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What 1s the Legacy ?

Mainly:

v Data Structures

v Programs

v Theorems

v Computation rules
v Experiments

v Simulations




<Combinator'ic:~‘>

..onwords | | enumerative, | glgebraic
| analytic =

- Langages i « Polyominos i« Non commutative

* Theory of codes  « Paths . Continued fractions

« Automata . (Dyck,...) .« Representations

e Transition : « Configurations i of groups and
structures * J-grammars deformations

» Grammars i « Generating .« Quantum Groups

* Transducers i Functions i  Functors
Rational and : « Continued Fractions : e Characters
algebraic . (mono, multivariate,.) i * Special Functions
expressions * Orthogonal . ...

. ... Polynomials
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A first example . . .
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Figure 4.2: Maximal, minimal (dotted) and two intermediate trajectories. Their
codes are on the right.
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And compare this process with other data

structures and codes, for example, with a=( b=)
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Explanation: with a=( b=), every « good » word

factorizes uniquely aubv with u,v « good » words
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In each case, the graph is « graded »

(in the first case by the length of the code
in the second by half the length of the
words) and the « sons » are labelled by a
statistics (last entry for the code and
number of factors for the words)

----> we can make the structures evolve
IRUEEEINERTENE

The « coding theorem » is the following.



Theorem 1. Let @ = {a}UPT be a data stucture with a bi-variwate statestics

P —=TMx X p—sip)=ink
(X s set of labels) such that
s(PT) C Nt x X

Set ¢, = {f" = t]}lj.l."lli.l-.'l::]!-,.':l | = }3} areid |ill:li'.l::| = praisip)) “label of f"“f We
suppose that there erists a function “return to the father”

l:--I;I : {I}“.'_l — {I}i‘l

such that p— (d(p),l(p)) is into. Then, for p € ®,,. the code

(I(p) H(d(p)) H(d*(p)). - - 1d" " {p)))

15 into.




A second (and relate
example . ..



Thomas Schelling city segregation model

in Urban Dynamics

static data and are not adapted for the management
or the analysis of dynamic systems, for their adaptive
properties for exemple and more generally for their
complexity . GIS need to be augmented to be able to
be the support of the understanding of the geographical
systems evolution. One of the innovative solution to
deal with this goal is to mix GIS with multiagent
systems (MAS) platform or with swarm intelligence
algorithms.
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(a) Initial situation

Thomas Schelling’s city segregation model illustrates
how spatial organizations can emerge from local rules,
concerning the spatial distribution of people which
belong to different classes. In this model, people can
move, depending on their own satisfaction to hawve
neighbours of their own class. Based on this model, a
city can be highly segregated even if people have only a
mild preference for living among people similar to them.

Parmmatar

In this model, each person is an agent placed on a 2D
grid (in his original presentation, a chessboard was used
by Thomas Schelling). Each case can be considered like
a house where the agent lives. Each agent cares about
the class of his immediate neighbours who are the occu- . . . o
mants of the abuttine =ouares of the chesshoard Fach (b) Stable situation after 124 iterations
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(b) Final Stable situation for a tolerence rate = 0.375
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Figure 3: Singular situation for 5 populations seggre-
gation Schelling model with density = 0.47 and with
tolerance rate = 0.376

organization and structural interaction between the
system and its components occur. In figure 4, we
concentrate on the emergence of organizational systems
from geographical systems. The continuous dynamical
development of the organization feed-back on the
geographical system which contains the organization
components and their environment.



Critical
Thresholds. !

(b) Final Stable situation for a tolerence rate = 0.375

(c) Final Stable situation for a tolerence
rate = 0.3750001




In order to modelize in an equidistributed
way, one must use a « tree » representation.
Here, the grading is the number of inhabitants
and the « return » operator is the deletion of the
image of « n » (if n is the number of
inhabitants) as well as « n » itself (i. e., one
withdraw (n,f(n)) to the graph of « f », the
moving mapping).

The « moving mapping » is a generalized
derangement (one never moves from a place to
itself ). If m(n,k) is the number of moving
mappings for n inhabitants into n+k lodgings,
one gets

m(n,k)=m(n,k-1)+n. m(n -1,k)



-
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A third example . .



Let us define in full

(transition structure) : It is a
graph (finite of infinite) with its arcs
marked with pairs

(command letter | coefficient)

Examples : Prisoner's dilemma, Markov
chains, classical engineering.




Example : A Markov chain generated by
a game.

F | (0.5 | If,..-""'-.,II j-_ | | 0.5 | a"

: P|(0.5) . F|(0.5)
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Example : An automaton generated by
arbitrary transition coefficients (real,
complex or taken in an arbitrary semiring).




