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Laboratoire d’Informatique Fondamentale et Appliquée de Rouen
76821 Mont-Saint Aignan, France

E-mail:
blasiak@lptl.jussieu.fr, gduchamp2@free.fr, andrzej.horzela@ifj.edu.pl,
penson@lptl.jussieu.fr, a.i.solomon@open.ac.uk

(10.01.04 09:24)

Abstract.



One-parameter groups and combinatorial physics 2

à rajouter : Riordan matrices, divisibility property

1. Introduction

...\...
In the preceding articles the cases (a+)ras were studied....

2. Bonson string matrices

Let w ∈ {a, a+}∗ be a word in the letters {a, a+}, and define e = |w|a+ − |w|a (the

excess), then the normal form of wn reads

NF(wn) = (a+)ne

( ∞∑

k=0

Sw(n, k)(a+)kak

)
(1)

when e is positive (i.e. there is more creations than annihilations).

In the opposite case (i.e. there is more annihilations than creations) the normal form of

wn is

NF(wn) =

( ∞∑

k=0

Sw(n, k)(a+)kak

)
(a)n|e| (2)

in each case, the coefficients Sw are well defined by the corresponding equation (1 and

2).

Now, for any boson string u one has

NF(u) = (a+)|u|a+a|u|a +
∑

|v|<|u|
λvv. (3)

It has been observed [12] that the numbers λv are indeed rook numbers.

Let us give, as examples, the upper-left corner of these (doubly infinite) matrices.

For w = a+a, one gets the usual matrix of Stirling numbers of the second kind.



1 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 · · ·
0 1 1 0 0 0 0 · · ·
0 1 3 1 0 0 0 · · ·
0 1 7 6 1 0 0 · · ·
0 1 15 25 10 1 0 · · ·
0 1 31 90 65 15 1 · · ·
...

...
...

...
...

...
...

. . .

(4)
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For w = a+aa+, we have


1 0 0 0 0 0 0 · · ·
1 1 0 0 0 0 0 · · ·
2 4 1 0 0 0 0 · · ·
6 18 9 1 0 0 0 · · ·

24 96 72 16 1 0 0 · · ·
120 600 600 200 25 1 0 · · ·
720 4320 5400 2400 450 36 1 · · ·

...
...

...
...

...
...

...
. . .

(5)

For w = a+aaa+a+, one gets


1 0 0 0 0 0 0 0 0 · · ·
2 4 1 0 0 0 0 0 0 · · ·

12 60 54 14 1 0 0 0 0 · · ·
144 1296 2232 1296 306 30 1 0 0 · · ·

2880 40320 109440 105120 45000 9504 1016 52 1 · · ·
...

...
...

...
...

...
...

...
...

. . .

(6)

Remark that, in each case, the matrix Sw has a staircase form and the “step”

depends of the number of a’s in the word w. More precisely, due to equation (3) one

can prove that the ones ending each row are have (n, nr) as addresses (where r = |w|a).
Thus all the matrices are row finite and unitriangular iff r = 1, which case will be of

special interest in the following. Moreover, the first column is (1, 0, 0 · · · , 0, · · · , 0, · · ·)
iff w ends with an a (this means that NF(wn) is free of constant for all n > 0).

3. The algebra L(CN) and sequence transformations

Let CN be the vector space of all complex sequences, endowed with the Frechet product

topology. It is easy to check that the algebra L(CN) of all continuous operators

CN → CN is the space of row-finite matrices with complex coefficients. Such a matrix

M is indexed by N × N and has the property that, for every fixed row index n, the

sequence the sequence (M(n, k))k≥0 has finite support. For a sequence A = (an)n≥0, the

transformed sequence B = MA is given by B = (bn)n≥0 with

bn =
∑

k≥0

M(n, k)ak (7)

The combinatorial coefficients Sw defined above are indeed row-finite matrices.

