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ABSTRACT
The aim of this work is to establish the existence of invariant manifolds in complex systems. Considering trajectory curves integral of multiple time scales dynamical systems of dimension two and three (predator-prey models, neuronal bursting models) it is shown that there exists in the phase space a curve (resp. a surface) which is invariant with respect to the flow of such systems. These invariant manifolds are playing a very important role in the stability of complex systems in the sense that they are "restoring" the determinism of trajectory curves.

DYNAMICAL SYSTEMS
In the following we consider a system of ordinary differential equations defined in a compact E included in 
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The vector 
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 defines a velocity vector field in E whose components 
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 which are supposed to be continuous and infinitely differentiable with respect to all
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 and t, i.e., are 
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functions in E and with values included in 
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, satisfy the assumptions of the Cauchy-Lipschitz theorem. For more details, see for example (Coddington and Levinson 1955). A solution of this system is an integral curve 
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 whose values define the states of the dynamical system described by the Equation (1). Since none of the components 
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 of the velocity vector field depends here explicitly on time, the system is said to be autonomous.

TRAJECTORY CURVES

The integral of the system (1) can be associated with the co-ordinates, i.e., with the position, of a point M at the instant t. This integral curve defined by the vector function 
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 of the scalar variable t representing the trajectory of M can be considered as a plane or a space curve which has local metrics properties namely curvature and torsion.

Curvature
The curvature, which expresses the rate of changes of the tangent to the trajectory curve of system (1), is defined by:
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where 
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 represents the radius of curvature. 

Torsion
The torsion, which expresses the difference between the trajectory curve of system (1) and a plane curve, is defined by:
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where 
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 represents the radius of torsion. 

LIE'S DERIVATIVE – DARBOUX INVARIANT

Each displayed equation should be proceeded and followed by 

Let 
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 function defined in a compact E included in 
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 and 
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 the integral of the dynamic system defined by (1). The Lie’s derivative is defined as follows:
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Theorem 1: 

If 
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 then 
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 is first integral of the dynamical system defined by (1).  So, 
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 is constant along each trajectory curve and the first integrals are drawn on the level set 
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 is a constant.
Proof of this theorem may be found in (Demazure 1989) 

Theorem 2: 

An invariant curve (resp. surface) is defined by 
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 in an open set U and such there exists a  
[image: image30.wmf]1

C

 function denoted 
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 and called cofactor which satisfies
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for all
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Proof of this theorem may be found in (Darboux 1878) 

INVARIANT MANIFOLDS

According to the previous theorem 1 and 2 the following proposition may be established.

Proposition 1: The location of the points where the local curvature of the trajectory curves integral of a two dimensional dynamical system defined by (1) vanishes is  first integral of this system. Moreover, the invariant curve thus defined is over flowing invariant with respect to the dynamical system (1).
Proof of this theorem may be found in (Ginoux and Rossetto 2006) 

Proposition 2: The location of the points where the local torsion of the trajectory curves integral of a three dimensional dynamical system defined by (1) vanishes is  first integral of this system. Moreover, the invariant surface thus defined is over flowing invariant with respect to the dynamical system (1).
Proof of this theorem may be found in (Ginoux Rossetto 2006) 

APPLICATIONS TO COMPLEX SYSTEMS

While considering that natural ecosystems are complex systems it is possible to show that two or three species food chain models possess invariant manifolds which are endowing with the trajectory curves stability restoring thus the loss determinism inherent to the non-integrability feature of these systems. The method developed in this work may be also applied to others complex systems such that neuronal bursting models. Moreover, research of such invariant manifolds in coupled systems or in systems of higher dimension (four and more) would be of great interest. 
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