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(A part of) The legacy of Schiitzenberger or how to compute
efficiently in Sweedler's duals using
Automata Theory

Sweedler's dual of a Hopf algebra
1) Multiplication "

AR A > A
i) By dualization one gets "
(A) > (A®A)

but not a “stable calculus” as
(A) @A) C(ARA)

(strict in general). We ask for elements xe.A such that
wx)e(A) @A)

<numéro>



These elements are easily characterized as the
“representative linear forms” (see also the Group-
Theoretical formulation in the talk of Pierre Cartier)

Proposition : TFAE (the notations being as above)
) ‘nle)e(A) @A)
ii) There are functions f ,g i=1,2..n such that

c(xy)=2"_,f (x) g,(y)

forall x,y in A.

iii) There is a morphism of algebras p: A --> k"*"

(square matrices of size n x n), a line A in k**" and
a column € in k"** such that, for all z in A,

C(2)=Au(2)8

<numéro>



In many "Combinatorial” cases, we are concerned with
the case A= k<A> (non-commutative polynomials

with coefficients in a field k).

Indeed, one has the following theorem (the beginning
can be found in [ABE : Hopf algebras]) and the end is
one of the starting points of Schutzenberger's school of
automata and language theory.

<numéro>



Theorem A: TFAE (the notations being as above)
1) ‘nlc)e(A) ®(A)
ii) There are functions f ,g i=1,2..n such that

C(uv)=2i”=1 fi (u) gi(V)
u,v words in A" (the free monoid of alphabet A).
iii) There is a morphism of monoids p: A™ --> k"*"
(square matrices of size n x n), a row A in k**"

and a column € in k"*! such that, for all word w in
A*

c(w)=Ap(w)g

V) (Schutzenberger) (If A is finite) c lies in the
rational closure of A within the algebra k<<A>>,

<numéro>
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We can safely apply the first three conditions of
Theorem A to Ldiag. The monoid of labelled diagrams is
free, but with an infinite alphabet, so we cannot keep
Schutzenberger's equivalence at its full strength and
have to take more “basic” functions. The modification
reads

iIV) (A is infinite) c is in the rational closure of the
weighted sums of letters

%, . AP(a) a

within the algebra k<<A>>.

<numéro>



Iii) Schitzenberger's theorem (known as the theorem of
Kleene-Schutzenberger) could be rephrased in saying
that functions in a Sweedler's dual are behaviours of
finite (state and albhabet) automata.

In our case, we are obliged to
allow infinitely many edges.

Fic. 1 — Un (rautomate A.

Le comportement de .4 est :

/
\ /
\ - ;,

comportement(.A) = Z (a+b)"(6+ a*b).

—_ <numeéro>



Computations in K<A>°, Sweedler's dual
of K<A>

Summability : we say that a family (f)_ (I finite or not, f

in K<<A>>) is summable if, for each weA*, the family
(<f|w>) _is finitely supported and we set

2 f)rw-> (2 <flw>)

iel i

Identifying each word with the Dirac linear form located at the
word, one has then, for each feK<<A>>

f=2 . f(w)w

<numéro>



If feK™'<<A>>, it exists a morphism of monoids

u: A" --> K"*" (square matrices of size n x n), a row A in
k'*" and a column € in k"** such that, for all word w in
A", f(w)=Au(w)E. Then

f= ZWGA* f(W)W=ZwEA* )\I‘J(W)E W=A(ZWEA* ”(W)W)E=

AE, e HOWIESA(S, 5, H(WIWE

But, as words and scalars commute (it is so by
construction of the convolution algebra K"*" <<A>>), one
has

Ziso Zwiem HOWW=X (2, H(@)a)"=(X,_, H(a)a)*
hence

f=A(Z,., H(3)a)*§

where the “star” stands for the sum of the geometric
series. <numéro>



If @ 1s a finite set, the space k2*€ of square matrices with indices in Q and coefficients in k has a natural
semiring structure with the usual operations (sum and product). A (right) star of M € k2*Q (when it exists)
is a solution of the equation MY + 1.0 =¥ (Where 1., 1s the identity matrix). Let M € k2*2 be given

by
¥ i
M= ( 11 12 )
a)  dm

where apn € kﬂi}i{?l NULE= kﬂi}{{h, = kﬂjxgl and i k{hi{ﬂ‘z such that Ql + QE = Q LetN £ kﬂh{{]

given by
v 42)
An = (an +anan’ai) (1)
A1y = a1 apdn (2)
An =an'andn (3)
An = (an+ananan) (4)

