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About the LDIAG Hopf algebra 

In a relatively recent paper Bender, Brody and 
Meister (*) introduce a special Field Theory described 
by a product formula (a kind of Hadamard product for 
two exponential generating functions - EGF) in the 
purpose of proving that any sequence of numbers 
could be described by a suitable set of rules applied to 
some type of Feynman graphs (see third Part of this 
talk). 
These graphs label monomials and are obtained in the 
case of special interest when the two EGF have a 
constant term equal to unity.

Bender, C.M, Brody, D.C. and Meister, 
Quantum field theory of partitions, J. Math. Phys. Vol 40 (1999)
 



 If we write these functions as exponentials, we are led 
to witness a surprising interplay between the following 
aspects: algebra (of normal forms or of the 
exponential formula), geometry (of one-parameter 
groups of transformations and their conjugates) and 
analysis (parametric Stieltjes moment problem and 
convolution of kernels).

Some 5-line diagrams



    Classical normal ordering problem for bosons

The normal ordering problem goes as follows.

• Weyl (two-dimensional) algebra defined as

< a+, a ; [a , a+ ]=1 > | aa+ ---> a+a +1

• Known to have no (faithful) representation by 
bounded operators in a Banach space.

There are many « combinatorial » (faithful) 
representations by operators. The most famous one 
is the Bargmann-Fock representation 

a ---> d/dx ; a+ ---> x
where a has degree -1 and a+ has degree  1.



A typical element in the Weyl algebra is of the form 
 (normal form).
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When Ω  is a single monomial, a word i.e. a product 
of generators a+, a, there is solution to the normal 
ordering problem (and thus, by linearity to the general 
problem) using rook numbers.

Today, we will be interested with the use of matrix 
coefficients in two instances :

normal ordering --> infinite matrices --> moments

finite representations --> Sweedler's dual and automata 
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A word (boson string) and more generally an 
homogeneous operator (for the grading where a has 
degree -1 and a+ has degree  1) of degree e reads

Due to the symmetry of the Weyl algebra, we can 
suppose, with no loss of generality that e≥0. For 
homogeneous operators one can define generalized  
Stirling numbers (GSN) by

0
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The case of a pure string is of special interest for physics
and can be solved combinatorally. The recipe, for a string
W is the following:

 associate a path with north east steps for every a+ 
 and a south east step for every a.
 
 construct the Ferrers diagram B over this path

The normal form of  W is 

0
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where R(B,k) is the k-th rook number of the board B. 



In particular, the boson string w=[(a+)ras ] was 
considered by Penson, Solomon, Blasiak and al. In this 
case the GSN will be denoted by S

r,s
(n,k) and, due to the 

particular form of W, one has  
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for the generating polynomials of the lines of the 
generalized Stirling matrix, one has the formulas 

 ... and, when s=1, the EGF of these polynomials is 
an exponential which gives an additive formula in the
variable y (see the paper One-parameter Groups) 

Setting 



For which, we have Dobiŉski-type relations



Consider a sequence of real numbers B(n). The 
classical Stieltjes moment problem consists in 
finding a positive measure W(x)dx on the half-line 
]0,+∞[ such that 

    Classical Stieltjes moment problem
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Consider a sequence of real functions B(n,y). The 
parametric Stieltjes moment problem consists in 
finding a family of positive measures W(x,y)dx on the 
half-line ]0,+∞[ such that 

    Parametric Stieltjes moment problem



Using the first Dobinski relation of slide (10), one can
 solve the parametric Stieltjes moment problem 
for the classical Stirling numbers as 

with 

which is a Poisson distribution on the half-line 
]0,+∞[.



Using an inverse Mellin transform, one can solve 
the second parameric moment problem, which 
gives, this time, a continuous measure  

with 





Ongoing work
Realizations of the product 

for some types of infinite matrices
Convolution of kernels: We first suppose given two 

 infinite matrices F(n,k), G(n,k) (n,k integers) admitting 
solutions for the parametric moment problem (PMP) 
which means that there are two (parametric) measures 
W

F  
, W

G 
such that 



Then one can check easily that, if the two kernels W
F  

 
and W

G 
 are convolable, then FG admits a solution 

for the PMP and 

Questions: Q1) What are the types of matrices 
for which there is a PMP solution ?

