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1. INTRODUCTION

The following is intended to be a contribution in the area
of what could be called ef�cient algebraic structures or ef-
�cient data structures. In fact, we de�ne and construct
a new data structure, the tables (abstract and reduced),
which are at �rst special multisets of two-raws arrays. The
�rst raw is �lled with words (or more generally, elements
taken in some semigroup) and the second with some coef-
�cients taken in a semiring [7].

Reduced tables realize the (�nite) k-sets sets of Eilen-
berg [6], they are versatile (one can vary the monomials
and the coef�cients), easily implemented and fast com-
putable. Varying the scalars and the transformations on
them, one can obtain many different structures and, among
them, semirings. Examples will be provided and worked
out in full detail.

As an application, we present a new semiring (with
several semiring structures) which can be applied to the
necessity of automatic processing multi-agents behaviour
problems. The purpose of this account/paper is to ex-
pound also the basic elements of these new structures from
a combinatorial point of view. These structures show a
bunch of properties. They will be endowed with several
laws namely : Sum, Hadamard product, Cauchy prod-
uct, Fuzzy operations (min, max, complemented product).
Two groups of applications are presented.

The �rst group is linked to the process of �forgetting�
information in the tables and then obtaining, for instance,
a memorized semiring. The latter is specially suited to
solve the shortest path with addresses problem using the
repeated squaring algorithm on matrices with entries in
this semiring.

The second, linked to multi-agent systems, is announced
by showing a methodology to manage emergent organiza-
tion from individual behaviour models.

2. DESCRIPTION OF THE DATA STRUCTURE

2.1. Tables

The input alphabet being set by the automaton under con-
sideration, we will here rather focus on the de�nition of
semirings providing transition (or transfer) coef�cients. In-
deed, in many applications, we have to compute the weights
of paths in some weighted graph (shortest path problem,
enumeration of paths, cost computations, automata, trans-
ducers to cite only a few) and the computation goes with
two main rules: multiplication in series (i.e. along a path),
and addition in parallel (if several paths are involved). This
involves the least structure endowed with two operations
(k,+,×) and for which matrix computation remains valid,
say the structure of a semiring [7].

A table T is a two-rows array, the �rst row being �lled
with monomials (upper row) taken in some given semi-
group (see [4], [8] or [9]). This is equivalent to saying that
a Table is a �nite multiset of columns.

Multisets are extensively used in rewriting theory and
sometimes named bags. A multiset M = s1, s2, · · · is a
set in which elements are allowed to be repeated which
amounts to the data of a mapping f : Dom(f) 7→ N+,
Dom(f) is the support of the multiset and f the multi-
plicity function. If the support is �nite, so is called the
multiset.

The set of monomials which are present in the �rst row
will be called the indices of the table (I(T )) and for the
second row (V (T )) the values or (coef�cients) of the ta-
ble. The order of columns is not relevant (as in Computer
Algebra Systems where this data structure is impemented).

In the sequel, we will consider two types of laws:
pointwise type (subscript p) and convolution type (sub-
script c).

In order to de�ne the pointwise and convolution com-
position, we must �rst construct one of the two central fea-
tures of the paper, namely the reduction system red.

3. DESCRIPTION OF THE DATA STRUCTURE

3.1. Tables

We will �rst concentrate on the de�nition of semirings
providing transition (or transfer) coef�cients. For conve-



nience, we �rst begin with various examples of laws on
R+ := [0,+∞[ including

1. + (ordinary sum)

2. × (ordinary product)

3. min (if over [0, 1], with neutral 1, otherwise must be
extended to [0,+∞] and then, with neutral +∞) or
max

4. +a de�ned by x+a y := loga(ax + ay) (a > 0)

5. +[n] (Hölder laws) de�ned by x+[n]y := n
√
xn + yn

6. +s (shifted sum, x +c y := x + y − 1, over whole
R, with neutral 1)

7. ×c (complemented product, x+ y − xy, can be ex-
tended also to whole R, stabilizes the range of prob-
abilities or fuzzy [0, 1] and is distributive over the
shifted sum)

For other examples and applications see, for example
[7].
A table T is a two-rows array, the �rst row being �lled
with monomials taken in a given semigroup S (see [4], [8]
or [9]). To be more precise, if

