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Abstract. We deal in the paper with topological quantum mechanics. We show on the
example of anyon system that the space of quantum states depends on a Hamiltonian.

1. Introduction
The aim of the paper is to show that the space of quantum states in topological quantum
mechanics (TQM) depends on the Hamiltonian of the system. In quantum mechanics (QM)
wave functions are complex square–integrable functions on the classical configuration space. For
different Hamiltonians the systems of eigenstates are different but the Hilbert space spanned on
any system does not depend on a Hamiltonian, what is a consequence of the spectral theorem.
States in QM forme the Hilbert space of complex square–integrable functions on the classical
configuration spac, and Hamiltonians are Hermitian operators.

In TQM the situation is totally different. Wave functions can be defined on the universal
covering of the classical configuration space, or as multivalued functions defined on this space.
The wave functions are equivariant with respect to the standard action of the fundamental group
of the classical configuration space. Hamiltonians are not Hermitian operators and we cannot
use the spectral theorem. Hamiltonians in TQM are Hermitian operators on their domains, but
the domain depends on the Hamiltonian in contrary to QM.

The paper is organised as follows. In Section 2 we give some general information about TQM.
In Section 3 we consider a special case of TQM – anyons on a plane. We show that the space
of quantum states of a system of free anyons is the whole Hilbert space of squre–integrable
equivariant functions. Further we show that the space of quantum states for the system of free
anyons and for the system of anyons in a homogeneous potential field has only the zero element
as the intersection. At last we show that the space of quantum states for the anyon system in
anisotropic harmonic oscillator potential is the zero space.

2. Topological quantum mechanics
Let M be a non-simply connected Riemann manifold of classical configurations of a physical
system, with the fundametal group π1(M). Let us consider the universal covering

p : M̃ −→ M (1)

consistent with the Riemann structure on M . It means that M̃ is also a Riemann manifold, and
p is a local isometry.

Let
L : π1(M)× M̃ −→ M̃ (2)



be the standard left free action of the fundamental group on the total space M̃ and

χ : π1(M) −→ U(1) (3)

be a unitary one-dimensional representation. A function f : M̃ −→ C is called χ–equivariant
when

f(L([γ], m̃)) = χ([γ])f(m̃) (4)

for [γ] ∈ π1(M), m̃ ∈ M̃ . For the case of χ being the trivial representation a χ-equivariant
function is π1(M)–invariant and it is the lifting of a function defined on the base space M .

We can define the scalar product of equivariant functions by the formula

< f, g >=
∫

M
fg∗dµ (5)

because the integrand is π1(M)-invariant (dµ denotes the volume form on M). The space of
quantum space in TQM is a subspace of the Hilbert space of square–integrable χ–equivariant
functions [1], [2]

H = L2
χ(M,C, dµ) (6)

satisfying some boundary conditions.
The kinetic energy operator is defined as

T̂ = − 1
2m

∆̃ , (7)

where ∆̃ is the Laplace operator on M̃ (it is the lifting of the Laplace operator ∆ on M) and
we put h̄ = 1. Although ∆ is a Hermitean operator in L2(M,C, dµ) the T̂ is in general not
an operator in L2

χ(M,C, d̃µ), as we will see on an example of anyons. T̂ is defined only on a
subspace of L2

χ(M,C, d̃µ) Moreover for Hamiltonians of the form

Ĥ = T̂ + V (8)

the domain of the operator Ĥ depends on the potential V .

3. Anyons on a plane.
Anyons are hard core particles, so two or more particles can not be placed at the same point.
Let us consider a system of several kinds of anyons on a plane: N1 anyons of the first kind, N2

anyons of the second, . . ., NK anyons of the K–th. Anyons of the same kind are indistinguishable
[3], [4]. We identify the plane with the complex plane C. The classical configuration space of
the system is the quotient space

QN1,...,NK
=

CN \DN

SN1 × . . .× SNK

, N = N1 + . . . NK , (9)

where the direct product of symmetric groups SN1 × . . . × SNK
acts on CN in the standard

way and DN denotes the fat diagonal of CN . The symmetric group SNK
permutes positions

of the k–th kind particles. The stratification (9) result with that anyons of the same kind are
indistinguishable even on the classical level.

The fundamental group of the configuration space is the generalized braid group

BN1,...,NK
= π1(QN1,...,NK

) . (10)



Let us specify two special kinds of loops in QN1,...,NK
at the point [z11, . . . zKNK

]. We put the
square bracket to denote the SN1 × . . .× SNK

-orbit of (z11, . . . zKNK
). Let

γ : I −→ QN1,...,NK
, [γ11(t), . . . , γKNK

(t)] (11)

be a loop with I = [0, 1].
I. We say that the loop (11) is a proper transposition of two anyons of the k-th kind placed

at zkp and zkq if
γlr(t) = zlr for (l, r) 6= (k, p), (kq)

γkp(0) = γkq(1) = zkp , γkp(1) = γkq(0) = zkq (12)

and the composition of the curves γkp, γkq is a positively oriented Jordan loop with no particles
inside the area limited by the loop.