To a sequence (an)n∈N can be associated (univariate) series. It’s generating series,

formal or not, with a sequence of prescribed denominators (dn)n∈N is
∑
n≥0

an
zn

dn

. (8)

For example, with dn = 1, we get the ordinary generating functions (OGF), with dn = n!,

we get the exponential generating functions (EGF) and with dn = (n!)2, the doubly
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exponential generating functions (DEGF) and so on. Thus, once the denominators have

been choosen, to every (linear continuous) transformation of generating functions, one

can associate it’s matrix.

The algebra L(CN) possesses many interesting subalgebras and groups as the

algebra of lower triangular transformations T (N,C), the group of inversible elements of

the latter Tinv(N,C) (which is the set of infinite lower triangular matrices with non-zero

elements on the diagonal), the subgroup of unipotent transformations UT (N,C) (i.e.

the set of infinite lower triangular matrices with elements on the diagonal alla equal

to 1) and it’s Lie algebra NT (N,C), the algebra of locally nilpotent transformations

(with zeroes on the diagonal). One has the inclusions (with D(N,C), the set of diagonal

matrices).

UT (N,C) ⊂ Tinv(N,C) ⊂ T (N,C) ⊂ L(CN)

D(N,C) ⊂ T (N,C) and NT (N,C) ⊂ L(CN) (9)

We can remark that Tinv(N,C) = D(N,C) ./ UT (N,C) because UT is normalized

by D and Tinv = D.UT (every invertible transformation is the product of it’s diagonal

by a unipotent trasformation).

We will examine now an important class of transformations of T as well as it’s

diagonal : the substitutions with prefunctions.

3.1. Substitutions with prefunctions

Let (dn)n≥0 bet a fixed set of denominators. We consider, for a generating function f ,

the transformation

Φg,φ[f ](x) = g(x)f(φ(x)) (10)

the matrix of this transformation Mg,φ is given by the transforms of the monomials xk

dk

hence
∑
n≥0

Mg,φ(n, k)
xn

dn

= Φg,φ

[
xk

dk

]
= g(x)

(φ(x))k

dk

(11)

if g, φ 6= 0 (otherwise the trasformation is trivial), we can write

g(x) = al
xl

dl

+
∑

r>l

ar
xr

dr

, φ(x) = αm
xm

dm

+
∑
s>m

αs
xs

ds

(12)

with al, αm 6= 0 and then, by (11)

Φg,φ

[
xk

dk

]
= al(αm)k xl+mk

dldk
mdk

+
∑

t>l+mk

bt
xt

dt

(13)

one has

Mg,φ is row − finite ⇐⇒ φ has no constant term (14)

and, in this case, it is always lower triangular. From now on, we will suppose that φ has

non constant term (α0 = 0).
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Moreover Mg,φ ∈ Tinv iff a0, α1 6= 0 and then the diagonal term with address (n, n) is
a0

d0

(
α1

d1

)n

. We get

Mg,φ ∈ UT ⇐⇒ a0

d0

=
α1

d1

= 1 (15)

In particular for the EGF and the OGF, we have the condition that

g(x) = 1 + higher terms and φ(x) = x + higher terms (16)

4. Unipotent transformations

4.1. Lie group structure

We first remark that n×n truncations (i.e. the fact of taking the [0..n]×[0..n] submatrix

of a matrix) are algebra morphisms

τn : T (N,C) →M([0..n]× [0..n],C) (17)

we can endow T (N,C) with the Frechet topology giiven by these morphisms. We

will not develop this point in details, but this topology is metrisable and given by the

following convergence criterium :

a sequence (Mk) of matrices in T (N,C) converges iff

for all fixed n ∈ N

the sequence of truncated matrices (τn(Mk)) converges. (18)

This topology is compatible with the structure of C-algebra of T (N,C).

The two maps exp : NT (N,C) → UT (N,C) and log : UT (N,C) → NT (N,C)

are continous and mutually inverse.

4.2. Examples

4.2.1. Provided by the exponential formula

We first recall the “classical exponential formula” (see appendix A for a precise

categorical - and general - version of this formula).

