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ABSTRACT
In this paper, we deal with some speci�c domains of ap-
plications to game theory. This is one of the major class
of models in the new approaches of modelling in the eco-
nomic domain. For that, we use genetic automata which
allow to buid adaptive strategies for the players. We ex-
plain how the automata-based formalism proposed - ma-
trix representation of automata with multiplicities - allows
to de�ne a distance between the strategy behaviors. With
that tools, we are able to generate an automatic processus
to compute emergent systems of entities whose behaviors
are represented by these genetic automata.

in the next section.

1. Introduction: Adaptive Behaviour Modeling for Ga-
me Theory

Since the �ve last decades, game theory has become a ma-
jor aspect in economical sciences modelling and in a great
number of domains where strategical aspects has to be in-
volved. Game theory is usually de�ned as a mathematical
tool allowing to analyse strategical interactions between
individuals.

Initially funded by mathematical researchers, J. von
Neumann, E. Borel or E. Zermelo in 1920s, game theory
increased in importance in the 1940s with a major work
from J. von Neumann and O. Morgenstern and then with
the works of John Nash in the 1950s [?]. John Nash has
proposed an original equilibrium ruled by an adaptive cri-
terium. In game theory, the Nash equilibrium is a kind of
optimal strategy for games involving two or more players,
whereby the players reach an outcome to mutual advan-
tage. If there is a set of strategies for a game with the prop-
erty that no player can bene�t by changing his strategy
while the other players keep their strategies unchanged,
then this set of strategies and the corresponding payoffs
constitute a Nash equilibrium.

We can understand easily that the modelization of a
player behavior needs some adaptive properties. The com-
putable model corresponding to genetic automata are in

this way a good tool to modelize such adaptive strategy.

The plan of this paper is the following. In the next sec-
tion, we present some ef�cient algebraic structures, the au-
tomata with multiplicities, which allow to implement pow-
erful operators. We present in section 3, some topological
considerations about the de�nition of distance between au-
tomata which induces a theorem of convergence on the au-
tomata behaviors. evolutionary algorithms and we explain
in the section 4 how genetic automata are well-adapted for
adaptive strategies modeling. Genetic operators are pro-
posed for these automata in the section 4. For that pur-
pose, we show that the relevant �calculus� is done by ma-
trix representions unravelling then the powerful capabili-
ties of such algebraic structures. In section 5, we focus our
attention on the �iterated prisonner dilemma� and we buid
an original evolutive probabilistic automaton for strategy
modeling, showing that genetic automata are well-adapted
to model adaptive strategies. The section 6 shows how we
can use the genetic automata developed previously to rep-
resent agent evolving in complex systems description. An
agent behavior distance is then de�ned and allow to pro-
pose an automatic computation of emergent systems as a
kind of self-organization detection.

France for exemple)

2. Automata from boolean to multiplicies theory (Au-
tomata with scalars)

Automata are initially considered as theoretical tools. They
are created in the 1950's following the works of A. Tur-
ing who previously deals with the de�nition of an abstract
�machine�. The aim of the Turing machines is to de�ne
the boundaries for what a computing machine could do
and what it could not do.

The �rst class of automata, called �nite state automata
corresponds to simple kinds of machines. They are stud-
ied by a great number of researchers as abstract concepts
for computable building. In that aspect, we can recall the
works of some linguist researchers, for example N. Chom-
sky who de�ned the study of formal grammars.

In many works, �nite automata are associated to a rec-



ognizing operator which allows to describe a language. In
such works, the condition of a transition is simply a sym-
bol taken from an alphabet. From a speci�c state S, the
reading of a symbol a allows to make the transitions which
are labeled by a and come fromS (in case of a determin-
istic automaton - a DFA - there is only one transition -
see below). A whole automaton is, in this way, associated
to a language, the recognized language, which is a set of
words. These recognized words are composed of the se-
quence of letters of the alphabet which allows to go from
a speci�c state called initial state, to another speci�c state,
called �nal state.

A �rst classi�cation is based on the geometric aspect :
DFA (Deterministic Finite Automata) and NFA (Nonde-
terministic Finite Automata).

