
Jebelean-Weber’s Algorithm without

Spurious Factors

Sidi Mohamed Sedjelmaci

LIPN, CNRS UPRES-A 7030
Université Paris-Nord,

Av. J.B.-Clément, 93430 Villetaneuse, France.

sms@lipn.univ-paris13.fr

Abstract
Tudor Jebelean and Ken Weber introduced in [10, 4] an algorithm for finding a

(a, b)-pairs satisfying au + bv ≡ 0 (mod k), with 0 < |a|, |b| <
√

k. It is based on
Sorenson’s “k-ary reduction” algorithm ([9]). One of the major drawbacks is that this
algorithm do not preserves the GCD’s. We present a modified version which avoids
this problem.

Keywords: Integer greatest common divisor (GCD); Extended GCD algorithm;

Complexity analysis; Number theory.

1 Introduction

Given two integers a and b, the greatest commun divisor of a and b, denoted
GCD(a, b), is the largest integer which divides both a and b. Applications for
GCD algorithms include computer arithmetic, integer factoring, cryptology and
symbolic computation [6, 8, 5] . In [9], Sorenson proposed the “right-shift k-ary
algorithm”. It is based on the following reduction. Given two positive integers
u > v relatively prime to k (i.e., (u, k) and (v, k) are coprime), pairs of integers
(a, b) can be found that satisfy

au + bv ≡ 0 (mod k),

with 0 < |a|, |b| <
√

k. (1)

If we perform the transformation (also called “k-ary reduction”):

(u, v) 7−→ (u′, v′) = (|au + bv|/k, min(u, v)),

which replaces u with u′ = |au + bv|/k, the size of u is reduced by roughly
1
2 log2(k) bits since

|au + bv|/k ≤ 2 max(|a|, |b|) u

k
<

2u√
k

. (2)

1

Sorensen suggests table lookup to find sufficiently small a and b satisfying (1).
By contrast, Jebelean [4] and Weber [10] both propose an easy algorithm, which
finds such small a and b that satisfy (1) with time complexity O(n2). This latter
algorithm we call the “Jebelean-Weber algorithm”, or JWA for short. A GCD
algorithm based on this reduction works very well in practice and is included
in Gnu MP multiprecision library [2]. However this GCD algorithm does not
preserves the GCD since:

GCD(v, |au + bv|/k) = α GCD(u, v), with α|a,

whence some spurious factors must be eliminated (see example in Section 4).
Although its good time behaviour, this drawbacks affects somehow the efficiency
of the GCD algorithm. In this present work we show how a slightly modified
version of JWA easily ovoids this problem. Not only this modified version is
desirable for GCD computations but it is also needed in many other applications
such as Jacobi symbol computation or modular inverse to mention only a few [6].

The paper is organized as follows. Notations and definitions are given in
Section 2. In Section 3, we recall the Jebelean-Weber algorithm and propose a
modified version. Section 4 deals with the correctness of our algorithm and we
conclude with some remarks in Section 5.

2 Notation

Throughout this paper, we restrict ourselves to the set of non-negative integers.
Let u and v be two such (non-negative) integers, u and v are respectively n-bits
and p-bits numbers with u ≥ v ≥ 1. Let k be an integer parameter s.t. k = 2m

with m ≥ 2.

Given a non-negative integer x ∈ N , `2(x) represents the number of
significant bits of an non-negative integer x, not counting leading zeros:
`2(x) = blog2(x)c + 1, if x ≥ 1 and `2(0) = 0. So n = `2(u), p = `2(v) and p
satisfies 2p−1 ≤ v < 2p. We let ρ = ρ(u, v) = `2(u)− `2(v) + 1. Thus, we obtain
2ρ−2 < u/v < 2ρ. We assume that p > 2m + ρ + 1.

Let a, b and c be positive integers, the integer x = a mod b is the unique
non-negative integer x such that

0 ≤ x ≤ b− 1 and a− x = 0 mod b.
Note that this notation still holds when a < 0.

If b is relatively prime to k, then r = a/b mod k is the unique non-negative
integer r such that

0 ≤ r ≤ k − 1 and r b ≡ a (mod k).

As noticed by many authors the main difficulty in GCD algorithms happens
when the input data u and v are roughly of the same size [9, 4, 10]. So we

2

shall assume that when Sorenson’s reduction is applied : n − p ≤ m/2 − 1
(or ρ ≤ m/2) so that u/v < 2m/2 =

√
k. Otherwise, we usually apply a more

efficient reduction: the bmod, defined as:
bmod(u, v) = |u− (u/v mod 2ρ)v|/2ρ.

Recall that the determinant of a matrix M =
(

c d
a b

)
is detM = cb−ad. The

extended version of Euclid GCD algorithm is noted EEA [5]. It is tightly linked
with the continued fractions [3, 5] and is important for its multiple applications
in cryptology and computer algebra.