For a class of objects C with some technical restrictions (see appendix), we denote

EGF (C) the exponential generating series of C. Denoting Cc the connected objects of

C, we have

EGF (C) = eEGF (Cc) (19)

The reader is invited to check, using the appendix, to convince himself that the use of

the exponantial formula in the following examples is quite legal.

Example 1 : Stirling numbers.

We here use the graphs of equivalence relations. Then using the statistics

x(number of points)y(number of connected components) we get
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∑

n,k≥0

S(n, k)
xn

n!
yk =

∑

all equivalence graphs Γ

x(number of points of Γ)

(number of points of Γ)!
y(number of connected components of Γ) =

exp

( ∑

Γ connected

x(number of vertices of Γ)

(number of points of Γ)!
y(number of connected components of Γ)

)
=

exp

(∑
n≥1

y
xn

n!

)
= ey(ex−1) (20)

we will see that the transformation associated with the matrix S(n, k) is

f → f(ex − 1).

Example 2 : Idempotent numbers.

We consider the graphs of endofunctions (i.e. functions from a finite set to itself).

Then using the statistics x(number of points of the set)y(number of connected components of the graph)

and denoting I(n, k) the number of endofunctions of a given set with n elements having

k connected components, we get

∑

n,k≥0

I(n, k)
xn

n!
yk =

∑

all graphs of endofunctions Γ

x(number of vertices of Γ)

(number of vertices of Γ)!
y(number of connected components of Γ) =

exp

( ∑

Γ connected

x(number of vertices of Γ)

(number of vertices of Γ)!
y(number of connected components of Γ)

)
=

exp

(∑
n≥1

y
nxn

n!

)
= eyxex

(21)

for these numbers, we get the (doubly) infinite matrix



1 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 · · ·
0 2 1 0 0 0 0 · · ·
0 3 6 1 0 0 0 · · ·
0 4 24 12 1 0 0 · · ·
0 5 80 90 20 1 0 · · ·
0 6 240 540 240 30 1 · · ·
...

...
...

...
...

...
...

. . .

(22)

we will see that the transformation associated with this matrix is f → f(xex)
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4.2.2. Provided by linearization of powers of boson strings

To get unipotent matrices, one takes a bonson string with only one derivation. The

string then reads w = (a+)r−pa(a+)p. We have given the examples with

p10 de la conf.

We will see in a moment that

• if p = 0, Sw(n, k) is the matrix of a unipotent substitution

• if > 0, Sw(n, k) is the matrix of a unipotent substitution with prefunction

4.3. A criterium

In fact, we have the general proposition.

proposition Let T = (T (n, k))n,k≥0 be the matrix of a unipotent transformation,

then the following properties are equivalent :

(i) T is the matrix of the transformation f → g(x)f(φ(x)) with g(0) = 1 and

φ(x) = x + higher terms

(ii) For every k one has

∑
n≥0

T (n, k)
xn

n!
= g(x)

(φ(x))k

k!

with g(x) =
∑

n≥0 T (n, 0)xn

n!
and φ(x) =

∑
n≥1 T (n, 1)xn

n!

(Sheffer-type condition see [?])

(iii)
∑

n,k≥0

T (n, k)
xn

n!
yk = g(x)eyφ(x)

which gives immediately the solution for the matrices of “graph-type”.

To cope with the matrices coming from the linearization of boson strings let us do a

small excursion to analysis and formal groups.

5. One-parameter subgroups of UT (N,C)

5.1. Exponential of elements of NT (N,C)

Let M = I + N ∈ UT (N,C) (I = IN is the diagonal, hence the indentity matrix). One

has

M t =
∑

k≥0

(
t

k

)
Nk (23)

where

(
t

k

)
is the generalized binomial coefficient defined by

(
t

k

)
=

(t)(t− 1) · · · (t− k + 1)

k!
(24)
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one can see that, due to the local nilpotency of N , the matrix coefficient M t(n, k) is well

defined and, in fact, a polynomial of degree n − k in t. We have the additive property

M t1+t2 = M t1M t2 and the correspondence t → M t is continuous. Conversely, using the

projections and the theorem about continous one-parameter groups in Lie groups (see

[?], for example) one can prove that, if t → Mt is a continous local one-parameter group

in UT (N,C) that is, for some real ε > 0

t1, t2 < ε =⇒ Mt1Mt2 = Mt1+t2 (25)

then there exists a unique matrix H ∈ NT (N,C) such that Mt = exp(tH). In case

Mt = M t is defined by formula (23) we have H = log(I + N) =
∑

k≥1
(−1)k−1

k
Nk.