Q2) Which are the ones for which the kernel is 
discrete ? Continuous ?

Q3) Are there general laws for convolution of these 
types of kernels. 



Link with grafting:  Certain classes of graphs (i.e. 
closed by relabelling and extraction of connected 
components) provide lower triangular matrices via
 
M(n,k)=number of graphs with labels {1, 2,..n} and k 
connected components

the product of the matrices associated with two classes 
corresponds to the grafting obtained by considering the 
connected components of a graph of the first kind as 
vertices of a graph of the second kind. 

Question: What are the legal types of grafting when 
we change denominators ? Link with renormalisation ?



Substitutions: An infinite matrice F(n,k) with finite 
rows can be seen as defining a transformation between 
EGF. The transformation is of the form f --> u(x)f(v(x)) 
with u(x)=1+... and v(x)=λx+... if the sequence of 
polynomials B

F
(n,y) is of Extended Sheffer Type (EST). 

There is a « calculus » using vector fields on the half-
line and their conjugates. (see SLC Viennot - Lucelle - 
and Myczcowce talks) 

Questions: Q1) Combinatorial fields ? What is the 
«Stirling field » for instance ?

Q2) Make precise the dictionnaries (formal or analytic) 
vector fields  ↔ combinatorial matrices

Q3) What are the matrices coming from classes of graphs



For these one-parameter groups and conjugates of vector fields 

G. H. E. Duchamp, K.A. Penson, A.I. Solomon, A. Horzela and P. 
Blasiak,  

One-parameter groups and combinatorial physics, 

Third International Workshop on Contemporary Problems in 
Mathematical Physics (COPROMAPH3), Porto-Novo (Benin), 
November 2003. arXiv : quant-ph/0401126.

For the Sheffer-type sequences and coherent states

P Blasiak, A Horzela , K A Penson, G H E Duchamp and A I Solomon, 

Boson Normal Ordering via Substitutions and Sheffer-type 
Polynomials,

(Published in Physics Letters A)



Hadamard product of two sequences 

can at once be transferred to EGFs by

which can be written

and, in case F(0)=G(0)=1 can be expressed in 
terms of (set) partitions.

A word on the construction of LDIAG



We will adopt the notation 

for the type of a (set) partition which means that 
there are a1 singletons a2 pairs a3 3-blocks a4 4-blocks 
and so on.

The number of set partitions of type α as above is
well known (see Comtet for example)

  

Then, with



 Now, one can count in another way the term
numpart(α)numpart(β). Remarking that this is the 
number of pairs of set partitions (P1,P2) with 
type(P1)=α, type(P2)=β. But every pair of 
partitions (P1,P2) has an intersection matrix ...

one has



{1,5}  {2}  {3,4,6}

{1,2}         1       1        0

{3,4}         0       0        2

{5,6}         1       0        1

{1,5} {1,2}

{2} {3,4}

{3,4,6} {5,6}

Feynman-type diagram 
(Bender & al.)

Classes of
packed matrices
see NCSF VI
(GD, Hivert, 
and Thibon)



Now the product formula for EGFs reads

The main interest of this new form is that 
we can impose rules on the counted graphs.



Weight 4



Diagrams of (total) weight 5
Weight=number of lines



Hopf algebra structure 

(H,µ,∆,1H,ε,α)
Satisfying the following axioms 
 (H,µ,1H) is an associative k-algebra with unit (here k 
will be a – commutative - field)
 (H,∆,ε) is a coassociative k-coalgebra with counit 
 ∆ : H -> H⊗H is a morphism of algebras
 α : H -> H is an anti-automorphism (the antipode) 
which is the inverse of Id for convolution.

Convolution is defined on End(H) by 

ϕ•ψ= µ (ϕ ⊗ ψ) ∆

with this law End(H) is endowed with a structure of 
associative algebra with unit 1Hε.



First step: Defining the spaces 
 Diag=⊕d ∈ diagrams C d  LDiag=⊕d ∈ labelled diagrams C d

(functions with finite supports on the set of 
diagrams). At this stage, we have a natural arrow 
LDiag  Diag.

