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Abstract. In a recent series of communications we have shown that the reordering
problem of bosons leads to certain combinatorial structures. These structures may be
associated with a certain graphical description. In this paper, we show that there is
a Hopf Algebra structure associated with this problem which is, in a certain sense,
unique.

Contents

1 Introduction 2

2 Single and double exponentials 2

2.1 One parameter groups and the connected graph theorem . . . . . . . . . 2

2.1.1 Substitutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1.2 Combinatorial matrices and one-parameter groups . . . . . . . . . 4

2.2 A product formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 The double exponential formula . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Monomial expansion of the double exponential formula . . . . . . . . . . 6

3 Diagrammatic expansion of the double exponential formula 9

3.1 Algebra structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Admissible coproducts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11



CONTENTS 2

4 Hopf algebra structures associated with ∆WS and ∆BS 11

4.1 The philosophy of bi- and Hopf algebras thru representation theory . . . 11

4.2 Bialgebra structures on LDiag and Diag . . . . . . . . . . . . . . . . . . 12

5 Conclusion 13

1. Introduction

In a relatively recent paper Bender, Brody and Meister [3] introduced a special Field

Theory described by a product formula (a kind of Hadamard product for two exponential

generating functions - EGF) in the purpose of proving that any sequence of numbers

could be described by a suitable set of rules applied to some type of Feynman graphs.

Inspired by this idea, we have worked out combinatorial consequences of the product

and exponential formulas in a recent series of papers [12, 13, 14, 15, 16, 17, 18].

Here, we consider two aspects of the product formula for formal power series applied

to combinatorial field theories. Firstly, we remark that the case when the functions

involved in the product formula have a constant term (equal to one) is of special interest

as often these functions give rise to substitutional groups. The groups arising from the

normal ordering problem of boson strings are naturally associated with explicit vector

fields, or their conjugates, in the case when there is only one annihilation operator

[14, 17]. We also consider one-parameter groups of operators when several annihilators

are present. Secondly, we discuss the Feynman-type graph representation resulting from

the product formula. We show that there is a correspondence between the packed integer

matrices of the theory of noncommutative symmetric functions and the labelled version

of these Feynman-type graphs.

We thus obtain a new Hopf algebra structure over the space of matrix quasi-

symmetric functions that is a natural cocommutative Hopf algebra structure on the

space of diagrams themselves which originates from the formal doubling of variables in

the product formula.

Aknowledgements We would like here to express our gratitude to Jean-Louis

Loday, Jean-Bernard Zuber, Jean-Yves Thibon and Florent Hivert for stimulating

interactions on this subject.

2. Single and double exponentials

2.1. One parameter groups and the connected graph theorem

2.1.1. Substitutions The Weyl algebra W is the C-associative algebra (with unit)

defined by two generators a and a+ and the unique relation [a, a+] = 1. This algebra

is of Gelfand-Kirillov dimension 2 and has a basis consisting of the following family{
(a+)kal

}
k,l≥0

.

It is known that it is impossible to represent faithfully a, a+ by bounded operators in

a Banach space, but one often uses the representation a 7→ d
dx

; a+ 7→ x as operators
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acting “on the line” or, better said, on the space of polynomials C[x]. Through this

representation (faithful and coined under the name “Bargmann-Fock”), one sees that

we can define a grading on W by the weight function w(a) = −1; w(a+) = 1.

A homogeneous operator (under this grading) Ω ∈ W is then of the form

Ω =
∑

k,l; k−l=e
c(k, l)(a+)kal (1)

According to whether the excess e is positive or negative, the normal ordering of Ωn

reads

N (Ωn) = (a+)ne

( ∞∑

k=0

SΩ(n, k)(a+)kak

)
or

( ∞∑

k=0

SΩ(n, k)(a+)kak

)
(a)n|e| (2)

We get combinatorial quantities with two indices i.e. an infinite N × N matrix

{SΩ(n, k)}n,k≥0 which we will call the generalized Stirling matrix of Ω. In fact, it is

easily checked that, if the coefficients c(k, l) of Ω are non-negative integers, so are the

entries (SΩ(n, k)) of this matrix.

Let us give some examples of these generalized Stirling matrices.

For Ω = a+a, one gets the usual matrix of the Stirling numbers of the second kind


1 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 · · ·
0 1 1 0 0 0 0 · · ·
0 1 3 1 0 0 0 · · ·
0 1 7 6 1 0 0 · · ·
0 1 15 25 10 1 0 · · ·
0 1 31 90 65 15 1 · · ·
...