The mapping t → M t will be called a one parameter group of UT (N,C).

proposition 3 Let M be the matrix of a substitution, then so is M t for all t ∈ C.

The proof will be detailed in a forthcoming paper [?] and uses the fact that “to be

the matrix of a substitution” is a property of polynomial type. But, using composition,

it is straightforward that M t is the matrix of a substitution far all t ∈ N. Thus, using

an argument in the style of Zariski, we get the fact that the property is true for all

t ∈ C.

5.2. Link with local Lie groups : Straightening vector fields on the line

Let us treat first the case of p = 0. The string (a+)ra corrresponds, in the Bargmann-

Fock representation, to the vector field xr d
dx

defined on the whole line.

Now, we can try (at least locally) to straighten this vector field by a diffeomorphism u

to get the constant vector field (this procedure has been introduced by G. Goldin in the

context of algebras of currents [5]). As the one-parameter group generated by a constant

field is the shift, the one-parameter (local) group of transformations should read, on a

suited domain)

Uλ[f ](x) = f
(
u−1 (u(x) + λ)

)
(26)

Now, we know from the theory that if two one-parameter have the same tangent vector

at the origin, then they coincide (tangent paradigm).

Direct computation gives this tangent vector :

d

dλ

∣∣∣∣
λ=0

f
(
u−1 (u(x) + λ)

)
=

1

u′(x)
f ′(x) (27)

so the local one-parameter group Uλ has 1
u′(x)

d
dx

as tangent vector field.

Here, we have to solve 1
u′(x)

= xr in order to get the diffeomorphism u.

In the case r 6= 1, we have (with D =]0, +∞[ as domain

u(x) =
x1−r

1− r
= y; u−1(y) = ((1− r)y)

1
1−r (28)

and

eλxr d
dx [f ](x) = f

(
x

(1− λ(r − 1)xr−1)
1

r−1

)
(29)
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The substitution factor sλ(x) = x

(1−λ(r−1)xr−1)
1

r−1
has been obtained by other means

in [?]. The computation is similar for the case when r = 1 and, for this case, we get

eλx d
dx [f ](x) = f

(
eλx

)
(30)

with sλ(x) = eλx as substitution factor.

First examples are summarized in the following table

r = sλ(x) = Name

0 x + λ Shift

1 eλx Dilation

2 x
1−λx

Homography

3 x√
1−2λx2 -

Comment If one uses classical analysis (i.e. convergent Taylor series), one must

be careful about the domain where the substitution are defined and the one-parameter

groups are defined only locally.

On each of these examples, one can check by hand that, for suitable (and small) values

of λ, µ, one has sλ(sµ(x)) = sλ+µ(x) (one-parameter group property).

It is possible to get rid of the discusion on the domains by considering λ, µ as

new variables and applying the “substitution principle” saying that it is possiible to

substitute a series without constant term in a series (within C[[x, λ, µ]]).