T =
u1 u2 · · · uk
p1 p2 · · · pk

individual columns are allowed to be repeated that is,
for instance that one can get

· · · ui · · · ui · · ·
· · · pi · · · pi · · ·

and columns commute between themselves, that is
· · · ui · · · uj · · ·
· · · pi · · · pj · · · =

· · · uj · · · ui · · ·
· · · pj · · · pi · · ·

This is equivalent to saying that a Table is a �nite mul-
tiset of columns.
Multisets [11] are extensively used in rewriting theory and
sometimes named bags. A multiset M = s1, s2, · · · is a
set in which elements are allowed to be repeated which
amounts to the data of a mapping f : Dom(f) 7→ N+,
Dom(f) is the support of the multiset and f the multi-
plicity function. If the support is �nite, so is called the
multiset.

The set of words which are present in the �rst row will
be called the indices of the table (I(T )) and for the second
row the values or (coef�cients)of the table. The order of
the columns is not relevant (as in Computer Algebra Sys-
tems where this data structure is impemented).
In the sequel, we will consider two types of laws:
pointwise type (subscript p) and convolution type (sub-
script c).
In order to de�ne the pointwise and convolution compo-
sition, we must �rst construct the one of the two central
features of the paper, namely the reduction system red.

3.2. The reduction system red

3.2.1. Reduction

Let T be a table with indices in a semigroup S and val-
ues in a commutative semigroup (k,+). If T owns two

columns ci =
ui
pi

i = 1, 2 with the same index u1 =

u2 = u, we de�ne the reduction

T
red−→ T − {c1, c2}+ c3

where c3 =
u

p1 + p2

De�nition/Proposition 1 i) The reduction system de�ned
above, denoted red, is Noetherian and Con�uent.
ii) The result of the complete application to the process to
a table T

T
red∗−→ T1

will be denoted red(T ).

3.2.2. Operations on tables

Let us consider, two tables T1, T2 and a commutative and
associative law ∗ over the coef�cients. One has the propo-
sition

Proposition 2 i) The reduction of T3 := T1]T2 (multiset
union) depends only on the reduction of Ti; i = 1, 2.
ii) More precisely set

R1 = red(T1) =
u1 u2 · · · uk
p1 p2 · · · pk

and

R2 = red(T2) =
v1 v2 · · · vl
q1 q2 · · · ql

then red(T1 ] T2) = R1+pR2 = R3 where R3[w] =
Ti[w] if w ∈ I(Ti) and w /∈ I(T3−i) and by R3[w] =
T1[w] ∗ T2[w] if w ∈ I(T1) ∩ I(T2)

In particular one has I(R1+pR2) = I(R1) ∪ I(R2).

Note 1 i) At this stage one does not need any neutral. The
structure automatically creates it (the empty table, see al-
gebraic remarks below).
ii) The above is a considerable generalization of an idea
appearing in [3], aimed only to semirings with units.
iii) If (k,+) possesses a neutral 0k, one can add to red an
extra step of withdrawing the columns with coef�cient (or
value) 0k. The new system is Noetherian and Con�uent
and avoids the creation of another neutral.

For convolution type, one needs two laws over k, say
⊕,⊗, the second being distributive over the �rst, i.e. iden-
tically

x⊗ (y ⊕ z) = (x⊗ y)⊕ (x⊗ z) and
(y ⊕ z)⊗ x = (y ⊗ x)⊕ (z ⊗ x) (1)



Taking into account that a table is, in a unique way a
(commutative) sum of columns, it is suf�cient to de�ne the
convolution ⊗ for two columns, which reads

u1

p1

⊗
c

u2

p2
:=

u1u2

p1 × p2
(2)

The constructed structure T (S, k) for tables is then a
semiring (generally without multiplicative unit), the two
laws are compatible with the reduction i.e.

Proposition 3 Let Ti; i = 1, 2
i) The reduction of T3 := T1 ⊗ T2 depends only of the
reduction of Ti; i = 1, 2.
ii) More precisely set

R1 = red(T1) =
u1 u2 · · · uk
p1 p2 · · · pk

and

R2 = red(T2) =
v1 v2 · · · vl
q1 q2 · · · ql

then there exists a (unique) law ⊗p on the reduced ta-
bles such that

red(T1 ⊗ T2) = R1 ⊗c R2 = R3 (3)
iii) The space of tables with coef�cients in k and mono-

mials in S, (T (S, k),],⊗c) is a semiring with an additive
neutral (the empty table). Moreover, this semiring has a
multiplicative unit if S is a monoid.