<numéro>



A1 = (a1 tanan’an) (1)

A11=a11 apdn (2
An = an"andn (3)
An = (an+anai an) (4)

Sketch of the proof

* Prove the equivalence
equational star <=> iterative star
» Prove that the block-matrix Aij solves the equational star

equation

<numéro>



A (short) word on automata theory.

» The formulas (for the star* of a matrix) above are sufficiently
“expressive” to be the crucial fact in the resolution of a
conjecture in Noncommutative Geometry.

* For applications, automata theory had to cope with
spaces of coefficients much more general than that of a
field ... even the "minus” operation of the rings had to
disappear to be able to cope with problems like shortest

path or the Noncommutative problem or the shortest path
with list of minimal arcs .

The emerging structure is that of a semiring. Think of a
ring without the "minus” operation, nevertheless
“transfer” matrix computations can be performed.

<numéro>



The input alphabet being set by the automaton

under consideration, we will here rather focus
on the definition of semirings providing transi-

tion coefficients. For convenience, we first be-
gin with various laws on R4 := [0, +00[ includ-

ing

L.

2.

[y |

=]

+ (ordinary sum)

% (ordinary product)

. min (it over [0,1], with neutral 1, oth-

erwise must be extended to [0, 400] and
then, with neutral 400} or max

+o defined by = 4,y = logy(a®™ + a¥)
(a > 0)

. -I—[ﬂ] [H{'j]der la,ws] defined h}r T +[n] Yy 1=

. +* (shifted sum, r+°y :=xr+y— 1, over

whole B, with neutral 1)

. %% (complemented product, r 4+ y — xy,

can be extended also to whole B, stabi-
lizes the range of probabilities or fuzzy
[0,1] and is distributive over the shifted
s

As (useful) examples, one
has ([0,+w], min, +),
([0,+o0[, max, +) or its
(commutative or not)
variants.

<numéro>



What remains for K<A> ? (free algebra)

* K semiring :

- Universal properties (comprising - little known - tensor
products)

- Complete semiring K<<A>>, summability is defined by
pointwise convergence (see computation above).

- Rational closures and Kleene-Schutzenberger Thm
- Rational expressions, Brzozowski theorem

- Automata theory, theory of codes

- Lazard's monoidal elimination <numéro>



In fact, one call pull the operations on the functions
back to the level of automata.

<numéro>



Proposition 2 Let BR: A, = (A", u",77) (resp. 5: A; = (A, u’,7%) ) of rank
n (resp. m). The linear representations of the sum, the concatenation and the
star are respectively

R4+ 5:
}I-f(r_'].:l ﬂnhm _,..:r_‘;l.
el (;v' M) , (1)
Omenit@) ), \
R.S
“r {I-:'l ":r'T;'\S}'_iS {I-:'l ":r'r:’ks'":r’s
et (e | ! | (2)
Omsn| po(a) acA H
e il e
pila) + v A%uf(a)|0,,x 0 i
ASEI: (Dl:«am]—) :I I: :I‘ : ('3111
A*p(a) ‘ 0 i I

<numéro>



Remarks

1) The question of pulling back other operations (like
coproducts) on representative functions at the level of
some equivalence class of automata remains open.

2) In case A=t*(G,C) where Gis a compact group

(endowed with any Haar measure), one can prove that
the space of representative continuous functions is dense

in A (Peter-Weyl's theorem).