Using the same method, one can start wiith more complicated operators. Examples

and substitution factors are given below

Operator Substitution Factor Description

(1 + (a+)2) a sλ(x) = xcos(λ)+sin(λ)
cos(λ)−xsin(λ)

Composition of a rotation

with an homography

√
1+(a+)2

a+ sλ(x) =
√

x2 + 2λ
√

1 + x2 + λ2 Composition of quadratic

direct and inverse functions

5.3. Case p > 0: another conjugacy trick and a shocking formula

Now, seing vector fields as infinitesimal generators of one-parameter groups, leads to

conjugacy as, if Uλ is a one-parameter group of transformation, so is V UλV
−1, for any

continous invertible operator V . The case (a+)r−pa(a+)p; p > 0 belongs to this setting

as (a+)−p
(
(a+)ra

)
(a+)p. More generally, supposing all the terms be defined, with

Ω = u1(x)
d

dx
u2(x) =

1

u2(x)

(
u1(x)u2(x)

d

dx

)
u2(x)

one has

eλΩ =
1

u2(x)

(
eλu1(x)u2(x) d

dx

)
u2(x) (31)
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This shocking formula (31) may be understood as an operator equality.

Now, the tangent paradigm tels us that, if we adjust tha tangent vector to coincide

with xr−p d
dx

xp (recall that the original problem was the integration of the operator

Ω = (a+)r−pa(a+)p; p > 0), then we get the right one-parameter group. Using this

“conjugacy trick” we get

eλΩ[f ](x) =

(
sλ(x)

x

)
f(sλ(x)) with sλ(x) =

x

(1− λ(r − 1)xr−1)
1

r−1

(32)

Remark It can be checked that, if sλ(x) is a substitution factor (i.e. at least lo-

cally sλ(sµ(x)) = sλ+µ(x)) such that sλ(0) = 0 for evary λ (which is the case in most of

our examples) then the transformations defined by Uλ[f ](x) =
(

sλ(x)
x

)
f(sλ(x)) form a

one-parameter (possibly local) group.

The algebra generated by a+, (a+)−1, a is graded by

weight(a+) = 1, weight
(
(a+)−1

)
= weight(a) = −1 (33)

and every homogeneous operator of this algebra which is of the form

Ω =
∑

|w|a=1, weight(w)=e

αww (34)

(there is only one derivative in each monomial) can be integrated in the preceding

manner. So one would like to reconstruct the characteristic series
∑

n,k

SΩ(n, k)
xn

n!
yk (35)

from the knowledge of the one-parameter subgroup eλΩ.

This is the aim of the following paragraph.

5.4. Characteristic series ↔ one parameter group correspondence

For every homogeneous operator as above with e ≥ 0, one defines the coefficients

SΩ(n, k) as in ?? by

N (Ωn) = (a+)ne

∞∑

k=0

SΩ(n, k)(a+)kak (36)

One has the following proposition

Proposition 3 With the preceding denotations, the following conditions are

equivalent:

∑

n,k≥0

SΩ(n, k)
xn

n!
yk = g(x)eyφ(x) (37)

Uλ[f ](x) = g(λxe)f (x (1 + φ(λxe))) (38)

which solves the problem.
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6. Conclusion and remaining problems
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7. Appendix : A statistical (categorical) version of the exponential formula

Throughout the paper, we will be interested to compute various examples of EGF for

combinatorial objects having (a finite set of) nodes (their set-theoretical support) so

we use as central concept the mapping σ which associates to every structure, its set of

nodes.

We need to draw what could be called “square-free decomposable objects” (SFD). This

version is suited to our needs for the “exponential formula”. It is sufficiently general to

contain, as a particular case, the case of multivariate series. For other points of view,

see [6, 8, 9]

Let C be a class of (combinatorial) objects and FSt the catgory of finite sets, C will be

called (SFD) if it fulfills the two following conditions.

(DS) Direct sum. — There is a (partial) binary law ⊕ on C, defined for couples

of objects (ω1, ω2) such that σ(ω1) ∩ σ(ω2) = ∅, which is associative, commutative and

such that

CF1 × CF2

⊕→ CF1∪F2 (39)

is into.

Moreover, C∅ consists in a single element {ε} which is neutral in the sense that, identically

ε⊕ ω = ω ⊕ ε = ω (40)

(LP) Levi’s property. — Let ω = ω1 ⊕ ω2 = ω1 ⊕ ω2 be two decompositions. Then it

can be found a four terms decomposition ω = ⊕i,j=1,2ω
i
j refining the original data in the

sense that the maginal sums give the factors of the decompositions i.e.

