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1. Introduction

In this paper, we deal with some specific domains of applications to game theory which is one of the major class of models in the new approaches of modelling in the economical domain. First, we will explain how adaptive strategies are useful concerning these domains in the next section. Then we present in section 3, some efficient algebraic structures, the automata with multiplicities, which allow to implement powerful operators. Such algebraic structures are used as the basis of evolutionary algorithms and we explain in the section 4 how genetic automata are well-adapted for adaptive strategies modeling. In section 5, we focus our attention on the "iterated prisonner dilemma" and we buid an original evolutive probabilistic automaton for strategy modeling. 

2. Adaptive behaviour modeling for game theory

Game theory has become since the five last decades a major aspect in economical sciences modelling and in a great number of domains where strategical aspects has to be involved. Game theory is usually defined as a mathematical tool allowing to analyse strategical interactions between individuals. Initially funded by mathematical researchers, J. von Neumann, E. Borel or E. Zermalo in 1920s, game theory increase in the 1940s with a major work from J. von Neumann and O. Morgenstern and then with the works of John Nash in the 1950s . John Nash has proposed an original equilibrium obtained with adaptive process. In game theory, the Nash equilibrium is a kind of optimal strategy for games involving two or more players, whereby the players reach an outcome to mutual advantage. If there is a set of strategies for a game with the property that no player can benefit by changing his strategy while the other players keep their strategies unchanged, then that set of strategies and the corresponding payoffs constitute a Nash equilibrium. We can understand easily that the modelization of player behavior needs some adaptive properties. The computable model corresponding to genetic automata are in that way a good tool to modelize  such adaptive strategy. 

(to be completed with augmented references:  R. Axelrod, Ph. Mathieu from LIL-France for exemple)

3. Automata from boolean to multiplicies theory (Automata with scalars)

(Here we have to talk about the power of semiring as scalars operators ... )

Automata are initially considered as theorical tools. They are created in the 1950's following the works of A. Turing who previously deals with the definition of an abstract "machine". The aim of the Turing machines is to define the boundaries of what a computing machine could do and what it could not do. 

The first class of automata, called finite automata corresponds to simpler kinds of machines. They are studied by a great number of researchers as abstract concepts for computable building. In that aspect, we can recall the works of some linguist researchers, for example N. Chomsky who defined the study of formal grammars. 

In many works, finite automata are associated to an operator which allow to describe a language. In such works, the condition of a transition is simply a symbol from an alphabet. From a specific state S, the reading of a symbol a allows to make the transition which is labeled by a and come from S. A whole automaton is in that way, associated to a language, the recognized language, which is the set of words. These recognized words are composed of the sequence of letters of the alphabet which allows to go from a specific state called initial state, to another specific state, called final state.  

A first classification is based on the geometric aspect : DFA (Deterministic Finite Automata) and NFA (Nondeterministic Finite Automata)

· In deterministic automata, for each state there is almost one transition for each possible input and only one initial state.

· In non-deterministic automata, there can be none or more than one transition from a given state for a given possible input.

Besides the classical aspect of automata as machines allowing to recognize languages, another approach consists in associate to the automata a functional goal. In addition of accepted letter from an alphabet as condition of transition, we add for each transition an information which can be considered as an output data of the transition, the read letter is now called input data. We define in such way an automata with outputs or weighted automaton.

Such automata with outpout give a new classification of machines. Transducers are some kind of machines, they generate output based on a given input and/or a state using actions. They are used for control applications. Moore machines are also such machines where output depends only on a state, i.e. the automaton uses only entry actions. The advantage of the Moore model is a simplification of the behaviour. 

Finally, we focuse our attention on a special kind of automata with outputs which are efficient in operational way. This automata with output are called automata with multiplicities. An automaton with multiplicities is based on the fact that the output data of the automata with output belong to a specific algebraic structure, a semiring. In that way, we will be able to buid effective operations on such automata, using the power of the algebraic structures of the output data. And we are also able to describe this automata in matrix representation with all the power of the linear algebra.

Definition (Automaton with multiplicities):

 An automaton with a multiplicities over an alphabet 
[image: image1.wmf] and a semiring 
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is the 5-uple 
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is the finite set of state;

· 
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is a function over the set of initial states, which associates to each initial state a value of K, called entry cost, and to non-initial state a nul value ;

· 
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 is a function over the set of the final states, which is associated to each final state a value of K, called final cost, and to non-final state a nul value;

· 
[image: image7.wmf]is the transition function, that is 
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which from a state 
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, a letter a and a state 
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go to a value z of K  if it exist a transition labelled with a from the state 
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 to the state 
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. and with the output z.   

Remark 1: Automata with multiplicities is a generalisation of finite automata. In fact, finite automata can be considered as automata with multiplicities with for the semiring K, the boolan set B={0,1}. To each transition we affect 1 if it exists and 0 if not.