...
...

...
...

...
...

. . .

(3)

For Ω = a+aa+ + a+, we obtain


1 0 0 0 0 0 0 · · ·
2 1 0 0 0 0 0 · · ·
6 6 1 0 0 0 0 · · ·

24 36 12 1 0 0 0 · · ·
120 240 120 20 1 0 0 · · ·
720 1800 1200 300 30 1 0 · · ·

5040 15120 12600 4200 630 42 1 · · ·
...

...
...

...
...

...
...

. . .

(4)

and for w = a+aaa+a+


1 0 0 0 0 0 0 0 0 · · ·
2 4 1 0 0 0 0 0 0 · · ·

12 60 54 14 1 0 0 0 0 · · ·
144 1296 2232 1296 306 30 1 0 0 · · ·

2880 40320 109440 105120 45000 9504 1016 52 1 · · ·
...

...
...

...
...

...
...

...
...

. . .

(5)



CONTENTS 4

Let Ω =
∑

k,l≥0 c(k, l)(a
+)kal (finite supported sum) be a general term of W in normal

form and let us call a dominant term, the sum of monomials with maximum length

k + l. It is not difficult to prove that, if Ω is homogeneous, the dominant term

consists of a single monomial c(k0, l0)(a+)k0al0 . Thus, the dominant term of Ωn must

be c(k0, l0)n(a+)nk0anl0 . Then, for example in the case when e = k0 − l0 ≥ 0, in the

generalized Stirling matrix of Ω, the rightmost non-zero coefficient of the line n has

address (n, n.l0) and bears the coefficient c(k0, l0)n. All these matrices are row-finite

and triangular iff l0 = 1 (which means that no monomial possesses more than one a).

Remark 2.1 i) There is a beautiful combinatorial expression of the normal form of wn

in case w is a string in a and a+. The normal form of w is

N (w) =
∑

k≥0

r(B, k)(a+)r−kas−k (6)

where r(B, k) is the kth rook number of a certain board B constructed after w (see

[13, 25], and r = |w|a+ ; s = |w|a are the number of occurences of a+ and a in w.

ii) To each matrix M ∈ CN×N of this kind and more generally “row finite” matrices

(which means that, for each n, the family (M(n, k))k∈N is finite supported), one can

associate a transformation of EGFs (see [14, 17]) f 7→ f̂ such that, if f =
∑

n≥0 an
zn

n!

then f̂ =
∑

n≥0 bn
zn

n!
(with bn =

∑
k≥0M(n, k)ak).

iii) It can be shown that, if no monomial of Ω possesses more than one a, the action

of the transformation induced by Ω (through the Bargmann-Fock representation) can be

expressed in terms of vector fields or their conjugates, thus the one-parameter group eλΩ

acts by substitutions and products [14, 17].

2.1.2. Combinatorial matrices and one-parameter groups One can also draw

generalized Stirling matrices from another source, namely from the combinatorial graph

theory.

Let C be a class of graphs such that

Γ ∈ C iff every connected component of Γ is in C (7)

For these classes of graphs, one has the exponential formula [9, 23, 21] saying roughly

that

EGF(all graphs) = eEGF(Connected Graphs) (8)

This implies, in particular, that the matrix

M(n, k) = number of graphs with n vertices and having k connected components (9)

is the matrix of a substitution (see [14, 17]). One can prove, using a Zariski-like argument

(a polynomial vanishing for every integer vanishes everywhere), that, if M is such a

matrix (with identity diagonal) then, all its powers (positive, negative and fractional)

are substitution matrices and form a one-parameter group of substitutions, thus coming

from a vector field on the line which can be computed.
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But no nice combinatorial principle seems to emerge.

For example, beginning with the Stirling substitution z 7→ ez − 1, we know that there

is a unique one-parameter group of substitutions sλ(z) such that, for λ integer, one has

the value (s2(z)↔ partition of partitions)

s2(z) = ee
z−1 − 1 ; s3(z) = ee

ez−1−1 − 1 ; s−1(z) = ln(1 + z) (10)

but we have no nice description of this group nor of the vector field generating it.

2.2. A product formula

The Hadamard product of two sequences (an)n≥0; (bn)n≥0 is given by the pointwise

product (anbn)n≥0. We can at once transfer this law on EGFs by

(∑
n≥0

an
xn

n!