• In Deterministic Finite Automata, for each state there
is almost one transition for each possible input and
only one initial state.

• In Nondeterministic Finite Automata, there can be
none or more than one transition from a given state
for a given possible input.

Besides the classical aspect of automata as machines
allowing to recognize languages, another approach con-
sists in associating to the automata a functional goal. In
addition of accepted letter from an alphabet as the condi-
tion of a transition, we add for each transition an infor-
mation which can be considered as an output data of the
transition, the read letter is now called input data. We de-
�ne in such a way an automaton with outputs or weighted
automaton.

Such automata with outputs give a new classi�cation
of machines. Transducers are such a kind of machines,
they generate outputs based on a given input and/or a state
using actions. They are currently used for control appli-
cations. Moore machines are also such machines where
output depends only on a state, i.e. the automaton uses
only entry actions. The advantage of the Moore model is
a simpli�cation of the behaviour.

Finally, we focus our attention on a special kind of au-
tomata with outputs which are ef�cient in an operational
way. This automata with output are called automata with
multiplicities. An automaton with multiplicities is based
on the fact that the output data of the automata with out-
put belong to a speci�c algebraic structure, a semiring. In
that way, we will be able to build effective operations on
such automata, using the power of the algebraic structures
of the output data and we are also able to describe this au-
tomaton by means of a matrix representation with all the
power of the new (i.e. with semirings) linear algebra.

De�nition 1 (Automaton with multiplicities)
An automaton with multiplicities over an alphabet A and
a semiring K is the 5-uple (A,Q, I, T,K) where

• Q = {S1, S2 · · ·Sn} is the �nite set of state;

• I : Q 7→ K is a function over the set of states, which
associates to each initial state a value of K, called
entry cost, and to non- initial state a zero value ;

• F : Q 7→ K is a function over the set states, which
associates to each �nal state a value of K, called
�nal cost, and to non-�nal state a zero value;

• T is the transition function, that is T : Q×A×Q 7→
K which to a state Si, a letter a and a state Sj as-
sociates a value z of K (the cost of the transition) if
it exist a transition labelled with a from the state Si
to the state Sj and and zero otherwise.

Remark 1 Automata with multiplicities is a generalisa-
tion of �nite automata. In fact, �nite automata can be con-
sidered as automata with multiplicities in the semiring K,
the boolan set B = {0, 1} (endowed with the logical �or�
and �and�). To each transition we affect 1 if it exists and
0 if not.

Remark 2 We have not yet, on purpose, de�ned what a
semiring is. Roughly it is the least structure that allows the
matrix �calculus� with unit (one can think of a ring with-
out the �minus� operation). The previous automata with
multiplicities can be, equivalently, expressed by a matrix
representation which is a triplet

• λ ∈ K1×Q which is a row-vector which coef�cients
are λi = I(Si),

• γ ∈ KQ×1 is a column-vector which coef�cients are
γi = F (Si),

• µ : A∗ 7→ KQ×Q is a morphism of monoids (in-
deed KQ×Q is endowed with the product of matri-
ces) such that the coef�cient on the qith row and qj th
column of µ(a) is T (qi, a, qj)

representation)

3. Topological considerations

If K is a �eld, one sees that the space A(n) of automata of
dimension n (with multiplicities inK) is aK-vector space
of dimension k.n2 + 2n (k is here the number of letters).
So, in case the ground �eld is the �eld of real and complex
numbers, one can take any vector norm (usually one takes
one of the Hölder norms ||(xi)i∈I ||α :=

(∑
i∈I |xi|α

) 1
α

for α ≥ 1, but any norm will do) and the distance is de-
rived, in the classical way, by

d(A1,A2) = norm(V (A1)− V (A2)) (1)

one has then the result of Theorem 1. Assuming that K is
the �eld of real or complex numbers, we endow the space
of series/behaviours with the topology of pointwise con-
vergence (Topology of F. Treves [23]).



Theorem 1 Let (An) be a sequence of automata with limit
L (L is an automaton), then one has

Behaviour(L) = limitn→∞Behaviour(An) (2)

where the limit is computed in the topology of Treves.