Remark 2: We have not yet, on purpose, defined what a semiring is. Roughtly it is the least structure 
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that allows matrix computation with units (one can think of a ring without the "minus" operation' 

The previous automata with multiplicities can be expressed by a linear representation which is a triplet 
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[image: image16.wmf]i

=I

S

i

,

· 
[image: image17.wmf]K

n

1

is a row-vector which coefficients are 
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is a morphism of monoids such that
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, the coefficient on the ith row and jth column of all transitions labelled with 
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( to be continuated :  add a sample of automaton with associated linear representation)

4. Genetic automata as efficient operators

We define the chromosome for each automata with multiplicities as the sequence of all the matrices 
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associated to each letter 
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 from the alphabet 
[image: image25.wmf]. The chromosomes are composed with alleles which are here the lines of the matrix.

In the following, genetic algorithms are going to generate new automata containing possiblly new transitions from the ones included in the initial automata.

The genetic algorithm over the population of automata with multiplicities follows a reproduction iteration broken up in three steps:

· Duplication where each automata generates a clone of itself; 

· Crossing-over concerns a couple of automata. Over this couple, we consider a sequence of lines of each matrix 
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for all 
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. For each of these matrices, a permutation on the lines of the chosen sequence is made between the analogue matrices of this couple of automata. 

· Mutation where a line of each matrix 
[image: image28.wmf]a

is randomly chosen a sequence of new values is given for this line.

Finally the whole genetic algorithm scheduling for a full process of reproduction over all the population of automata is the evolutionary algorithm:

1. For all couple of automata, two children are created by duplication, crossover and mutation mechanisms;

2. The fitness for each automata is computed;

3. For all 4-uple composed of parents and children, the performless automata, in term of fitness computed in previuous step, are suppressed. The two automata, still living, result from the evolution of the two initial parents.

Remark: The fitness is not defined at this level of abstract formulation, but it's defined corresponding to the context for which the automata is a model. 

5. Applications to competition-cooperation modeling using prisoner dilemma

From adaptive strategies to probabilistic automata

The prisoner dilemma is a two-players game where each player has two possible actions: cooperate (
[image: image29.wmf]C

) with its adversary or defect it (
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). So, four outputs are possible for the global actions of the two players. A relative payoff is defined relatively to these possible outputs, as described in the following table where the rows correspond to one player behaviour and the columns to the other player one.
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In iterative version of the prisoner dilemma, successive steps can be defined.  Each player do not know the action of its adversary during the current step but he knows it for the preceding step. So different strategies can be defined for a player behaviour, the goal of each one is to obtain maximal payoff for himself. In the illustrations 1 and 2, we describe two strategies with transducers. Each transition is labeled by the input corresponding to the player perception which is the precedent adversary action and the output corresponding to the present player action.  The only inital state is the state 1, recognizable by the incoming arrow labeled only by the output. The final states are the states 1 and 2, recognizable with the double circles. In strategy of the illustration 1, the player has systematically the same behaviour as its adversary at the previous step. In strategy of the illustration 2, the player chooses definitively to defect as soon as his adversary does once.  

[image: image43.png][image: image44.png]
The previous automata represent static strategies and so they are not well adapted for the modelization of evolutive strategies. For this purpose, we propose a model based on a probabilistic automaton described by the illustration 3.
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This automaton represents all the two-states strategies for cooperation 
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and competitive 
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 behaviour of one agent against another in prisoner dilemma. The transitions are labeled in output by the probabilities p_i of their realization.  The state 1 is the state reached after cooperation action and the state 2 is reached after defection. 

For this automaton, the associated linear representation, as described previously, is:
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From probabilistic automata to genetic automata

With the linear representation of the automata, we can compute genetic automata as described in previous section. Here the chromosomes are the sequences of all the matrices associated to each letter. We have to define the fitness in the context of the use of these automata. The fitness here is the value of the payoff. 

General GA process for genetic automata

A population of automata is initially generated. These automata are playing against a predefined strategy, named SO.

Each automaton makes a set of plays. At each play, we execute the probabilistic automaton which gives one of the two outputs:   
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 or  
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. With this output and the SO's output, we compute the payoff of the automaton, according with the payoff table.

At the end of the set of plays, the automaton payoff is the sum of all the payoffs of each play. This sum is the fitness of the automaton. At the end of these set of plays, each automaton has its own fitness and so the selection process can select the best automata. On the end of these selection process, we obtain a new generation of automata.

This new generation of automata is the basis of a new computation of the 3 genetics operators.

(to be completed ... we canb add a discussion about prisoner dilemma and how that can be used in economical modeling : firm concurence, cold war, ...)

6. Conclusion

(to be continued) 
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Illustration 1: Tit-for-tat strategy strategy
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Illustration 2: Vindictive strategy automata
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Illustration 3: Probabilistic multi-strategies two-states automata
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