)
�exp

(∑
n≥0

bn
xn

n!

)
:=
∑
n≥0

anbn
xn

n!
(11)

In the following, we will omit the subscript (in �exp) as this will be the only kind of

Hadamard product under consideration.

But, it is not difficult to check that the family(
(y ∂

∂x
)n

n!

xm

m!

)

n,m∈N
(12)

is summable in C[[x, y]] (the space of formal power series in x and y) as we have

(y ∂
∂x

)n

n!

xm

m!
=

{
0 if n > m

ynxm−n
n!(m−n)!

otherwise
(13)

and therefore, for F (x) =
∑

n≥0 an
xn

n!
and G(x) =

∑
n≥0 bn

xn

n!
one gets the product

formula

(F �G)(x) := F (x
∂

∂y
)G(y)|y=0 =

∑
n≥0

anbn
xn

n!
(14)

With this product, the set of series forms a commutative associative algebra with unit,

which is actually the product algebra CN.

2.3. The double exponential formula

The case F (0) = G(0) = 1 will be of special interest in our study. Every series with

constant term 1 can be represented by an exponential exp(
∑

n≥1 Ln
xn

n!
) which can be

expanded using Bell polynomials and Faà di Bruno coefficients. Let us now recall some

facts about these combinatorial notions.

We still consider the alphabet L = {L1, L2, · · ·} = {Li}i≥1, then the complete Bell

polynomials [7] are defined by

exp(
∑
m≥1

Lm
xm

m!
) =

∑
n≥0

Yn(L)
xn

n!
(15)
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We will denote alternatively Yn(L1, · · ·Ln) for Yn(L) as this polynomial is independent

from the subalphabet (Lm)m>n. We know [7] that

Yn(L) = Yn(L1, · · ·Ln) =
∑

||α||=n
((α))Lα =

∑

||α||=n
((α))Lα1

1 L
α2
2 · · ·Lαnn (16)

where α = (α1, α2, · · ·αn) is an integral vector, ||α|| :=
∑m

j=1 jαj, Lα = Lα1
1 L

α2
2 · · ·Lαnn

is the multiindex standard notation and

((α)) =
||α||!

(1!)α1(2!)α2 · · · (n!)αn(α1)! · · · (αn)!
(17)

is the Faà di Bruno coefficient [8, 20] which will be interpreted, in the next section, as

enumerating structures called set partitions.

Combining (15) and (16) one gets

exp

(∑
m≥1

Lm
(y ∂

∂x
)m

m!

)
exp

(∑
n≥1

Vn
xn

n!

)∣∣∣
x=0

=
∑

k≥0

yk

k!

( ∑

||α||=||β||=k
((α))((β))LαVβ

)
(18)

Formula (18) will be called in the sequel the double exponential formula.

2.4. Monomial expansion of the double exponential formula

In this paragraph, we will use unordered and ordered set partitions. By an unordered

partition P of the set X we mean a finite subset P ⊂ (P(X)−{∅}) (P(X) is the set of

all subsets of X [7]) such that
⋃
Y ∈P

Y = Xand(Y1,Y2 ∈ P, Y1 6= Y2 =⇒ Y1 ∩ Y2 = ∅) (19)

this explains why without any convention the classical Stirling number of the second

kind S(0, 0) equals 1. The elements of P are called blocks.

Following Comtet ([8] p 39), we will say that a partition P is of type α = (α1, α2, · · · , αm)

iff there is no j-block for j > m and αj j-block(s) for each j ≤ m. This implies in

particular that the set X is of cardinality ||α|| := ∑m
j=1 jαj.

Here one can see easily that the number of blocks of a partition of type α is

|α| =
∑m

j=1 αj. An ordered partition of type α of the set X is just a partition in

which the blocks are labelled from 1 to |α|.
In other words, one could say that an ordered partition is a list of subsets and an

unordered partition is a set of subsets.

To every ordered partition P = (B1, B2, · · · , B|α|) corresponds an unordered one

Φp(P ) = {B1, B2, · · · , B|α|} where Φp is the “forgetful” function which forgets the order.