3.3. Total mass

The total mass of a table is just the sum of the coef�cients
in the bottom row. One can check that

mass(T1⊕ T2) = mass(T1) +mass(T2);
mass(T1⊗ T2) = mass(T1) ·mass(T2) (4)

this allows, if needed, stochastic conditions.

3.4. Algebraic remarks

We have con�ned in this paragraph some proofs of struc-
tural properties concerning the tables. The reader may skip
this section with no serious harm.
First, we deal with structures with as little as possible re-
quirements, i.e. Magmas and Semirings. For formal de�-
nitions, see

http://
encyclopedia.thefreedictionary.com/
Magma%20category

http://mathworld.wolfram.com/
Semiring.html

Proposition 4 (i) Let X be a set, (S,+) a commutative
and associative semigroup.
We denote T (X,S) the set of tables with indices in X and

values in S and de�ne +p as in (3.2.2). Then
i) The law + is associative and commutative. Moreover
the semigroup (T (X,S),+) always possesses a neutral,
the empty table (i.e. with an empty set of indices).
ii) If (k,⊕,⊗) is a semiring and X a semigroup, then the
(T (X, k),⊕,⊗) is a semiring.

Proof. (Sketch) i) To each table T let us associate the
(�nite supported) function fT : X 7→ S de�ned by

fT (w) =
{
T [w] if w ∈ I(T )
0S otherwise (5)

then, check that fT1+pT2
= fT1 + fT2 and that the corre-

spondence T 7→ fT is a isomorphism.
ii) We use a similar technique to show that the correspon-
dence T (X, k)→ k[X] is one-to-one.

Note 2 Pointwise product can be considered as being con-
structed with respect to the (Hadamard) coproduct c(w) =
w⊗w whereas convolution is w.r.t. the Cauchy coproduct

c(w) =
∑
uv=w

u⊗ v (6)

(see [5]).

4. APPLICATIONS

4.1. Specializations and images

Multiplicities, Stochastic and Boolean
Whatever the multiplicities, one gets the classical au-

tomata by emptying the alphabet (setting Σ = ∅).
Memorized Semiring

We explain here why the memorized semiring, devised
at �rst to perform ef�cient computations on the shortest
path problem with memory (of addresses) can be consid-
ered as an image of a �table semiring� (thus proving with-
out computation the central property of [10]).

Let T be here the table semiring with coef�cients in
([0,+∞],min,+). Then a table

T =
u1 · · · uk · · · un
l1 · · · lk · · · ln

(7)

can be written so that l1 = · · · = lk < lm for m > k
(this amounts to say that the set where the minimum is
reached is {u1, u2 · · ·uk}). Then, to such a table, one can
associate φ(T ) := [{u1, u2 · · ·uk}, l1] in the memorized
semiring. It is easy to check that φ transports the laws and
the neutrals and obtain the result.

4.2. Application to evolutive systems

Tables are structured as semirings and are �exible enough
to recover and amplify the structures of automata with
multiplicities and transducers. They give operational tools
for modelling agent behaviour for various simulations in
the domain of distributed arti�cial intelligence [2]. The



outputs of automata with multiplicities or the values of ta-
bles allow to modelize in some cases agent actions or in
other cases, probabilities on possible transitions between
internal states of agents behaviour. In all cases, the alge-
braic structures associated with automata outputs or tables
values is very interesting to de�ne automatic computations
in respect with the evolution of agents behaviour during
simulation.

One of our aims is to compute dynamic multiagent sys-
tems formations which emerge from a simulation. The use
of table operations delivers calculable automata aggregate
formation. Thus, when table values are probabilities, we
are able to obtain evolutions of these aggregations as adap-
tive systems do.

With the de�nition of adapted operators coming from
genetic algorithms, we are able to represent evolutive be-
haviors of agents and so evolutive systems [1]. Thus, ta-
bles and memorized semiring are promizing tools for this
kind of implementation which leads to model complex sys-
tems in many domains.
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