Example of Probabilistic Automaton

LINEAR REPRESENTATION

input vector

1

2 i
fosos ‘ovor
2(0.8[0.2 [06/0.4)2

M(C) M(D)

output vector
i




Behaviour of an Automaton and
how to compute it effectively

An automaton is a which takes a
string (sequence of letters) and returns a

This value is computed as follows:

1) The of a path is the product
of the weights (or coefficients) of its
edges

2) The of a path is the product
(concatenation) of the labels of its edges



Behaviour ... (cont'd)

3) The between two states
«r,s »w.r.t. Aword « w » isthe product
oj

3a) the ingoing coefficient of.the
first state (here « r ») by

3b) the sum of the
weights of the paths going from « r »to
« s » with label « w » by

3c) the outgoing coefficient of
the second state (here « s »)



Behaviour ... (cont'd)

4) The of the automaton

under consideration w.r.t. a word « w »
IS then the sum of all the behaviours of the

automaton between two states « r,s » for
all possible pairs of states.



Behaviour ... (cont'd)

There is a simple formula using the

linear representation. The of
an automaton with linear representation

(I,M,T) is the product

IM(w)
where M(w) is the canonical exention‘of M

to the strings.
M(a.a, ... a )=M(a,)M(a,)...M(a )



Behaviour ... (end)

The behaviour, as a funetion on words
belongs to the rational class. If time
permits, we will return to its complete
calculation as a and the
problem of its algorithmic evaluation by
means of special cancellation operators.
Linear representations can also be used to

compute



Example -> use of genetic algorithms to
control indirect (set of) parameters . in
what follows, the spectrum of a matrix.



Genetic algorithms : general pattern

Population GA Operators

Mutation
'y

Crossover
|
Reproducti on
A

Evaluation

Y

Fitness value

Evolution Environment

Genetic Algorithm Evolution Flow



Genetic algorithms : implementation

—l

Chromesome Code

Fizure 4.13: Chromosome code



Genetic algorithms : implementation

Below, the results of an experiment aiming te control
the second greatest eigenvalue of the transfer matrix of

a population of probabilistic automata.

* The fitness function of each automaton corresponds
to the second greatest eigenvalue (in module).
The first being, of course, of value 1.



Genetic algorithms ; results




Genetic algorithms ; results




Genetic algorithms ; results




Genetic algorithms ; results




Genetic algorithms ; results

Final result : the population is
rendered homogeneous



General transition systems

ajlw

» Automata (finite number of edges)

e Sweedler's duals (physics, finite number of
states)

e Representations

e Level systems (Quantum Physics)

e Markov chains (prob. automata when finite)



Example in Physics

a+‘(k+l)1/2

Level k < > Level k+.

a\(k+1)1/2




The (classical, for bosons) normal ordering problem
goes as follows.

Weyl (two-dimensional) algebra defined as
Vi <a,a;)[a,%=1>

Known to have no (faithful) representation by
bounded operators in a Banach space.

There are many « combinatorial » (faithful)
representations by operators. The most famous one
is the Bargmann-Fock representation

a—>d/dx; at> x
where a has degree -1 and at* has degree 1.

42



Example with Q =a"




4
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Through Bargmann-Fock representation
a~>d/dx; at> x
Operators who have only one annihilation have

exponentials who act as one-parameter groups.of
substitutions.

One can thus use computer algebra to determine their
generating function.

For example, with

Q= a*t?a at+ ata at?
the computation reads

47



%3 Maple 9 - [Untitled (1) - [Server 1]] @)X

@ File Edit View Insert Format Spreadshest Window Help -8 X
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_ One parameter group by f(v(u(x)+21)); v 1s reciprocal of u B
(> T1(lambda,x) :=(-4*(-1/(4*x*2)+lambda) )~ (-1/2) ;

Ti(h,x) =

— 42

2

X
_ We suppose x>0
(> Tl:=(lambda,x) -> x/((l-4*lambda*x*2)"*(1/2));

X

T1=(nx)—>
A1 =40 x?

_ Checking the tangent vector
> subs (lambda=0,diff (Tl (lambda,x) ,lambda)) ;

2 x°
_ ... and the one-parameter group property
> simplify (Tl (lambdal, Tl (lambdaZ2,x)) -T1l(lambdal+lambdaZ2, x) ) ;

0

| Time: 028 |Butes 1.94M | Available: 1.335

‘s demarrer [€] Microsoft PowerPaint ... F3] Maple 9 - [Untitted (1... | Fee Le Robert & Coliins FR !’&. Ll [ ]2t AT



And the action of exp(A w) on [f(x)] is

Uy (f)= x [ (53 ()5 (x))?