Now to a pair (P (1), P (2)) of ordered partitions of the same set (call it X)

P (1) = (B
(1)
1 , B

(1)
2 , · · · , B(1)

k1
) P (2) = (B

(2)
1 , B

(2)
2 , · · · , B(2)

k2
) (20)

one can associate the intersection matrix IMo(P
(1), P (2)) such that the entry of address

(i, j) is the number of elements of the intersection of the block i of the first partition
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and the block j of the second. For example with partitions of X = {1, 2, 3, 4, 5, 6}, and

specifying

P (1) = ({1, 2, 5}, {3, 4, 6}) P (2) = ({1, 2}, {3, 4}, {5, 6}),

one gets

{1, 2} {3, 4} {5, 6}
{1, 2, 5} 2 0 1

{3, 4, 6} 0 2 1

and hence the matrix(
2 0 1

0 2 1

)
(21)

Formally, IMo(P
(1), P (2)) is the matrix of size k1 × k2 such that

IMo(P
(1), P (2))[i, j] = card(B

(1)
i ∩ B

(2)
j ) (22)

The matrices obtained in such a way form the set of packed matrices defined in [19]

as, indeed, one sees that every packed matrix can be obtained through the matching

procedure illustrated above.

If we consider now a pair of unordered partitions (Q(1), Q(2)), we cannot associate to

them a single matrix but rather a class of matrices obtained from the preimages of

(Q(1), Q(2)) under Φp×Φp. In a compact formulation, the set of matrices so obtained is
{
IM0(P (1), P (2))

}
Φp(P (1))=Q(1); Φp(P (2))=Q(2)

(23)

For example, with

(Q(1), Q(2)) = ( {{1, 2, 5}, {3, 4, 6}} , {{1, 2}, {3, 4}, {5, 6}} ) (24)

one gets the 12 preimages (P
(1)
i , P

(2)
j ), where P

(1)
i are among the two preimages of Q(1)

and P
(2)
j are among the 6 preimages of Q(2). Explicitely

P
(1)
1 = ({1, 2, 5}, {3, 4, 6})P (1)

2 = ({3, 4, 6}, {1, 2, 5})
are the preimages of Q(1) and

P
(2)
1 = ({1, 2}, {3, 4}, {5, 6})P (2)

2 = ({1, 2}, {5, 6}, {3, 4})
P

(2)
3 = ({3, 4}, {1, 2}, {5, 6})P (2)

4 = ({3, 4}, {5, 6}, {1, 2})
P

(2)
5 = ({5, 6}, {1, 2}, {3, 4})P (2)

6 = ({5, 6}, {3, 4}, {1, 2})
are the preimages of Q(2).

The set of matrices so obtained reads

IMu(M) =
{( 2 0 1

0 2 1

)
,

(
2 1 0

0 1 2

)
,

(
1 2 0

1 0 2

)
,

(
0 2 1

2 0 1

)
,

(
0 1 2

2 1 0

)
,

(
1 0 2

1 2 0

)}
. (25)
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This is the orbit of one of them under permutation of lines and columns.

The correspondence which, to a pair of unordered partitions, associates a class of

matrices (under permutations of lines and columns) will be denoted IMu.

Thus, one gets a commutative diagram of mappings

Pairs of ordered partitions
Φp×Φp−−−−→ Pairs of unordered partitions

IMo

y
yIMu

Packed matrices
Class−−−→ Classes of packed matrices

Dgo

y
yDgu

Labelled diagrams
Φd−−−→ Diagrams

(26)

The scheme presented above shows how to associate to a pair of ordered (resp.

unordered) set partitions, a packed matrix (resp. a class of packed matrices). The

packed matrices can be alternatively represented by labelled diagrams which are bipartite

multigraphs built from two sets of vertices being a column of white spots (WS) and

column of black spots (BS) as shown below.

i
i
y
y
y

((((
(((

((((
(((

��
��
���

��
��
���

l
l
l
l
l
l

hhhhhh

Labelled diagram of the matrix

(
2 0 1

0 2 1

)

Let us explain how to associate to a (drawn) diagram a packed matrix. The white

(resp. black) spots are labelled from 1 to r (resp. 1 to c) from top to bottom and the

number of lines from the i-th white spot to the j-th black spot is exactly the entry aij
of the matrix. Conversely, a packed matrix of dimension r× c being given, one draws r

white spots (resp. c black spots) and (with the labelling as above) join the i-th white

spot to the j-th black by aij lines. This gives exactly the one-to-one correspondence

between (drawn) diagrams and packed matrices.