4. Genetic automata as ef�cient operators

We de�ne the chromosome for each automata with multi-
plicities as the sequence of all the matrices associated to
each letter from the (linearly ordered) alphabet. The chro-
mosomes are composed with alleles which are here the
lines of the matrix.

In the following, genetic algorithms are going to gener-
ate new automata containing possibly new transitions from
the ones included in the initial automata.

The genetic algorithm over the population of automata
with multiplicities follows a reproduction iteration broken
up in three steps:

• Duplication where each automaton generates a clone
of itself;

• Crossing-over concerns a couple of automata. Over
this couple, we consider a sequence of lines of each
matrix for all. For each of these matrices, a permu-
tation on the lines of the chosen sequence is made
between the analogue matrices of this couple of au-
tomata;

• Mutation where a line of each matrix is randomly
chosen and a sequence of new values is given for
this line.

Finally the whole genetic algorithm scheduling for a
full process of reproduction over all the population of au-
tomata is the evolutionary algorithm:

1. For all couple of automata, two children are cre-
ated by duplication, crossover and mutation mech-
anisms;

2. The �tness for each automata is computed;

3. For all 4-uple composed of parents and children, the
performless automata, in term of �tness computed
in previous step, are suppressed. The two automata,
still living, result from the evolution of the two ini-
tial parents.

Remark 3 The �tness is not de�ned at this level of ab-
stract formulation, but it is de�ned corresponding to the
context for which the automata is a model, as we will do
in the next section.

5. Applications to competition-cooperation modeling
using prisoner dilemma

We develop in this section how we can modelize competition-
cooperation processes in a same automata-based represen-
tation. The genetic computation allow to make automatic
transition from competition to cooperation or from coo-
peartion to competition. The basic problem used for that
purpose is the well-known prisoner dilemma.

5.1. From adaptive strategies to probabilistic automata

The prisoner dilemma is a two-players game where each
player has two possible actions: cooperate (C) with its ad-
versary or betray him (C). So, four outputs are possible
for the global actions of the two players. A relative payoff
is de�ned relatively to these possible outputs, as described
in the following table where the rows correspond to one
player behaviour and the columns to the other player one.

C C
C (3,3) (0,5)
C (5,0) (1,1)

Table 1. Prisoner dilemma payoff

In the iterative version of the prisoner dilemma, suc-
cessive steps can be de�ned. Each player do not know
the action of its adversary during the current step but he
knows it for the preceding step. So, different strategies
can be de�ned for a player behaviour, the goal of each one
is to obtain maximal payoff for himself.

In the Figures 1 and 2, we describe two strategies with
transducers. Each transition is labeled by the input cor-
responding to the player perception which is the prece-
dent adversary action and the output corresponding to the
present player action. The only inital state is the state 1,
recognizable by the incoming arrow labeled only by the
output. The �nal states are the states 1 and 2, recognizable
with the double circles.

In the strategy of Figure 1, the player has systemati-
cally the same behaviour as its adversary at the previous
step. In the strategy of the Figure 2, the player chooses
de�nitively to betray as soon as his adversary does it. The
previous automaton represents static strategies and so they
are not well adapted for the modelization of evolutive strate-
gies. For this purpose, we propose a model based on a
probabilistic automaton described by the Figure 3.

This automaton represents all the two-states strategies
for cooperation and competitive behaviour of one agent
against another in prisoner dilemma.

The transitions are labeled in output by the probabili-
ties pi of their realization. The �rst state is the state reached



Figure 1. Tit-for-tat strategy automaton

Figure 2. Vindictive strategy automaton

Figure 3. Probabilistic multi-strategies two-states au-
tomaton

after cooperation action and the second state is reached af-
ter betrayal.

For this automaton, the associated matrix representa-
tion, as described previously, is:

I = ( p1 1− p1 ) ; (3)

F =
(

1
1

)
; (4)

T (C) =
(
p2 1− p2

p3 1− p3

)
; (5)

T (C) =
(
p4 1− p4

p5 1− p5

)
(6)

5.2. From probabilistic automata to genetic automata

With the matrix representation of the automata, we can
compute genetic automata as described in previous sec-
tion. Here the chromosomes are the sequences of all the
matrices associated to each letter. We have to de�ne the
�tness in the context of the use of these automata. The
�tness here is the value of the payoff.

