K. Khatatneh, R. Ghneamat, S. Oqeili Al-Balga’
Applied University - Al-Salt, Jordan



AUTOMATA-BASED ADAPTIVE BEHAVIOR FOR ECONOMICAL
MODELING USING GAME THEORY

C. Bertelle

LIH - University of Le Havre - France

ABSTRACT

todo ?

1. Introduction

In this paper, we deal with some specific domains of appli-
cations to game theory. The latter is one of the major class
of models in the new approaches of modelling in the eco-
nomical domain. First, we explain how adaptive strategies
are useful concerning these domains in the next section.
Then, we present in section 3, some efficient algebraic
structures, the automata with multiplicities, which allow
to implement powerful operators. Such algebraic struc-
tures are used as the basis of evolutionary algorithms and
we explain in the section 4 how genetic automata are well-
adapted for adaptive strategies modeling. In section 5, we
focus our attention on the “iterated prisonner dilemma”
and we buid an original evolutive probabilistic automaton
for strategy modeling.

2. Adaptive behaviour modeling for game theory

Game theory has become since the five last decades a ma-
jor aspect in economical sciences modelling and in a great
number of domains where strategical aspects has to be in-
volved. Game theory is usually defined as a mathematical
tool allowing to analyse strategical interactions between
individuals. Initially funded by mathematical researchers,
J. von Neumann, E. Borel or E. Zermelo in 1920s, game
theory increased in importance in the 1940s with a major
work from J. von Neumann and O. Morgenstern and then
with the works of John Nash in the 1950s . John Nash
has proposed an original equilibrium obtained with adap-
tive process. In game theory, the Nash equilibrium is a
kind of optimal strategy for games involving two or more
players, whereby the players reach an outcome to mutual
advantage. If there is a set of strategies for a game with
the property that no player can benefit by changing his
strategy while the other players keep their strategies un-
changed, then this set of strategies and the corresponding
payoffs constitute a Nash equilibrium. We can understand
easily that the modelization of player behavior needs some
adaptive properties. The computable model corresponding
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to genetic automata are in that way a good tool to modelize
such adaptive strategy.

(to be completed with augmented references: R. Axel-
rod, Ph. Mathieu from LIL-France for exemple)

3. Automata from boolean to multiplicies theory (Au-
tomata with scalars)

(Here we have to talk about the power of semiring as scalars
operators ... )

Automata are initially considered as theoretical tools.
They are created in the 1950’s following the works of A.
Turing who previously deals with the definition of an ab-
stract “machine”. The aim of the Turing machines is to
define the boundaries of what a computing machine could
do and what it could not do.

The first class of automata, called finite state automata
corresponds to simple kinds of machines. They are stud-
ied by a great number of researchers as abstract concepts
for computable building. In that aspect, we can recall the
works of some linguist researchers, for example N. Chom-
sky who defined the study of formal grammars.

In many works, finite automata are associated to an op-
erator which allow to describe a language. In such works,
the condition of a transition is simply a symbol from an
alphabet. From a specific state S, the reading of a symbol
a allows to make the transition which is labeled by a and
come from S. A whole automaton is in that way, associ-
ated to a language, the recognized language, which is the
set of words. These recognized words are composed of the
sequence of letters of the alphabet which allows to go from
a specific state called initial state, to another specific state,
called final state.

A first classification is based on the geometric aspect
: DFA (Deterministic Finite Automata) and NFA (Nonde-
terministic Finite Automata)

e In deterministic automata, for each state there is al-
most one transition for each possible input and only
one initial state.

e In non-deterministic automata, there can be none or
more than one transition from a given state for a
given possible input.

Besides the classical aspect of automata as machines
allowing to recognize languages, another approach con-



sists in associate to the automata a functional goal. In ad-
dition of accepted letter from an alphabet as condition of
transition, we add for each transition an information which
can be considered as an output data of the transition, the
read letter is now called input data. We define in such a
way an automaton with outputs or weighted automaton.