II. We say that the loop (11) is a proper encircling of a particle of the l-th kind by a particle
of the k-th kind placed at zlq and zkp respectively, if

γir(t) = zir for (i, r) 6= (k, p) (13)

and γkp is a positively directed Jordan loop with the only (l, q)-th particle inside.
Let χνµ be a unitary one–dimensional representation of the fundamental group π1(QN1,...,NK

).
The representation is labeled by statistical parameters ν = (ν1, . . . νK) and encircling parameters
µ = (µk,l), 1 ≤ k < l ≤ K, and is uniquely determined by two conditions:

χνµ(αk) = eπiνk , (14)

where αk is a proper transposition of anyons of the k-th kind, and

χνµ(αk,l) = e2πiµk,l (15)

is a proper encircling of a particle of the l-th kind by a particle of the k-th kind.
Let L2

χνµ0(QN1,...,NK
, C, d̃µ) denote the subspace of all equivariant square–integrable functions

satisfying the boundary conditions:

lim
zk,p−→zl,q

Ψ(z1,1, . . . , zK,NK) = 0 . (16)

The space of quantum states of the anyon system is a subspace of L2
χνµ0(QN1,...,NK

, C, d̃µ).
We consider hamiltonians of the form Ĥ = T̂ + V . The kinetic energy operator is given by

Ĥ0 = T̂ = −
∑
k,p

αk
∂2

∂zkp∂z∗kp

, αk =
2

mk
, (17)

where mk denotes the mass of an anyon of the k-th kind. We will analyse free anyon system,
anyons in homogeneous potential field and anyons in anisotropic harmonic oscillator potential.
For these hamiltonians solutions of the Schrödinger equation can be decomposed into two classes
of equivariant functions:

Φ = [
K∏

k=1

∏
1≤p<q≤Nk

(zkq − zkp)νk ]× (18)

[
∏

1≤k<l≤K

Nk∏
p=1

Nl∏
q=1

(zlq − zkp)νkl ]×



G(. . . , zkp, . . . ; . . . , z∗kp, . . .)

and

Φ = [
K∏

k=1

∏
1≤p<q≤Nk

(z∗kq − z∗kp)
2−νk ]× (19)

[
∏

1≤k<l≤K

Nk∏
p=1

Nl∏
q=1

(z∗lq − z∗kp)
1−νkl ]×

G(. . . , zkp, . . . ; . . . , z∗kp, . . .) ,

where G denotes a power series of holomorphic zkp and antiholomorphic z∗kp variables with
nonegative integer exponents. The topological factors

[
K∏

k=1

∏
1≤p<q≤Nk

(zkq − zkp)νk ][
∏

1≤k<l≤K

Nk∏
p=1

Nl∏
q=1

(zlq − zkp)νkl ]

and

[
K∏

k=1

∏
1≤p<q≤Nk

(z∗kq − z∗kp)
2−νk ]× [

∏
1≤k<l≤K

Nk∏
p=1

Nl∏
q=1

(z∗lq − z∗kp)
1−νkl ]

are harmonic functions (the first is a holomorphic and the second is an antiholomorphic function).
Let

Ψ(. . . , zkp, . . . ; . . . , z∗kp, . . . ; t) (20)

be an equivariant solution of the Schrödinger equation

T̂Ψ = i
∂Ψ
∂t

(21)

for the system of free anyons with an equivariant initial condition:

Ψ(. . . , zkp, . . . ; . . . , z∗kp, . . . ; t = 0) = (22)

Φ(. . . , zkp, . . . ; . . . , z∗kp, . . .) .

Now let us modify the initial condition

Ψa(. . . , zkp, . . . ; . . . , z∗kp, . . . ; t = 0) = (23)

∑
σ∈SN1

×...SNK

exp[i
K∑

k=1

Nk∑
p=1

(a∗σ(kp)zkp + aσ(kp)z
∗
kp)]

Φ(. . . , zkp, . . . ; . . . , z∗kp, . . .).

