

Swp(n,k)
xn

n!
yk =

∑

n,k≥0

( p∑

l=0

(
p
l

)
(k + 1)lSr1(n,k + l)

)xn

n!
yk =

2



p∑

l=0

∑

k≥0

( (
p
l

)
(k + 1)lyk

) ∑

n≥0

Sr1(n,k + l)
xn

n!
=

p∑

l=0

∑

k≥0

( (
p
l

)
(k + 1)lyk

)
φ(x)k+l

(k + l)!
(7)

where

φ(x) =
∑

n≥0

Sr1(n,1)
xn

n!
=

(
y(e

−log(1−(r−1)x)
r−1 − 1)

) ∣∣∣
y=1

=




(
1

1− (r − 1)x

) 1
r−1

− 1


 (8)

Thus
∑

n,k≥0

Swp(n,k)
xn

n!
yk =

p∑

l=0

(
p
l

)
∂l

∂yl

∑

k≥0

(
yk+l φ(x)k+l

(k + l)!

)
=

p∑

l=0

(
p
l

)
∂l

∂yl

∑

m≥l

(
ym φ(x)m

(m)!

)
=

p∑

l=0

(
p
l

)
∂l

∂yl

∑

m≥0

(
ym φ(x)m

(m)!

)
=

p∑

l=0

(
p
l

)
∂l

∂yl
eyφ(x) = (1 +

∂

∂y
)peyφ(x) = (1 + φ(x))peyφ(x) (9)

Note 3.3 The same proof as above for (3) shows that

Sw(a+)p(n,k) =
p∑

l=0

(
p
l

)
(k + 1)lS(a+)pw(n,k + l) (10)

3.2 The strings(a+)r−pa(a+)p as infinitesimal operators

We here consider the string(a+)r−pa(a+)p in the representationa+ → x, a → d
dx

acting on
analytic functions. The one-parameter transformation group is then defined by

Uλ(f) = eλ((a+)r−pa(a+)p)[f ] =
∞∑

k=0

λn

n!
(a+)r−pa(a+)p[f ] (11)

whereUλ is a one parameter group of some fonction space. One has

Uλ(f) =
∞∑

n=0

λn

n!
(a+)r−pa(a+)p[f ] =

∞∑

n=0

λn

n!
(a+)n(r−1)

∑

k≥0

Sw(n,k)(a+)kak[f ] =

∑

k≥0

( ∞∑

n=0

λnxn(r−1)

n!
Sw(n,k)

)
xk dk

dxk
[f ] =

∑

k≥0

(
1 + φ(λxr−1)

)p φ(λxr−1)k

k!
xk dk

dxk
[f ] (12)

as
∑

n,k≥0

Sw(n,k)
Xn

n!
Y k = (1 + φ(x))p eY φ(X) = (1 + φ(x))p

∑

k≥0

φ(X)k

k!
Y k (13)

and then, iff =
∑

m≥0 cm
xm

m!
one has

Uλ[f ] =
(
1 + φ(λxr−1)

)p ∑

k≥0

∑

m≥k

φ(λxr−1)kxk

k!
cm

xm−k

(m− k)!
=

(
1 + φ(λxr−1)

)p ∑

k≥0

∑

m≥k

cmxm

m!

(
m
k

)
φ(λxr−1)k =

(
1 + φ(λxr−1)

)p ∑

m≥0

∑

k≥0

cmxm

m!

(
m
k

)
φ(λxr−1)k =

(
1 + φ(λxr−1)

)p ∑

m≥0

cmxm

m!

∑

0≤k≤m

(
m
k

)
φ(λxr−1)k =

(
1 + φ(λxr−1)

)p ∑

m≥0

cmxm

m!