_ 1 X’
] i/a- 41 x* )’ f(\/1—4)\ )

which explains the prefactor. Again, we can check by
computation that the composition of (U, s) amounts to

simple addition of parameters !!
Now suppose that exp(A w) is in normal form.
In view of EqQ1l (slide 15) we must have
A nw n A n ne
exp(Aw):z :z ”ez Sy (nk)x( )

|
n2 0 & nZO
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£ Maple 9 - [calc1.mws - [Server 1]]

@ File Edit View Insert Format Window Help — | & x
(EREE [EE B EAE EE FE Pl ERRA
> gl:=exp(y*x*exp(x))  ,;dl:=taylor(gl,x=0,7); f]
(vxe)
g} : e VX e

dl =1 (1"]”(1 ”11]1(1 ”1114]4
=l+yx+|y+-y (X +H|Ty+y oy (| vy ATy Ty x4
J S 2} k\2} J 6} \6} J 2} 24J

(1 2, 3,1, 1 qJ ; ( 1 1,3 .1, 1, 1 6} 4 O)
Y+ VA VA oy oy x| Ty vy ATy Ay oy | +0(x
247 737 4P Te? T 120” (1207 737 T4 T3Y Taa? Tane?

:> matrix (7,7, (1,]3)->(1-1) ! *coeff (coeff(dl,x,i-1),vy,J-1));

10 0 0 0 0 0
01 0 0 0 0 0
02 1 0 0 0 0
03 6 1 0 00
0 4 24 12 1 0 0
0 5 8 90 20 1 0
0 6 240 540 240 30 1.




For these one-parameter groups and conjugates of vector fields

G. H. E. Duchamp, K.A. Penson, A.l. Solomon, A. Horzela and P.
Blasiak,

One-parameter groups and combinatorial physics,

Third International Workshop on Contemporary Problems in
Mathematical Physics (COPROMAPH3), Porto-Novo (Benin),
November 2003. arXiv : quant-ph/0401126.

For the Sheffer-type sequences and coherent states
K A Penson, P Blasiak, G H E Duchamp, A Horzela and A | Solomon,

Hierarchical Dobinski-type relations via substitution and the moment
problem,

J. Phys. A: Math. Gen. 37 3457 (2004) arXiv : quant-ph/0312202
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A second application : Dyck paths

(systems of brackets, trees, physics, ...)




v N

Equation : D = void + (D) D ... one counts strings using an « X »
by bracket and one finds T(x)=x°+ x?T?(x) which can be solved by
clementary methods ...

x? 12— 1+1=0 Varniable : | Parameter : x




Change of level (physics)

AM/\A/\W N ?
W/ O

i_.--}:l Lf' v

Positifs = D(aD)”  Peleliies

Il —x Dyck



> solve (x"2*T"2-T+1=0,T) ;

1"'\/1—43"?: 1—\/1—43::
2 x° ? 2 X7

> f:=1/(2*x“2)*(1—(1;4*X“2)A(1/é))F

ﬂzl—J1—4f
. ) 2

> taylor (f,x=0,20) ;
L7+ 22"+ 5%+ 14x% + 4207 4+ 13257 + 429 2™ + 1430 +° +

O(x™)
> seq(binomial (2*k,k)/ (k+1) ,k=1..8);

1,2,5, 14,42, 132, 429, 1430

>




> Pos:=simplify(Dyck/(l—x*DYGk));

2
| =/ 1—dxy+2x
> coeftayl (Pos, [x,y]=[0,0]1,[6,4]);

90
:> S:=0:for 1 from 0 to 6 do for k from 0 to 6 do

S:=S+coeftayl (Pos, [x,y]=[0,0], [k,1]) *x"k*y"1l od
od:S;

Pos = —

b ¥ 6 2’ - ﬁ 2’ = 3 3 ¥ 2’ 2’ 3 ¥ 5 3 - I ﬁ
.I. + 1}: + 1}: :l":‘ + 2 O 1}: :l":‘ + _I. - I 1}: :l"} + : 1}: J; + 2 1}: :l":‘ + -i-‘-‘.:‘ + 2 8 1}: J; + 1}: + 1}:
b ’ ¥ ! 6 6 I - I b I - I - I b I 4 3 = 5 - I 2’ I 6 3

¥ F - I 6
| I'II 2 1}: J; I 6 1}: J;
- > ‘




Automata and rationality

Un type particulier d'automate a multiplicités est
constitué des automates a multiplicités avec des
£-transitions.

Un k-c-automate 4. est un k-automate sur
I'alphabet A, = A U {£}.

Exemple :

Fic. 1 — Un Q-automate A. Fic. 2 — Un N-¢-automate A,

Le comportement de 4 est :

comportement(.A) = Z (a+ b)*(6 + a*b). comportement{.4.) = 18 (Z T(aé}i) E.

2,4 icH
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A correct implementation of
Schelling’s model

Problem : If one scans the board, addressing the
inhabitants one after one, result is sensitive to the

order of scanning.

Solution : Invent a (combinatorial) data structure which
adapted to the parallel structure of the moving
intentions of the inhabitants.




Problem : If one scans the board, addressing the
inhabitants one after one, result is sensitive to the
order of scanning.

Solution : Invent a (combinatorial) data structure which
adapted to the parallel structure of the moving
intentions of the inhabitants --> this must be a global
model.
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Thank You
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