At [5] we have analysed a similar modification but with an unbouded factor at the all plane.
Although the modified initial condition is also equivariant, the solution

Ψa(. . . , zkp, . . . ; . . . , z∗kp, . . . ; t) = (24)∑
σ

exp[i
∑
k,p

(−αk|aσ(kp)|2t + a∗σ(kp)zkp + aσ(kp)z
∗
kp)]



Ψ(. . . , zkp −
aσ(kp)

αk
t, . . . ; . . . , z∗kp −

a∗σ(kp)

αk
t, . . .)

is not equivariant. Equivariancy for transpositions of the same kind of particles is broken and
equivariancy for encircling of one kind of particle by other kind is broken as well because the
argument at the last factor is translated by a vector quantity proportional to time t. So the all
space of square–integrable equivariant functions spanned by (18, 19) is not the space of quantum
states of the free anyon system. Let us denote the space of quantum states by H0. One can see
that the space H0 is infinity dimensional

dimH0 = ∞ .

Any quantum state from the space H0 can be put as an initial condition (22) for the Schrödinger
equation (21). The function (23) is also square–integrable equivariant function but (24) shows
that (23) is not a quantum state from H0.

Now let us consider the anyon system in homogeneous potential field. At [6] we have
considered an analogical problem for a particle on a plane with one point removed. The
Hamiltonian of the system is

Ĥf = T̂ − 1
2

∑
k,p

(f∗kzk,p + fkz
∗
k,p) ,

where fk is the force acting on the k-th kind particle. The evolution operator is given by the
formula

Ûf (t) =
∏
k,p

exp
it3

3mk
T̂rΠkp

(
−t2

2mk
f) exp i < fk, zkp > U0(t) , (25)

where Û0(t) is the evolution operator of the free anyon system and T̂rΠ(v) is the translation
operator in the plane Π by a vector v. Let the initial condition for the Schrödinger equation

ĤfΨ = i
∂Ψ
∂t

(26)

be any wave function Φ from the space H0. The solution

Ûf (t)Φ

is not equivariant in general. Equivariancy for transpositions of the same kind of particles is
conserved, but equivariancy for encircling one particle by other kind is broken. As we see from
the formula (eq. 25) the singularities move with uniform accelerations

ak =
fk

mk

for the k-kind particle, what is identical formula with the second Newton’s law of motion. The
solution is equivariant only for the case ak = al for any k, l. Although

dimHf = ∞ , (27)

for ak 6= al we get
H0 ∩Hf = {0}. (28)



Finally let us consider the anyon system in an anisotropic harmonic oscillator potential. Let the
Hamiltonian of the system be given by

Ĥω1,ω2 = T̂ +
1
2

∑
kp

mk(ω1
2x̂2

kp + ω2
2ŷ2

kp) , (29)

where zkp = xkp + iykp. The evolution operator is

Ûω1,ω2(t) =
1√

cos ω1t cos ω1t∏
[exp[−i

mk

2
(ω1

2x̂kp
2 tanω1t + ω2

2 ˆykp
2 tanω1t)]

d̂xkp

(√
tanω1t

ω1

)
d̂ykp

(√
tanω2t

ω2

)
]

Û0(1)
∏
kp

d̂xkp

(√
2ω1

sin 2ω1t

)
d̂ykp

(√
2ω2

sin 2ω2t

)
,

where d̂x(a) is the dilatation operator at the direction x in the scale a. The composition
dxkp

(√
2ω1

sin 2ω1t

)
d̂ykp

(√
2ω2

sin 2ω2t

)
of dilatations deforms the holomorphic variable zkp. So

deformed topological factors at the equations (18, 19) are also equivariant functions but they
are not harmonic functions for ω1 6= ω2. Consequently the deformed functions do not belong to
the domain of the operator Û0(1). So the space of quantum states for anisotropic oscillator is
the zero space

Hω1,ω2 = {0} . (30)

4. Conclusion remarks.
I. We see that if the function (22) is a quantum state for free anyons system, then the function
(23) (also equivariant) is not a quantum state for the system. So the quantum states of states
for the system is not the all Hilbert space of equivariant square–integrable functions.

II. The spaces of quantum states for the free anyon system and for the free anyon system
and for the system of anyons in homogeneous potential field are infinitely dimensional Hilbert
subspaces of the space of square–integrable equivariant functional. The equation (28) shows
that these quantum states of states have only the zero common vector.

III. The space of quantum states for the anyon system in anisotropic harmonic oscillator
potential is the zero space.

So we see that the space of quantum states in quantum mechanics of anyons depends on the
Hamiltonian.
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BW of Poznań University of Technology.

References
[1] J. S. Dowker J. Phys. A 5 (1972), 936.
[2] M. Laidlaw, C. DeWitt Phys. Rev. , D 3 1375, (1971).
[3] J. Leinaas, J. Myrheim Il Nuovo Cimento, 37 (1977) 1–23.
[4] S. Forte, Rev. Mod. Phys. 64 No. 1 (1992), 193.
[5] J. Milewski and T. Lulek, Reports on Mathematical Physics 38 (1996), (279–282).
[6] J. Milewski, Molecular Physics Reports 23, (1999), (171–176).