Such automata with outputs give a new classification
of machines. Transducers are some kind of machines, they
generate outputs based on a given input and/or a state us-
ing actions. They are currently used for control applica-
tions. Moore machines are also such machines where out-
put depends only on a state, i.e. the automaton uses only
entry actions. The advantage of the Moore model is a sim-
plification of the behaviour.

Finally, we focus our attention on a special kind of au-
tomata with outputs which are efficient in operational way.
This automata with output are called automata with mul-
tiplicities. An automaton with multiplicities is based on
the fact that the output data of the automata with output
belong to a specific algebraic structure, a semiring. In that
way, we will be able to build effective operations on such
automata, using the power of the algebraic structures of
the output data. And we are also able to describe this au-
tomaton by means of a matrix representation with all the
power of linear algebra.

Definition (Automaton with multiplicities): An automa-
ton with a multiplicities over an alphabet A and a semiring
is the 5-uple (A, Q, I, T, K) where

o ) ={51,52--S,} is the finite set of state;

e [ : @ — K isafunction over the set of initial states,
which associates to each initial state a value of K,
called entry cost, and to non-initial state a zero value

)

e F: @ — K is a function over the set of the final
states, which is associated to each final state a value
of K, called final cost, and to non-final state a zero
value;

e T is the transition function, that is 7' : @ x A X
(@ — K which to a state .S;, a letter a and a state
S; associates a value z of K if it exist a transition
labelled with a from the state S; to the state .S; and
and zero otherwise.

Remark 1 i) Automata with multiplicities is a generalisa-
tion of finite automata. In fact, finite automata can be con-
sidered as automata with multiplicities with for the semir-
ing K, the boolan set B=0,1. To each transition we affect
1 if it exists and O if not.

ii) We have not yet, on purpose, defined what a semiring is.
Roughly it is the least structure that allows matrix compu-
tation with units (one can think of a ring without the “mi-
nus” operation’).

The previous automata with multiplicities can be, equiv-
alently, expressed by a linear representation which is a
triplet

o \ € K'YX@ which is a row-vector which coefficients
are \; = I(S;),

o v € K9 is a row-vector which coefficients are
vi = F(S:),

o i A* — K9P is a morphism of monoids (in-
deed K9*? is endowed with the product of matri-
ces) such that the coefficient on the g;th row and q;th
column of p(a) is T(q;, a, q;)

( to be continuated : add a sample of automaton with
associated linear representation)

4. Topological considerations

If K is afield, one sees that the space A(n) of automata of
dimension n (with multiplicities in /) is a K -vector space
of dimension k.n? + 2n (k is here the number of letters).
So, in case the ground field is the field of real and complex
numbers, one can take any vector norm (usually one takes

1
one of the Holder norms [|(z;)ier||a == (X |2il*)®
for a > 1, but any norm will do) and form the distance in
the classical way by

d(A1, A2) = norm(V (A1) — V(Az)) D

one has then the result of Theorem 1. Assuming that K is
the field of real or complex numbers, we endow the space
of series/behaviours with the topology of pointwise con-
vergence (Topology of F. Treves [16]).

Theorem 1 Let (A,,) be a sequence of automata with limit
L (L is an automaton), then one has

Behaviour(L) = limit,, .. Behaviour(A,) (2)
where the limit is computed for the topology of Treves.

Remark 2 i) The definition of relevant distances over spaces
of automata is crucial for the study of evolution and for
probabilistic description [19]. We will return to this no-
tion in a forthcoming study.

it) The reader should be aware that, even if the alphabet is
finite (non void however), the space of series endowed with
Treve’s topology is a metric (Fréchet) space which cannot
be normed.

5. Genetic automata as efficient operators

We define the chromosome for each automata with multi-
plicities as the sequence of all the matrices associated to
each letter from the alphabet . The chromosomes are com-
posed with alleles which are here the lines of the matrix.

In the following, genetic algorithms are going to gen-
erate new automata containing possiblly new transitions
from the ones included in the initial automata.