<numéro>



Application I _ .Rationality |
Conne's conjecture Rational Expressions
Noncommutative cedler's Dua
Geometry R S L
Application II

LDIAG;qC,qS,t) @%// W

LDIAG original
Hopf Algebra
r /
ive /ﬂ}/

\ % B

i

Product Formula,

Bell polynomials + Bender, Brody
Bitypes ™~ Two exponentials & Meister




Application 1

Conne's conjecture about rationality
phenomena 1n
Noncommutative Geometry



5. FREDHOLM MODULES AND RANK-ONE DISCRETE GROUPS 349
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FIGURE 5. Tree

As an application we shall give a new proof of the beautiful result of M. Pimsner and
D. Voiculescu that the reduced C*-algebra of the free group on two generators does
not contain any nontrivial idempotent [448]. This settled a long-standing conjecture
of B.V. IKadison. We shall use a specific Fredholm module (N, F') over the reduced
C"*-algebra of the free group which already appears in [448] and in the simplified proof
of J. Cuntz [145], and whose geometric meaning in terms of trees was clarified by P
Julg and A. Valette in [315], [316], [317].



Remark 3. The proof of Lemma 1 shows that for any a € CI' the quantum differential

da 15 a finite-rank operator. Then let (CT')™ be the smallest subalgebra B of C¥(T)
containing CI" and having the property for any n € M

z € My(B) N M,(CH(T))

Ly € M,(B)™.

5. FREDHOLM MODULES AND RANK-ONE DISCRETE GROUPS 351

Une easily checks that for any a € (CI')™, the operator da 1s of finite rank. It 1s

natural to conjecture that the converse holds.

This can be proved when the free group

<numéro>



Ensuite (p 342), il définit une cléture de CI' c C}(I') par adjonction
de coetlicients d'inverses de matrices. Nous en rappellons la construction
ci-dessons,

Soit (C}(I"))n la plus petite sous-algébre B — C}(T') telle que I' C B et
que

x € M, (B) N [Mp(CHI))| ™ = = € [M,(B)]™!

Un a évidemment
(CHIM1 € (CFT))2 C = (CF(D))n © -+

la cléture annoncée est (C*(T)) = Up>1(C*HI))n.

Enfin (an paragraphe IV.5) est défini un module de FREDHOLM (pour
la définition exacte voir le paragraphe 2.2) qui conduit & la caractérisation
d'une sous-algébre (C¥(I'))pn C Cr(I') par une condition de finitude de
rang. ll

A. ConNNEs remarque que (C¥(I')) < (C}(I)) fan et conjecture I'inclusion
inverse (p342 remarque 3).

Dans ce qui suit nous démontrons que (C*(T)) = (C*())y., ce qui en-
traine la conjecture et 1'égalité de tous les (C}(I')),.

<numéro>
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Application I
LDIAG Hopf algebra

In a relatively recent paper Bender, Brody and
Meister (*) introduce a special Field Theory described
by a product formula (a kind of Hadamard product for
two exponential generating functions - EGF) in the
purpose of proving that any sequence of numbers
could be described by a suitable set of rules applied to
some type of Feynman graphs (see third Part of this
talk).

These graphs label monomials and are obtained in the
case of special interest when the two EGF have a
constant term equal to unity.

Bender, C.M, Brody, D.C. and Meister,
Quantum field theory of partitions, J. Math. Phys. Vol 40 (1999 <numéro>



Ly | Ty | &

Some 5-line diagrams

o—B 8 0B »
i E ﬂ/.-" d.-".. P_%
= YR

o

¢

If we write these functions as exponentials, we are led
to witness a surprising interplay between the following
aspects: algebra (of normal forms or of the
exponential formula, Hopf structure), geometry (of
one-parameter groups of transformations and their
conjugates) and analysis (parametric Stieltjes
moment problem and convolution of kernels).

Today, we will first focus on the algebra. If time
permits, we will touch on the other aspects.

<numéro>



Construction of the Hopf algebra LDIAG



How these diagrams arise and which
data structures are around them

Let F, G be two EGFs.

. VAP o PR b2
F=)anpG=3 by HFG) =Y anb, s

n=>0 h m=>0 n=>0

Called « product formula » in the QFTP of
Bender, Brody and Meister.