3 The Algorithms

3.1 The Jebelean-Weber Algorithm: JWA

Let us first recall the JWA as stated in [10].

Input: x, y > 0, k > 1, and gcd(k, x) = gcd(k, y) = 1.
Output: (n, d) such that 0 < n, |d| <

√
k, and ny ≡ dx (mod k).

r := x/y mod k ; /* initialization */
f1 = (n1, d1) := (k, 0) ;
f2 = (n2, d2) := (r, 1)

while n2 ≥
√

k do
f1 := f1 − bn1/n2c f2

swap (f1, f2)
endwhile

return f2

Fig. 1. The Jebelean-Weber Algorithm: JWA

When (n, d) is the output result of JWA, the pair (a, b) = (d,−n) (or (−d, n))
satisfies the property au + bv = 0 mod k. The algorithm JWA is nothing but the
extended version of Euclid EEA applied to the pair (k, u/v mod k), where only
one column is added instead of two for EEA (see [5]), and they only differ on
their exit test.

3

3.2 The Modified Jebelean-Weber Algorithm: M-JWA

We give below a modified version that ovoids spurious factors introduced in JWA.

Input: x, y > 0, k ≥ 4 such that gcd(k, x) = gcd(k, y) = 1 and x/y <
√

k.

Output: A 2× 2 integer matrix M =
(

n1 d1

n2 d2

)
such that

0 < n2, |d2| <
√

k, n2y ≡ d2x (mod k) and n1y ≡ d1x (mod k) .

r := x/y mod k ; /* initialization */
f1 = (n1, d1) := (k, 0) ;
f2 = (n2, d2) := (r, 1) ;

while n2 ≥
√

k do
f1 := f1 − bn1/n2c f2

swap (f1, f2)
endwhile

return M =
(

n1 d1

n2 d2

)
Fig. 1. The Modified Jebelean-Weber Algorithm: M-JWA

The new transformation assiociated with the output matrix of M-JWA is de-
fined by (u, v)← (R1, R2) with:

R1 = |n1v − d1u|/k and R2 = |n2v − d2u|/k. (3)

We will prove in the next Section that this transformation (u, v) ← (R1, R2)
preserves the GCD, i.e.: GCD(R1, R2) = GCD(u, v) and avoids the spurious
factors of algorithm JWA.

4 Correctness

Before proving that indeed, M-JWA preserves the GCD, we first recall below some
well known properties [3, 5] of EEA that are also valid for JWA as well as for
M-JWA. Let (ns, ds)s≥1 be the pair of sequences corresponding to the successive
results of f2 in JWA or M-JWA, then ∀s ≥ 1 we have

• ns > 0 and dsds+1 < 0

• ns/ds ≡ x/y (mod k)

• nsds+1 − ns+1ds = ±k

• (ns)s is decreasing and (ds)s is increasing.

Lemma 4.1 The ouptout of JWA satisfies n2y − d2x ≡ 0 (mod k) and
0 < n2, |d2| <

√
k.

4

Proof : ([10]) In the last iteration i of JWA or M-JWA ni must meet the condition
ni <

√
k < ni−1. Hence, since ni−1|di| + ni|di−1| = k, ni−1|di| < k and

|di| < k/ni−1 ≤
√

k. QED

We prove in the following that the output integer matrix of M-JWA enjoys more
interesting properties.

Lemma 4.2 Let u ≥ v ≥ 1 and k = 2t ≥ 4 be three positive integers such

that u/v <
√

k. Let
(

c d
a b

)
be the output integer matrix of M-JWA, then

G = (|du− cv|)/k is a positive integer such that 0 ≤ G ≤ v.

Proof : First, G is an integer since c/d ≡ a/b ≡ u/v mod k = r. Moreover, if
r <
√

k then c = k, d = 0 and G = v. Otherwise k > c ≥
√

k and since |d| ≤ |b|,
we proceed in two cases:
Case 1: If |b| = |d|, then this case happens only when b = −1, d = 1 and
bk/cc = 1. Since k > c >

√
k > u/v, we obtain

G = |u− cv|/k = |u/v − c|(v/k) = (c− u/v)(v/k) < (c/k)v < v.
Case 2: If |b| > |d|. We have G ≤ (|d|u + cv)/k ≤ (|d|ukv + c/k)v. Let us prove
that |d|u

kv + c/k < 1 or u/v < k−c
|d| . From |b| > |d| we obtain |b|−1

|d| ≥ 1 and since
k = c|b|+ a|d|, we obtain the result

k − c

|d|
=

c|b|+ a|d| − c

|d|
= c(
|b| − 1
|d|

) + a ≥
√

k > u/v.