5.3. General Genetic Algorithm Process for Genetic
Automata

A population of automata is initially generated. These au-
tomata are playing against a prede�ned strategy, named
S0.

Each automaton makes a set of plays. At each play, we
run the probabilistic automaton which gives one of the two
outputs: (C) or (C). With this output and the S0's output,
we compute the payoff of the automaton, according with
the payoff table.

At the end of the set of plays, the automaton payoff is
the sum of all the payoffs of each play. This sum is the
�tness of the automaton. At the end of this set of plays,
each automaton has its own �tness and so the selection
process can select the best automata. On the end of these
selection process, we obtain a new generation of automata.

This new generation of automata is the basis of a new
computation of the 3 genetics operators.

This processus allows to make evolve the player's be-
havior which is modelized by the probabilistic multi-strategies
two-states automaton from cooperation to competition or
from competition to cooperation. The evolution of the
strategy is the expression of an adaptive computation. This
leads us to use this formalism to implement some self-
organisation processes which occurs in complex systems.



6. Extension to Emergent Systems Modeling

In this section, we study how evolutive automata-based
modeling can be used to compute automatic emergent sys-
tems. The emergent systems have to be understood in the
meaning of complex system paradigm that we recall in the
next section. We have previously de�ned some way to
compute the distance between automata and we use these
principles to de�ne distance between agents behaviours
that are modeled with automata. Finally, we de�ned a
speci�c �tness that allows to use genetic algorithm as a
kind of reinforcement method that lead to emergent sys-
tem computation.

6.1. Complex System Description Using Automata-Ba-
sed Agent Model

According to General System Theory [4, 19], a complex
system is composed with entities in mutual interaction and
interacting with the outside environment. A system has
some characteristic properties which confer its structural
aspects, as schematically described in the part (a) of the
�gure 4:

• The set elements or entities are in interactive depen-
dance. The alteration of only one entity or one in-
teraction reverberates on the whole system.

• A global organization emerges from interacting con-
stitutive elements. This organization can be identi-
�ed and carries its own autonomous behavior while
it is in relation and dependance with its environ-
ment. The emergent organization possesses new prop-
erties that its own constitutive entities don't have.
�The whole is more than the sum of its parts�.

• The global organization retro-acts over its constitu-
tive components. �The whole is less than the sum of
its parts� after E. Morin.

The interacting entities network as described in the
part (b) of �gure 4 leads to each entity to perceive infor-
mations or actions from other entities or from the whole
system and to act itself.

A well-adapted modeling consists of using agent-based
representation which is composed of the entity called agent
as an entity which perceives and acts on an environment,
using a autonomous behaviour as described in the part (c)
of �gure 4.

To compute a simulation composed of such entities,
we need to describe the behaviour of each agent. This one
can be schematically described using internal states and
transition processes between these states, as described in
the part (d) of the �gure 4.

There are several de�nitions of �agents� or �intelligent
agents� according to their behaviour speci�cities [11, 24].

Their autonomy means that the agents try to satisfy a goal
and execute actions, optimizing a satisfaction function to
reach it.

For agents with high level autonomy, speci�c actions
are realized even when no perception are detected from
the environment. To represent the process of this delib-
eration, different formalisms can be used and a behaviour
decomposed in internal states is an effective approach. Fi-
nally, when many agents operate, the social aspects must
also be taken into account. These aspects are expressed as
communications through agent organisation with message
passing processes. Sending a message is an agent action
and receiving a message is an agent perception. The pre-
vious description based on the couple: perception and ac-
tion, is well adapted to that.

6.2. Agent Behavior Distance

We describe in this section the bases of the genetic algo-
rithm used on the probabilistic automata allowing to man-
age emergent self-organizations in the multi-agent simula-
tion.