<numéro>



In case F(0)=G(0)=1, one can set

F(y) = exp ZL ”1 G(r) = exp ZLHm,

Zy Z numpart(a)numpart(3)L*V?

n=>0 ! | |=|3|=n

with «, BeN™) multiindices

numpart(o) =

(107 (207 - - (71)2 (1) (az)! - - - (@)



We will adopt the notation

o — 1:.11 2&-2 o __rﬂ-?»

for the type of a (set) partition which means that
there are a1 singletons a2 pairs a3 3-blocks a4 4-blocks
and so on.

The number of set partitions of type a as above is
well known (see Comtet for example)

!
numpart(a) =
numpar (05) (1!)ﬂ.1 (2!)&_2 L (-'r!)“'?"(al)!(ag)! L (af)!
Then, with
yﬂ ) ) I?’Tl
Fy) =exp()  Lu-5) Glx) =exp(} Vi)
?1-21 ‘ :r1.f._>-1 7 néro>



T

! A
y — exp Z L” T — t‘i;rp(z Fmﬁ)

n=>1 n=1

one has

H(F.G) = Fly o )G(r) o =

Z . Z numpart(a)numpart(3)L*V?

n>0 ! al=18|=

Now, one can count in another way the term
numpart(ao)numpart(f). Remarking that this is the
number of pairs of set partitions (P1,P2) with
type(P1)=qa, type(P2)=p. But every pair of
partitions (P1,P2) has an intersection matrix ...

<numéro>



{1,531{2}{3,4,6}
{1,2} 1 1 0 Classes of
' <ll: packed matrices

see NCSF VI

{3,4} 0 0 2 (GD, Hivert,
and Thibon)

{5,6} 1 0 1 Feynman-type diagram

(Bender & al.)

— =

<numéro>



Now the product formula for EGFs reads

d|
HIFG) = Y :“’WL&@VM
d FB—diagram '

d|
HF,G) = ) %mult(d)[[ﬂ(d)vﬁ(d)
dEdiag‘ ‘

The main interest of these new forms is that we can
impose rules on the counted graphs and we can call
these (and their relatives) graphs : Feynman-Bender
Diagrams of this theory (here, the simplified model of
Quantum Field Theory of Partitions). <numéro>



One has now 3 types of diagrams :

* the diagrams with labelled edges (from 1 to |d|).
Their set is denoted (see above) FB-diagrams.

* the unlabelled diagrams (where permutations of black
and white spots are allowed). Their set is denoted (see
above) diag.

*» the diagrams, as drawn, with black (resp. white) spots
ordered i.e. labelled. Their set is denoted Idiag.

<numéro>



1} {2,3,4}{5,6,7,8,9}{10,11}

™ oy

(98B g 7gig= 10 11

Fig 1. — Diagram from Py, P> (set partitions of [1---11]).
P, = {{2,3,5},{1,4,6,7,8},{9,10,11}} and P, = {{1},{2,3,4},{5,6,7,8,9},{10,11}}
(respectively black spots for Py and white spots for Ps).
The incidence matriz corresponding to the diagram (as drawn) or these partitions is
(g é % E) But, due to the fact that the defining partitions are unordered, one can permute
the spots (black and white, between themselves) and, so, the lines %nfé clofgmns of this matriz

can be permuted. the diagram could be represented by the matriz (D R 0) as well.
Lo Dol

<numéro>
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Hopf algebra structure

(HIHIAI]'HISIQ)
Satisfying the following axioms
= (H,u,1,) is an associative k-algebra with unit (here k

will be a — commutative - field)

= (H,A,c) is a coassociative k-coalgebra with counit

* A: H->H®H is a morphism of algebras

*a : H->His an anti-automorphism (the antipode)
which is the inverse of Id for convolution.

Convolution is defined on End(H) by

poy=p (¢ ® y) A

with this law End(H) is endowed with a structure of
associative algebra with unit 1. <numéro>



First step: Defining the spaces
Diag:@d e diagrams C d LDIaQ:@d e labelled diagrams C d

(functions with finite supports on the set of
diagrams). At this stage, we have a natural arrow
LDiag - Diag.

Second step: The product on Ldiag is just the
concatenation of diagrams

d,*xd,=d, d,

And, setting m(d,L,V,z) =LA Zldl
one gets
m(d,*d,,L,V,z)= m(d,,L,V,z)m(d,,L,V,z)

<numéro>



This product is associative with unit (the empty
diagram). It is compatible with the arrow
LDiag = Diag and so defines the product on Diag

which, in turn, is compatible with the product of
monomials.