In the sequel, we set Diagu := Dgu ◦ IMu and Diago := Dgo ◦ IMo for the

mappings which associate diagrams to pairs of partitions. Now, the multiplicity of

a diagram D is the number of pairs (P (1), P (2)) of unordered partitions such that

Dgu(IMu(P
(1), P (2))) = D.

Let us call bitype of a diagramD the pair (α(P (1)), α(P (2))) whereDgu(IMu(P
(1), P (2))) =

D (remark that it does not depend on the choosen premiage inside the formula) and we

will refer it as the bitype (α(D), β(D))) of D. In a similar way α(D) (resp. β(D)) will



CONTENTS 9

be called the left (resp. the right) type of D and |D| (= |α(D)| = |β(D)|) will denote

the number of edges of D.

The product formula now reads

exp
(∑
m≥1

Lm
m!

(
y
∂

∂x

)m )
exp
(∑
n≥1

Vn
n!
xn
)∣∣∣∣

x=0

=

∑
n≥0

yn

n!

( ∑
Ddiagram
|D|=n

mult(D)Lα(D)Vβ(D)
)

=
∑

D diagram

mult(D)

|D|! m(D,L,V, y) (27)

with

m(D,L,V, y) := Lα(D)Vβ(D)y|D|. (28)

3. Diagrammatic expansion of the double exponential formula

The main interest of the expansion (27) is that we can impose (at least) two types of

rules on the diagrams

• on the diagrams themselves (selection rules) : on the outgoing degrees, ingoing

degrees, total or partial weights (the graph is supposed oriented from white to

black spots)

• on the set of diagrams (composition and decomposition rules): product and

coproduct on the space of diagrams.

We have already such a structure on the space of monomials (i.e. the polynomials).

The (usual) product of polynomials is well known and amounts to the addition of the

multidegrees. The (usual) coproduct is given by the substitution of a “doubled” variable

to each variable [4, 20]. For example, with P = x2y3, we first form (x1 + x2)2(y1 + y2)3,

expand and then separate (on the left) the “1” labelled variables and (on the right) the

“2” labelled. As

P = x2
1y

3
1 + 3x2

1y
2
1y2 + 3x2

1y1y
2
2 + x2

1y
3
2 + 2x1y

3
1x2 + 6x1y

2
1x2y2 +

6x1y1x2y
2
2 + 2x1x2y

3
2 + y3

1x
2
2 + 3y2

1x
2
2y2 + 3y1x

2
2y

2
2 + x2

2y
3
2 (29)

one gets, with ∆ the coproduct operator,

∆(P ) = x2y3 ⊗ 1 + 3x2y2 ⊗ y + 3x2y ⊗ y2 + x2 ⊗ y3+

2xy3 ⊗ x+ 6xy2 ⊗ xy + 6xy ⊗ xy2 + 2x⊗ xy3+

y3 ⊗ x2 + 3y2 ⊗ x2y + 3y ⊗ x2y2 + 1⊗ x2y3. (30)

The space of polynomials with product and coproduct (and other items like

neutrals, co-neutrals and antipode, which will be made more precise in the next

paragraph) is endowed with the structure of a Hopf algebra.

The last consideration suggests the following question:

Is it possible to structure the (spaces of) diagrams into a Hopf algebra ? Is it

possible that this structure be compatible, in some sense, with the mapping (D,L,V, y)→
m(D,L,V, y) ?
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Answer is yes. To establish it, we have to proceed in three steps.

• First Step : Define the space(s)

• Second Step : Define a product

• Third Step : Define a coproduct

3.1. Algebra structure

First step. — Let DiagC (resp. LDiagC) be the C-vector space freely generated by

the diagrams (resp. labelled diagrams) i.e.

DiagC :=
⊕

d diagram

C LDiagC :=
⊕

d labelleddiagram

Cd (31)

at this stage, we have a linear mapping (linear arrow) LDiagC → DiagC provided by

the linear extension of Φd and an arrow (linear, by construction) m(.,L,V, z) : DiagC →
C[L ∪ V ∪ {z}] provided by the linear extension of m(.,L,V, z).

Second step. — We remark that, if

d1 ? d2 =
d1

d2
(32)

denotes the superposition of the diagrams, then

m(d1 ? d2,L,V, z) = m(d1,L,V, z)m(d2,L,V, z). (33)

The law (32) makes sense as well for labelled and unlabelled diagrams. In the first

case, it amounts to computing the blockdiagonal product of packed matrices. Indeed,

for M1, M2 being packed matrices, one has

Dgo

((
M1 0

0 M2

))
= Dgo(M1) ? Dgo(M2). (34)

This product yields the product of monomials in the following way. From D a

diagram and all the other parameters fixed, with the setting of (28), we get a polynomial.