For each agent, we de�ne e an evaluation function of
its own behaviour returning the matrix M of values such
that Mi,j is the output series from all possible successive
perceptions when starting from the initial state i and end-
ing in the �nal state j, without cycle. It will clearly be 0 if
either i is not an initial state or j is not a �nal one and the
matrix Mi,j is indeed a matrix of evaluations of subseries
of

M∗ := (
∑

a∈A
µ(a)a)∗ (7)

Notice that the coef�cients of this matrix, such as de-
�ned, are computed whatever the value of the perception in
the alphabet A on each transition on the successful path1.
That means that the contribution of the agent behaviour
for collective organization formation is only based, here,
on probabilities to reach a �nal state from an initial one.
This allows to preserve individual characteristics in each
agent behaviour even if the agent belongs to an organiza-
tion.

Let x and y two agents and e(x) and e(y) their respec-
tive evaluations as described above. We de�ne d(x, y) a
(semi-)distance (or pseudometrics [3] ch IX) between the
two agents x and y as ||e(x)− e(y)||, a matrix norm of the
difference of their evaluations. Let Vx a neighbourhood of
the agent x, relatively to a speci�c criterium, for example
a spatial distance or linkage network. We de�ne f(x) the

1A succesful path is a path from an initial state to a �nal state



Figure 4. Multi-scale complex system description: from global to individual models

agent �tness of the agent x as :

f(x) =





card(Vx)∑

yi∈Vx
d(x, yi)2

if
∑

yi∈Vx
d(x, yi)2 6= 0

∞ otherwise

6.3. Evolutive Automata for Automatic Emergence of
Self-Organized Agent- Based Systems

In the previous computation, we de�ned a distance be-
tween two agents. This distance is computed using the
matrix representation of the automata with multiplicities
associated to the agent behaviour. This distance is based
on successfull paths computation which needs to de�ne
initial and �nal states on the behaviour automata. For spe-
ci�c purposes, we can choose to de�ne in some speci�c
way, the initial and �nal states. This means that we try to
compute some speci�c action sequences which are charar-
acterized by the way of going from some speci�c states
(de�ned here as initial ones) to some speci�c states (de-
�ned here as �nal ones).

Based on this speci�c purpose which leads to de�ne
some initial and �nal states, we compute a behaviour dis-
tance and then the �tness function de�ned previously. This
�tness function is an indicator that returns high value when
the evaluated agent is near, in the sense of the behaviour
distance de�ned previously, to all the other agents belong-
ing to a prede�ned neighbouring.

Genetic algorithms will compute in such a way to make
evolve an agent population in selective process. So during
the computation, the genetic algorithm will make evolve
the population to a newer one with agents more and more
adapted to the �tness. The new population will contain
agents with better �tness, so the agents of a population
will become nearer each others to improve their �tness. In
that way, the genetic algorithm reinforces the creation of a
system which aggregates agents with similar behaviour, in
the speci�c way of the de�nition of initial and �nal states
de�ned on the automata.

The genetic algorithm proposed here can be consid-
ered as a modelization of the feed-back of emergent sys-
tems which leads to gather agents of similar behaviour, but



these formations are dynamical ones and we cannot predict
what will be the set of these aggregations which depend of
the reaction of agents during the simulation. Moreover the
genetic process has the effect of generating a feed- back of
the emergent systems on their own contitutive elements in
the way that the �tness improvement lead to bring closer
the agents which are picked up inside the emergent aggre-
gations.

For speci�c problem solving, we can consider that the
previous �tness function can be composed with another
speci�c one which is able to measure the capability of the
agent to solve one problem. This composition of �tness
functions leads to create emergent systems only for the
ones of interest, that is, these systems are able to be de-
veloped only if the aggregated agents are able to satisfy
some problem solving evaluation.

7. Conclusion

The aim of this study is to develop a powerful algebraic
structure to represent behaviors concerning cooperation-
competition processes and on which we can add genetic
operators. We have explained how we can use these struc-
tures for modeling adaptive behaviors needed in game the-
ory. More than for this application, we have described
how we can use such adaptive computations to automat-
ically detect emergent systems inside interacting networks
of entities represented by agents in a simulation.
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