ωj = ω1
j ⊕ ω2

j and ωi = ωi
1 ⊕ ωi

2; i, j = 1, 2 (41)

Note that condition (39) implies that σ(ω1 ⊕ ω2) = σ(ω1) t σ(ω2).

Now, an atom is any object ω 6= ε which cannot be split, formally

ω = ω1 ⊕ ω2 =⇒ ε ∈ {ω1, ω2} (42)

As example of this setting we have:

(i) the positive square-free integers σ(n) being the set of primes which divide n, the

atoms being the primes.

(ii) the positive integers σ(n) being the set of primes which divide n, the atoms being

the primes.

(iii) all graphs, hypergraphs and weighted graphs, σ(G) being the set of nodes and ⊕
the juxtaposition, here the atoms are connected graphs.

(iv) the class of endofunctions f with σ(f) = dom(f)

(v) the (multivariate) polynomials in N[X] with σ = Alph and ⊕ = +.

(vi) the square-free monic (for a given order on the variables) polynomials ; σ(P ) being

the set of irreducible monic divisors of P and ⊕ being the multiplication.
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(vii) complex algebraic curves ; σ(V ) being the set of monic irreducible bivariate

polynomials vanishing on an infinite subset of V .

The prescriptions (DS,LP) imply that decomposition of objects into atoms always

exists and is unique.

proposition Let ω ∈ C then ω = ω1 ⊕ ω2 ⊕ · · · ⊕ ωl the ωi being (dinstinct) atoms and

the set {ω1, ω2 · · ·ωl} depends only on ω.

In the class C, objects are conceived to be “measured” by different parameters (data

in statistical language). So, to get a general purpose tool, we suppose that the statistics

takes it’s values iin a ring K which contains Q (as, to write EGFs it is convenient to

have no trouble with the fractions 1
n!

). Let then c : C → K be the given statistic. In

order to write generating series, we need

(i) that the sum cF =
∑

ω∈CF
c(w) exists

(ii) that F → cF should depend only of the cardinality of F .

(iii) c(ω1 ⊕ ω2) = c(ω1).c(ω2)

We formalize it in

(LF) Local finiteness. — For each finite set F , the subclass

CF = {ω ∈ C|σ(ω) = F} (43)

is a finite set.

(Eq) Equivariance. —

|F1| = |F2| =⇒ cF1 = cF2 (44)

(Mu) Multiplicativity. —

c(ω1 ⊕ ω2) = c(ω1).c(ω2) (45)

Note. —

a) In fact, (LF) is a property of the class C, while (Eq) is a property of the statistics. In

practice, we choose C which is locally finite and choose equivariant statistics for instance

c(ω) = x(number of cycles)y(number of fixed points)

for some variables x, y.

b) More generally, it is typical to take integer-valued partial (additive) statistics

c1, · · · ci, · · · , cr (for every ω ∈ C, ci(ω) ∈ N) and set c(ω) = x
c1(ω)
1 x

c2(ω)
2 · · · xcr(ω)

r .

c) The class of examples 7.ii is not locally finite, but other examples satisfy (LF):

7.iii if one asks that the number of arrows and weight is finite, 7.i and 7.v to 7.vii in any

case.

Now, we are in position to state the exponential formula as it will be used

throughout the paper.
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Proposition Let C be a locally finite (SFD) and c : C → K an equivariant statistics

on C. For every subclass F one sets the following exponential generating series

E(F) =
∞∑

n=0

c(F[1..n])
zn

n!
(46)

Let Ca be the set of atoms of C. Then, one has

E(C) = eE(Ca) (47)

Proof — (First Step). — We consider the subclasses of objects the atoms of which

have a support of cardinality n i.e.