Second step: The product on Ldiag is just the  
superposing of diagrams 

d1 d2 = 

And, setting m(d,L,V,z)=Lα(d)Vβ(d) z|d|

one gets 
m(d1*d2,L,V,z)= m(d1,L,V,z)m(d2,L,V,z)

d1

d2



This product is associative with unit (the empty 
diagram). It is compatible with the arrow 
LDiag  Diag and so defines the product on Diag 
which, in turn, is compatible with the product of 
monomials.

LDiag x LDiag Mon x Mon

LDiag Diag

Diag x Diag

Mon
m(d,?,?,?)



The coproduct needs to be compatible with 
m(d,?,?,?). One has two symmetric possibilities. The 
« white spots coproduct » reads 

∆ws(d)=Σ dI ⊗ dJ

the sum being taken over all the decompositions, (I,J) 
of the White Spots of d into two subsets.
For example, with the following diagrams d, d1,d2 ,

one has ∆ws(d)=d⊗∅ + ∅⊗d + d1⊗d2 + d2⊗d1



Today, we focus on the multiplicative structure of 
Ldiag remarking that the objects are in one-to-one 
correspondence with the so-called packed matrices of 
NCSFVI (Hopf algebra MQSym), but the product of 
MQSym is given (on a certain basis MS) according to 
the following example
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The double deformation provides an identity in the 
algebra of the symmetric semigroup. It goes as follows

 Stack the diagrams

 Develop according to the rules :
 Every crossing “pays” a q
 Every node-stacking “pays” a t

One has to show associativity (the remaining properties 
are straightforward)

















Associativity can be shown by direct computation
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Sweedler's duals and automata theory

i) The drama of Sweedler's dual is the following

Let  be an associative algebra with unit. The product is 
a linear mapping

Ä  
ii) By dualization one gets

( )* (Ä)*

but not a “stable calculus” as 

(strict in general). We ask for elements x∈ such that 

µ

tµ

()* Ä( )*     (Ä)*

tµ(x)∈()* Ä( )* 



Here, we will be concerned with the case =kk<A> 
(non-commutative polynomials with coefficients in 
a field k).

Indeed, we have the following theorem (the beginning 
can be found in [ABE : Hopf algebras]) and the end is 
the starting point of Schützenberger's school of 
automata and language theory.



Theorem A: TFAE (the notations being as above)
i)  tµ(c)∈()* Ä( )* 

ii) There are functions f
i 
,g

i 
i=1,2..n such that

c(uv)=∑
i
n
=1 

f
i 
(u) g

i
(v)   

u,v words in A* (the free monoid of alphabet A).
iii) There is a morphism of monoids μ: A* --> kn x n  

(square matrices of size n x n), a line λ in k 1 x n  and 
a column ξ in k n x 1  such that, for all word w in A* 

c(w)=λμ(w)ξ 

iv) (Schützenberger) (If A is finite) c lies in the 
rational closure of A within the algebra k<<A>>.



We can safely apply the first three conditions of 
Theorem A to Ldiag. The monoid of labelled diagrams is 
free, but with an infinite alphabet, so we cannot keep  
Schützenberger's equivalence at its full strength and 
have to take more “basic” functions. The modification 
reads

 iv) (A is infinite) c is in the rational closure of the 
weighted sums of letters 

∑
a  A 

p(a) a

within the algebra k<<A>>.



Concluding remarks
i) We have much information on the structures 
of Ldiag and Diag (multiplicative and Hopf structures).
(by Cartier-Milnor-Moore theorem).

ii) One can change the constants Vk=1 to a
condition with level (i.e. Vk=1 for k≤N and Vk= 0
for k>N). We obtain then sub-Hopf algebras of the
one constructed above. These can apply to the
manipulation of partition functions of physical 
models including Free Boson Gas, Kerr model and 
Superfluidity.
 



iii) Schützenberger's theorem could be rephrased in 
saying that functions in Sweedler's dual are 
behaviours of finite (state and alphabet) automata.  

In our case, we are obliged to 
allow infinitely many edges. 