(
1 + φ(λxr−1)

)m
=

(
1 + φ(λxr−1)

)p
f

[
x

(
1 + φ(λxr−1)

)]
(14)
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3.3 One parameter groups

3.3.1 Groups of substitutions

Considering an operatorΩ on the sequences, the one-parameter group corresponding toΩ is,
generally speaking,{eλΩ}. It may be full (i.e. defined for everyλ ∈ R) or local λ ∈] − ε,ε[.
It always fulfills an additive rule, i.e., when it has sense, the relationgλ ? gµ = gλ+µ, where
? is some law (in the following, composition or pointwise multiplication). The simplest one-
parameter group one can imagine is theshift i.e. the transformation

f(x) → f(x + λ)

On can congugate this group by an invertible (at least locally) variable changex → u(x) with
inverseu−1 (this means that, on appropriate domainsu(u−1(y)) = y andu−1(u(x)) = x). Thus,
we get

f(x) → f(u−1(u(x) + λ)) (15)

One can prove that, if two differentiable one-parameter groups have the same initial derivative,
then they coincide. Unsing the chain rule, one gets the initial derivative of the group (15) which
reads

d

dλ

(
f(u−1(u(x) + λ))

)∣∣∣
λ=0

=
d

dx
(f)(u−1(u(x) + λ))× d

dx
(u−1)(u(x) + λ)

∣∣∣
λ=0

=

d

dx
(f)(x)× d

dx
(u−1)(u(x)) =

1
d
dx

(u)(x)
× d

dx
(f)(x) (16)

For example, with the vector fields on the half line of typexα d
dx

, the method consists in resolving
the equation

d

dx
(u)(x) = x−α (17)

in the case (α 6= 1) one getsu(x) = x1−α

1−α
. The inverse ofu is u−1(y) = ((1− α)y)

1
1−α and the

one-parameter group (a substitution group) is given by

f(u−1(u(x) + λ)) = f

((
(1− α)(

x1−α

1− α
+ λ)

) 1
1−α

)
= f

(
x

(
(1 + (1− α)λxα−1)

) 1
1−α

)
(18)

which reproves the result of
??pr éc édent avec r.
For the caseα = 1, an analog computation proves that the one parameter group is a group of
dilatationsf(x) → f(eλx).
With the field(1 + x2) d

dx
one getsu = arctan; u−1 = tan the one-parameter group is then

sλ(x) = u−1(u(x) + λ) = tan(arctan(x) + λ) =
tan(arctan(x)) + tan(λ)

1− tan(arctan(x))tan(λ)
=

x + tan(λ)

1− xtan(λ)
=

xcos(λ) + sin(λ)

cos(λ)− xsin(λ)
(19)

all the preceding results can be found in [?].
With (1− x2) d

dx
, one has

u(x) = arctanh(x) = ln(

√
1 + x

1− x
); u−1(x) = tanh(x);
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sλ(x) = tanh(arctanh(x) + λ) =
xcosh(λ) + sinh(λ)

cosh(λ) + xsinh(λ)
(20)

With
√

(1+x2)

x
d
dx

, one gets

u(x) =
√

1 + x2; u−1(x) =
√

x2 − 1;

sλ(x) =
√

x2 + 2λ
√

1 + x2 + λ2 (21)

3.3.2 Conjugates of one-parameter groups of substitutions and prefunctions

Let A be a continuous invertible operator over a certain function space (typically, in the fol-
lowing A will be the multiplication by a non-vanishing function. Then, one hasA−1eλΩA =
eλA−1ΩA (which can be proved using the fact that, if two differentiable one-parameter groups
have the same initial derivatives then they coincide). Using this fact, we can act with two fonc-
tionnal parameters instead of one, then

e
λ(h2

h′1
h1

+h2
d

dx
)
= e

λ
h2
h1

(h′1+h1
d

dx
)
= e

λ
h2
h1

( d
dx

h1)
= e

λ( 1
h1

(h2
d

dx
)h1)

=
1

h1

eλ(h2
d

dx
)h1 (22)

For example, we can treat the case(a+)r−pa(a+)p remarking thatΩ = xr−p d
dx

xp = x−p(xr d
dx

)xp.
Then

eλΩ = x−peλxr d
dx xp (23)

and denotingsλ(x) = x
(
(1 + (1 − r)λxr−1)

) 1
1−r , the one-parameter substitutionnal group

corresponding to the vector fieldxr d
dx

, the transform of a functionf reads

x−pf(sλ(x))(sλ(x))p =

(
sλ(x)

x

)p

f(sλ(x)) (24)

Remark 3.4 Usingh1,h2 as above, one can also treat by conjugacy the example of the diffe-
rential operator of (Dattoli)Ω = (q(x) d

dx
+ v(x)) with q = h2; v = q

h′1
h1

.
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