C[n] =

{ω ∈ C|ω = ω1 ⊕ ω2 ⊕ · · · ⊕ ωs with ωi ∈ Ca, and |σ(ωi)| = n} (48)

¤

These subclasses are closed under compositions (i.e. under ⊕) and decompositions

and their atoms Ca[n] = {ω ∈ C[n] ∩ Ca}. Now, one has, thanks to the partitions of

[1..n]

C[1..n] =
⊔

k≥0, 0<n1<n2<···<nk
n1+n2+···nk=n

⊔
|Pj |=nj

P1tP2t···Pk=[1..n]

CP1 ⊕ CP2 ⊕ · · · ⊕ CPk
(49)

c(C[1..n]) =
∑

k≥0

∑
0<n1<n2<···<nk
n1+n2+···nk=n

∑
|Pj |=nj

P1tP2t···Pk=[1..n]

c(CP1)c(CP2) · · · c(CPk
) (50)

as, for disjoint sets, it is easy to check that c(CX ⊕ CY ) = c(CX)c(CY ). Now, due to the

equivariance of c and to the fact that partitions (P1, P2, · · · , Pk) such that Pj = nj and

P1 t P2 t · · ·Pk = [1..n] are in number

n!

n1!n2! · · ·nk!

we get

c(C[1..n]) =
∑

k≥0

∑
0<n1<n2<···<nk
n1+n2+···nk=n

n!

n1!n2! · · ·nk!
c(C[1..n1])c(C[1..n2]) · · · c(C[1..nk])(51)

and then

E(C) =
∏
n>0

E(C[n]) (52)

We then compute the factors.

E(C[n]) =
∑

k≥0

c(C[n][1..nk])
znk

(nk)!
(53)

but

E(Ca[n]) = c(Ca
[1..n])

zn

n!
(54)
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(one monomial) and

eE(Ca[n]) =
∑

k≥0

c(Ca
[1..n])

k znk

(n!)kk!
=

∑

k≥0

c(Ca
[1..n])

k znk

(nk!)

(nk)!

(n!)kk!
=

∑

k≥0

c(C[n][1..nk])
znk

(nk)!
= E(C[n]) (55)

due to the fact that the number of (unordered) partitions of [1..nk] into k blocs of

cardinality n is (nk)!
(n!)kk!

. To end the proof, it suffices to remark that Ca = un>0Ca[n] and

then

E(C) =
∏
n>0

E(C[n]) =
∏
n>0

eE(Ca[n]) = e
P

n>0 E(Ca[n]) = eE(Ca) (56)

¤

Note. —

The proof suggests us that it is combinatorially fruitful to factor a class C into (full)

subclasses i.e. that are generated by a partition of the atoms.
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[38] Sixdeniers J-M, Penson K A and Solomon A I 1999 Mittag-Leffler coherent states J. Phys. A:

Math. Gen. 32 7543; Klauder J R, Penson K A and Sixdeniers J-M 2001 Constructing coherent
states through solutions of Stieltjes and Hausdorff moment problems Phys. Rev. A 64 013817

[39] Quesne C 2001 Generalized coherent states associated with the Cλ-extended oscillator Ann. Phys.
(N.Y.) 293 147; Quesne C 2002 New q-deformed coherent states with an explicitly known
resolution of unity J. Phys. A: Math. Gen. 35 9213; Popov D 2002 Photon-added Barut-
Girardello coherent states of the pseudoharmonic oscillator J. Phys. A: Math. Gen. 35 7205;
Quesne C, Penson K A and Tkachuk V M 2003 Math-type q-deformed coherent states for q > 1
Phys. Lett. A 313 29

[40] Sloane N J A 2003 Encyclopedia of Integer Sequences,
available electronically at http://www.research.att.com/˜njas/sequences

[41] Prudnikov A P, Brychkov Y A and Marichev O I 1986 Integrals and Series: Special Functions vol
2 (Amsterdam: Gordon and Breach)

[42] Schork M 2003 On the combinatorics of normal ordering bosonic operators and deformations of it
J. Phys. A: Math. Gen. 36 4651

[43] Sloane N J A and Wieder T 2003 The number of hierarchical orderings
Preprint arXiv:math.CO/0307064