LDiag X LDiag —— Diag x Diag —— Mon X Mon

} }
LDiag 9 m(d.2,2,?

I -7 -1r"

<numéro>



The coproduct needs to be compatible with
m(d,?,?,?). One has two symmetric possibilities
(black spots and white spots). The « black spots co-
product » reads

A (d)=2 d, ® d,

the sum being taken over all the decompositions, (I,])
of the Black Spots of d into two subsets.
For example, with the following diagrams d, d, and d,

O O O O

one has Ay (d)=d®Z + @®d + d,®d, + d,®d, .



If we concentrate on the multiplicative structure of
Ldiag, we remark that the objects are in one-to-one
correspondence with the so-called packed matrices of
NCSFVI (Hopf algebra MQSym), but the product of

MQSym is given (w.r.t. a certain basis MS) according
to the following example

MS|[{,|MS}; ) =
2100 2100 UUSI]

MS[IDDD] —|—MSH$§?] —|—MS[0031} —|—MS[2131} —|—MS[21UU

0031 1000 1ooo 1000

<numéro>



It is possible to (re)connect these Hopf algebras to
MQSym and others of interest for physicists, by
deforming the product with two parameters.

The double deformation goes as follows

* Concatenate the diagrams

* Develop according to the rules :
» Every crossing "pays” a q_
» Every node-stacking "pays” a q_

<numéro>



In the expansion, the weights are given by the
intersection numbers.

<numéro>






We could check that this law is associative (now three
iIndependent proofs). For example, direct computation
reads

(au 1 bv) | cw = (a(u | bv) 4 g I9¢lP [2] (ulv) +¢"b(au | v)) | cw

C

[a((u | b-y} | cw) _|_q|:|u|+|bt-‘|:||ﬂ‘-|f|ﬂ||f-| Lr

} ((u 1 b0) 1 w) + g1 Dele(a 1 b) 1 w)]

[
[qlullblflﬂllbl m (w1 v ] cw) -+ gHlIb(ulHEDlelglallbhy(lal+EDIe H GETh

a

Qs+l Jalbl [z] (w1 v)) 1 w)

dMb((au 1 v) 1 cw) + gleulibCaukHeDiel lélle H (au v ] w) + gelPHH a0l (b gy 1 v) 1

<numéro>



i

au T (bv | cw) =au 1 (b(v | cw) + gvllelglolle H (v 1 w)+q"Me(bo | w)) =

[G-('H- T E}('L‘ T CIL-‘)) W q|“||h|f|a||b| [f;] (H- T U T f_':‘i'_L:') _|_q|ﬂ”||h|b((1u_ T v T .[:w)]—|—

C
[q|v||c|t|b||r:|a(u¢ H (01 w)) + g¥leHHRAUelHeD ollebHalo+e) || (3 14 1 o)t
(

ol laul (841 el H i w)]Jr

[ P Mla(u 1 obo 1 w) 4+ gDl H (w1 bv 1 w) + gl= 0l o(ay, 1 b 1 w)] 3)

dans la deuxiéme expression, on regroupe les trois termes de téte des crochets et on trouve

a(u ] b(v 1 cw)) + ¢"¢Pld gy 1 H (v Tw)) +¢"a(u T clbo Tw)) =alulbv] cw)
(4)
dans la premiere expression, on regroupe les trois termes de queue des crochets et on trouve
(i i e i (i i e e b
glovi+m ! Iﬂ(a(u 1 bv) T w) el il IIbIC((H (w1 ) T w)+

q|au||b|—|—(|au|—|—|bt'|jl|c|c(b(au 1) T w)= qilau|+|m.-|jl|c|ﬂ(au T b T w) (5)



This amounts to use a monoidal action with two
parameters. Associativity provides an identity in an
algebra which acts on a diagram as the algebra of the
sum of symmetric semigroups. Here, it is the
symmetric semigroup which acts on the black spots

Diagram

<numéro>



+ q2q° + ¢

The labelled diagrams are in one to one correspondence
with the packed matrices of MQSym and we can see
easily that the product of the latter is obtained for

9. =1=q,

<numéro>



Hopf interpolation : One can see that the more
intertwined the diagrams are the fewer connected
components they have. This is the main argument to
prove that LDIAG(q_q ) is free on indecomposable

diagrams. Therefore one can define a coproduct on
these generators by

A=(1-)A, +t A

MQSym
te {0,1} this is LDIAG(q_ q_,t).