The product (32) is associative with unit (the empty diagram), it is compatible with

the arrow Φd and so defines the product on Diag which, in turn is compatible with the

product of monomials.

Labelled diagrams2 Φd×Φd−−−−→ Diagrams2 m(?,L,V,z)×m(?,L,V,z)−−−−−−−−−−−−−→ Monomials2

product
y product

y product
y

Labelled diagrams
Φd−−−→ Diagrams

m(?,L,V,z)−−−−−−→ Monomials

(35)

Remark 3.1 One sees easily that the set of labelled diagrams (resp. diagrams) is closed

under products and therefore is a monoid. The spaces LDiagC and DiagC are thus

algebras of these monoids [1, 2, 4].
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3.2. Admissible coproducts

For the coproduct on LDiag , we have several possibilities:

(i) split with respect to the white spots (two ways : by intervals and by subsets)

(ii) split with respect to the black spots (two ways : by intervals and by subsets)

(iii) split with respect to the edges

The discussion goes as follows:

a) (iii) does not give a nice identity with the monomials (when applying d 7→ m(d, ?, ?, ?))

nor do (ii) and (iii) by intervals.

b) (i) and (ii) are essentially the same (because of the WS ↔ BS symmetry).

In fact (i) and (ii) by subsets give a good representation and, moreover, they are

appropriate for several physics models.

In the next section, we develop the possibility (i) and (ii) by subsets.

4. Hopf algebra structures associated with ∆WS and ∆BS

4.1. The philosophy of bi- and Hopf algebras thru representation theory

Let A be a k-algebra (k is a field as R or C). In this paragraph, we consider associative

algebras with unit (AAU). A representation of A is here a pair (V, ρV ) where V is a

k-vector space and ρV : A → Endk(V ) a morphism of k-algebras (AAU).

One can make operations with representations as direct sums and quotient of a

representation by a sub-representation (a sub-representation is a subspace which is

closed under the action of A). In general, one does not know how to endow the tensor

product (of two representations) and the dual (of a representation) with the structure

of representation.

It is however classical in two cases: groups and Lie algebras.

If G is a group, a representation of G is a pair (V, ρV ) where V is a k-vector space and

ρV : G → Autk(V ) a morphism of groups. If G is a Lie algebra, a representation of G

is a pair (V, ρV ) where V is a k-vector space and ρV : G→ Endk(V ) a morphism of Lie

algebras (i.e. ρV ([u, v]) = ρV (u)ρV (v)− ρV (v)ρV (u)). These two cases enter the scheme

of (AAU) as a representation of a group can be extended uniquely as a representation

of its algebra kG and a representation of a Lie algebra as a representation of Uk(G), its

envelopping algebra. These two constructions (kG and Uk(G)) are (AAU).

For the sake of readibility let us denote in all cases ρV (g)(u) by g.u (g ∈ G and u ∈ V ).

If G is a group and V,W two representations, we construct a representation of G on

V ⊗W by

g.(u⊗ v) = g.u⊗ g.v (36)

If G is a Lie algebra and V,W two representations, we construct a representation of G

on V ⊗W by

g.(u⊗ v) = g.u⊗ v + u⊗ g.v (37)



CONTENTS 12

This can be rephrased in saying that the action of g in the first case (group) is g ⊗ g
and in the second (Lie algebra) g ⊗ 1 + 1 ⊗ g (1 is here for the appropriate identity

mapping). In the two cases, it amounts to give a linear mapping ∆ : A → A⊗A which

will be called a coproduct.

One can show [6] that, if we want that this new operation enjoy “nice” properties

(associativity of the tensor product etc...), one has to suppose that this coproduct is a

morphism of (AAU) (A⊗A has received the structure of - non twisted - tensor product

of algebras), that it is coassociative with a counit [6]. Let us make these requirements

more precise.