The genetic algorithm over the population of automata
with multiplicities follows a reproduction iteration broken
up in three steps:



e Duplication where each automata generates a clone
of itself;

o Crossing-over concerns a couple of automata. Over
this couple, we consider a sequence of lines of each
matrix for all . For each of these matrices, a permu-
tation on the lines of the chosen sequence is made
between the analogue matrices of this couple of au-
tomata.

e Mutation where a line of each matrix is randomly
chosen a sequence of new values is given for this
line.

Finally the whole genetic algorithm scheduling for a
full process of reproduction over all the population of au-
tomata is the evolutionary algorithm:

1. For all couple of automata, two children are cre-
ated by duplication, crossover and mutation mech-
anisms;

2. The fitness for each automata is computed;

3. For all 4-uple composed of parents and children,
the performless automata, in term of fitness com-
puted in previuous step, are suppressed. The two
automata, still living, result from the evolution of
the two initial parents.

Remark 3 The fitness is not defined at this level of ab-
stract formulation, but it’s defined corresponding to the
context for which the automata is a model.

6. Applications to competition-cooperation modeling
using prisoner dilemma

6.1. From adaptive strategies to probabilistic automata

The prisoner dilemma is a two-players game where each
player has two possible actions: cooperate ( ) with its ad-
versary or defect it ( ). So, four outputs are possible for
the global actions of the two players. A relative payoff is
defined relatively to these possible outputs, as described
in the following table where the rows correspond to one
player behaviour and the columns to the other player one.

In iterative version of the prisoner dilemma, successive
steps can be defined. Each player do not know the action of
its adversary during the current step but he knows it for the
preceding step. So different strategies can be defined for
a player behaviour, the goal of each one is to obtain max-
imal payoff for himself. In the illustrations 1 and 2, we
describe two strategies with transducers. Each transition
is labeled by the input corresponding to the player percep-
tion which is the precedent adversary action and the output
corresponding to the present player action. The only ini-
tal state is the state 1, recognizable by the incoming arrow
labeled only by the output. The final states are the states
1 and 2, recognizable with the double circles. In strategy
of the illustration 1, the player has systematically the same
behaviour as its adversary at the previous step. In strategy

of the illustration 2, the player chooses definitively to de-
fect as soon as his adversary does once. The previous au-
tomata represent static strategies and so they are not well
adapted for the modelization of evolutive strategies. For
this purpose, we propose a model based on a probabilistic
automaton described by the illustration 3.

This automaton represents all the two-states strategies

for cooperation and competitive behaviour of one agent
against another in prisoner dilemma.
The transitions are labeled in output by the probabilities p;
of their realization. The first state is the state reached after
cooperation action and the second state is reached after
defection.

For this automaton, the associated linear representa-

tion, as described previously, is:
1
. ) 3)
T(C) — <p2

1—po = Pa 1—p4
; T(C) =
D3 1—]73) (©) <p5 1—-ps

6.2. From probabilistic automata to genetic automata

T=(p 1—p1>;F=(

With the linear representation of the automata, we can
compute genetic automata as described in previous sec-
tion. Here the chromosomes are the sequences of all the
matrices associated to each letter. We have to define the
fitness in the context of the use of these automata. The
fitness here is the value of the payoff.

6.3. General GA process for genetic automata

A population of automata is initially generated. These au-
tomata are playing against a predefined strategy, named
SO.

Each automaton makes a set of plays. At each play, we
execute the probabilistic automaton which gives one of the
two outputs: or . With this output and the SO’s output, we
compute the payoff of the automaton, according with the
payoff table.

At the end of the set of plays, the automaton payoff is
the sum of all the payoffs of each play. This sum is the
fitness of the automaton. At the end of these set of plays,
each automaton has its own fitness and so the selection
process can select the best automata. On the end of these
selection process, we obtain a new generation of automata.

This new generation of automata is the basis of a new
computation of the 3 genetics operators.

(to be completed ... we canb add a discussion about
prisoner dilemma and how that can be used in economical
modeling : firm concurence, cold war, ...)

7. Conclusion

(to be continued)
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