QED

Lemma 4.3 Let u ≥ v ≥ 1 and k ≥ 1 be three integers such that GCD(u, k) =

GCD(u, k) = 1. Let M =
(

c d
a b

)
be an integer matrix with det M =

|cb− ad| = k. If there exist two integers R1, R2 satisfying

k

(
R1

R2

)
= M

(
u
v

)
, then GCD(R1, R2) =GCD(u, v).

Proof : Let α = GCD(u, v) and β = GCD(R1, R2) then k R1 = (cu + dv) so
α|kR1 but GCD(u, k) = 1 then GCD(α, k) = 1 and α|R1. Similarly k R2 =
(au + bv) and α|R2. Hence α|β. Moreover, since |cb− ad| = k 6= 0, M−1 exists

and
(

u
v

)
= k ×M−1

(
R1

R2

)
= k × ε/k ×

(
bR1 − dR2

−aR1 + cR2

)
, where ε = ±1,

hence β|α and the result α = β. QED

Remark: It is worth to note that this Lemma generalizes a well known result

in the case k = ±1, i.e.: if
(

R1

R2

)
= M

(
u
v

)
, and detM = ±1 then

GCD(R1, R2) = GCD(u, v). This situation occurs in EEA.

5

Proposition 4.1 Let
(

n1 d1

n2 d2

)
be the output integer matrix of M-JWA. If(

R1

R2

)
=

(
|n1v − d1u|/k
|n2v − d2u|/k

)
, then R1 and R2 are two integers satisfying

0 ≤ R1 ≤ v, 0 ≤ R2 ≤ 2u/
√

k and GCD(R1, R2) = GCD(u, v).

Proof : We have k

(
R1

R2

)
= N

(
u
v

)
, where N is one of the four following

matrices N1 =
(
−d1 n1

−d2 n2

)
, N2 =

(
d1 −n1

d2 −n2

)
, N3 =

(
−d1 n1

d2 −n2

)
or N4 =

(
d1 −n1

−d2 n2

)
. Then the result derives straightforwards from

Lemma 4.1, 4.2, 4.3 and relation (2).
QED

Example: If (u, v) = (28865, 19203) and k = 26 = 64. Note that GCD(u, v) =

1. We obtain in turn u/v mod k = 1/3 mod 64 = 43, and M =
(

21 −1
1 3

)
.

Hence
R1 = |u + 21v|/64 = 6752, R2 = |3u− v|/64 = 1053.

The JWA algorithm uses the transformation (u, v) ← (v,R2). However
GCD(v,R2) = GCD(19203, 1053) = 3 6= GCD(u, v), while, with M-JWA al-
gorithm, we obtain GCD(R1, R2) = GCD(6752, 1053) = GCD(u, v) = 1. The
spurious factor 3 has been eliminated.

5 Conclusion

In this paper, we have showed that a slight modification easily avoids the
spurious factors introduced by the early version of JWA. Basically the spurious
factors are eliminated without extra amount of time. As a matter of fact, the
JWA algorithm yet provides the matrix M = (f1, f2) which is also output of
M-JWA, but it only uses the vector f2 as a GCD transformation. By contrast,
in M-JWA algorithm, the full matrix M = (f1, f2) is also used to avoid spurious
factors, in a same time. Although the algorithm JWA works well in practice, we
should expect a better running time with our improved version M-JWA.

References

[1] A.V. Aho, J.E. Hopcroft and J.D. Ullman. The Design and Analysis
of Computer Algorithms, Addison Wesley, 1974.

[2] Gnu MP 4.1.2. online reference manuel, http://swox.com/gmp/manuel,
/index.html. 2002.

6

[3] G.H. Hardy and E.V. Wright. An Introduction To The Theory Of
Numbers, Oxford University Press., London, 1979.

[4] T. Jebelean. A Generalization of the Binary GCD Algorithm, in Proc.
of the International Symposium on Symbolic and Algebraic Computation
(ISSAC’93), 1993, 111-116.

[5] D.E. Knuth. The Art of Computer Programming, Vol. 1-2, 2nd ed., Ad-
dison Wesley, 1981.

[6] A.J. Manezes, P.C.van Oorschot, S.,A., Vanstone. Handbook of Ap-
plied Cryptography, Vol. 1-2, 2nd ed., CRC Press, 1997.

[7] A. Schönhage. Schnelle Berechnung von Kettenbruchentwicklugen, Acta
Informatica, 1, 1971, 139-144.

[8] J. von zur Gathen, J. Gerhard. Modern Computer Algebra, 1st ed.,
Cambrige University Press, 1999.

[9] J. Sorenson. Two Fast GCD Algorithms, J. of Algorithms, 16, 1994, 110-
144.

[10] K. Weber. Parallel implementation of the accelerated integer GCD al-
gorithm, J. of symbolic Computation (Special Issue on Parallel Symbolic
Computation), 21, 1996, 457-466.

7