The first says that for all x, y ∈ A one has ∆(xy) = ∆(x)∆(y), the second that the two

compositions

A ∆−→ A⊗A ∆⊗1A−→ A⊗A⊗A and A ∆−→ A⊗A 1A⊗∆−→ A⊗A⊗A (38)

are equal, the third says that there is a mapping (linear form) ε : A → k such that the

compositions

A ∆−→ A⊗A ∆⊗ε−→ A⊗ k nat−→ A and A ∆−→ A⊗A ε⊗∆−→ k ⊗A nat−→ A (39)

(where nat is for the natural mappings) are equal to the identity 1A.

An algebra (AAU) together with a coproduct ∆ and a counity ε which fulfills the three

requirements above is called a bialgebra.

If, moreover one wants to have a nice dualization of the representations (i.e. nice

structures for the duals V ∗ = Hom(V, k)), it should exist an element of Hom(A,A)

such that the compositions

A ∆−→ A⊗A α⊗1A−→ A⊗A µ−→ A and A ∆−→ A⊗A 1A⊗α−→ A⊗A µ−→ A(40)

are equal to eAε (where eA denotes the unit of A). When a bialgebra possesses such

an element (unique), it is called the antipode and the bialgebra a Hopf algebra. For

more details and connections to physics, one can consult [6].

One can prove that the bialgebras constructed below possess an antipode and then

are Hopf algebras.

4.2. Bialgebra structures on LDiag and Diag

The space spanned by the packed matrices has already received a structure of Hopf

algebra, the algebra MQSym [19]. We briefly review the structure of this Hopf algebra.

We describe in details ∆WS as the other coproduct is actually got by the same process

but applied on the columns instead of the lines. Let M be a packed matrix of dimensions

k1×k2 for every subset X ∈ [1..k1] we consider the matrix πX(M) := pack(M [X, [1..k2]]),

the restriction to the lines of X and then packed (with this restriction to the lines, we

only need to perform a horizontal packing). Thus, the coproduct ∆WS reads

∆WS(M) =
∑

X+Y=[1..k1]

πX(M)⊗ πY (M) (41)
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To avoid confusion we will call the supporting space HWS (= MQSym). We keep the

(total) grading of MQSym by the total weight (i.e. the sum of the coefficients) of

the matrices. The packed matrices are a linear basis of HWS = MQSym, thus every

element expresses uniquely

x =
∑

M packed

λM(x)M (42)

The coproduct above is cocommutative and with counit λ∅ where ∅ is the void matrix

corresponding to the void diagram. This particular matrix will be denoted 1HWS
.

For example, with the packed matrix above one has

∆WS(




2 0

0 2

1 1


) =




2 0

0 2

1 1


⊗ 1HWS

+
(

2
)
⊗
(

0 2

1 1

)
+
(

2
)
⊗
(

2 0

1 1

)
+

(
1 1

)
⊗
(

2 0

0 2

)
+

(
2 0

0 2

)
⊗
(

1 1
)

+

(
2 0

1 1

)
⊗
(

2
)

+

(
0 2

1 1

)
⊗
(

2
)

+ 1HWS
⊗




2 0

0 2

1 1




This coproduct is compatible with the usual coproduct on the monomials for the

constant alphabet V = 1N defined by Vn = 1 for all n ≥ 0. Then, using Sweedler’s

notation, for this particular V, if ∆WS(d) =
∑
d(1) ⊗ d(2), one has

m(d,L′ + L′′,1N, z) =
∑

m(d(1),L′,1N, z)m(d(2),L′′,1N, z) (43)

Thus, one sees easily that, with this structure (product with unit, coproduct and

the counit), LDiagC is a bialgebra graded in finite dimensions and then a Hopf algebra.

The arrow LDiagC → DiagC endows DiagC with a structure of Hopf algebra.

5. Conclusion

The structure of the Hopf algebras LDiagC,DiagC, by a theorem of Cartier, Milnor and

Moore [5, 22], is that of envelopping algebras of their primitive elements (DiagC, being

commutative, is thus an algebra of polynomials).

Moreover, it appears that the structure described above is the starting point for a

series of connections with mathematical and physical Hopf algebras. The coproduct

∆WS is the cristallisation (q = 1) of a one-parameter deformation of coproducts (all

coassociative) on LDiagC ' MQSym, the other end (q = 0) being an infinitesimal

coproduct isomorphic to ∆MQSym. Recently, FQSym (a subalgebra of MQSym) has

been established by Foissy [10] as a case in a family of Hopf algebras of decorated

planar trees which is strongly related to other Hopf algebras like Connes-Kreimer’s and

Connes-Moscovici’s [10, 11].
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