<numéro>



LDIAG(q_q_,t) \ Planar decorated Trees

LDIAG(1 q_,t)

0,0,0
( ) (1,1,1)

[LDIAG]

‘Connes—Kreimer

[Sym=D

Notes :
i) The arrow Planar Dec. Trees — LDIAG(1,q,,t) is due to L. Foissy

i1) LDIAG, through a noncommutative alphabetic realization shows
to be a bidendriform algebra (FPSACO7 paper by ParisXIII & Monge).

<numeéro>



Concluding remarks and future

1) The diagrams of diag are well suited to EGFs.
What are the good data structures for other ones ?

i) One can change the constants V,=1 to a
condition with level (i.e. V,=1 for k<N and V,= 0

for k>N). We obtain then sub-Hopf algebras of the
one constructed above. These can apply to the
manipulation of partition functions of physical
models including Free Boson Gas, Kerr model and
Superfluidity.

<numéro>



Concluding remarks and future (cont'd)

1) The deformation above is likely to be decomposed
In two deformation processes ; twisting (already
Investigated in NCSFII1) and shifting (ongoing work
with JGL and al.). Also, it could have a connection
with other well known associators.

IV) The identity on the symmetric semigroup can be
lifted to a more general monoid which takes into
account the operations of concatenation and
stacking which are so familiar to Computer
Scientists (ongoing work in LIPN).

<numéro>
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2) Duchamp G., Klyachko A., Krob D., Thibon J.-Y.,

Noncommutative symmetric functions I11: Deformations of Cauchy and
convolution algebras.

Discrete Mathematics and Theoretical Computer Science Vol. 2 (1998).
--> Construction of FQSYM and a model of g-deformation (for crossings)
3) Duchamp G., Reutenauer C.,

Un critere de rationalité provenant de la geomeétrie noncommutative.
Inventiones Math., 128, 613-622. (1997)

--> Application of rational calculus in Sweedler's duals.
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Algebraic Combinatorics :
1) Duchamp G., Hivert F., Thibon J.Y. :

Non commutative symmetric functions VI: Free quasi-symmetric functions and
related algebras.

International Journal of Algebra and Computation Vol 12, No 5 (2002).
--> Construction of the Hopf algebra of Matrix Quasi-Symmetric Functions
2) Gérard H. E. Duchamp, Jean-Gabriel Luque, K. A. Penson, Christophe Tollu,

Free Quasi-Symmetric functions, product actions and Quantum Field Theory of
Partitions.

Séminaire Lotharingien de Combinatoire 54A (2007).

--> Talk of Christophe Tollu : a new product on the algebra of Symmetric
Functions and structure theorem

3) G. H. E. Duchamp a, J-G. Luque b, J-C. Novellib, C. Tollu a, F. Toumazet,
Hopf algebras of diagrams
Formal Power Series and Algebraic Combinatorics, Tianjin, China 2007
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--> A realisation of LDIAD(qc,gs,t) with proof of « bidendriformity ».



Automata Theory :
1)) J. Berstel, C. Reutenauer,

Rational series and their languages.
EATCS Monographs on Theoretical Computer Science. Springer (1988).
--> Link between rational series and languages
2) M.P. Schutzenberger,

On the definition of a family of automata.

Information and Control,4, (1961).
--> Fundation of Automata theory
3) S. Eilenberq,

Automata, languages and machines
Volumes A & B, Acad. Press
--> A systematic exposition of the theory of automata and transducers.
4) Duchamp G., Flouret M., Laugerotte \'E., Luque J-G.,
Direct and dual laws for automata with multiplicities, T.C.S.267, 105-120{20071).



Thank You
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