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What is the Legacy ?

Mainly: 
✔ Data Structures
✔ Programs
✔ Theorems
✔ Computation rules
✔ Experiments
✔ Simulations



  

• Langages
• Theory of codes
• Automata 
• Transition
   structures 
• Grammars
• Transducers
   Rational and 
   algebraic
   expressions 
• …

• Polyominos
• Paths 
   (Dyck,…)
• Configurations
• q-grammars
• Generating 
      Functions
• Continued Fractions 
  (mono, multivariate,.)
• Orthogonal
   Polynomials 
• …

C o m b i n a t o r i c s

… on words algebraicenumerative,
analytic

• Non commutative
 Continued fractions 
• Representations 
   of groups and 
   deformations
• Quantum Groups 
   Functors 
• Characters
• Special Functions 
• …



A first example . . .







Ø ab

aabb

abab

aaabbb

abaabb

aababb

aabbab

ababab

aaaabbbb

abaaabbb

aabaabbb
aabbaabb

ababaabb
aaababbb

abaababb
aaabbabb
aaabbbab
abaabbab
.......

And compare this process with other data  

structures and codes, for example, with a=( b=) 



Explanation: with a=( b=), every « good » word 

factorizes uniquely aubv with u,v « good » words

Ø ab

aabb

abab

aaabbb

abaabb

aababb

aabbab

ababab

aaaabbbb

abaaabbb

aabaabbb
aabbaabb

ababaabb
aaababbb

abaababb
aaabbabb
aaabbbab
abaabbab
.......



In each case, the graph is « graded »
(in the first case by the length of the code
in the second by half the length of the 
words) and the « sons » are labelled by a 
statistics (last entry for the code and 
number of factors for the words)

----> we can make the structures evolve 
in the same way.

The « coding theorem » is the following.





A second (and related) 
example . . .



Thomas Schelling city segregation model 
in Urban Dynamics





Critical 
Thresholds !



In order to modelize in an  equidistributed 
way, one must use a « tree » representation. 
Here, the grading is the number of inhabitants 
and the « return » operator is the deletion of the 
image of « n » (if n is the number of 
inhabitants) as well as « n » itself (i. e., one 
withdraw (n,f(n)) to the graph of « f », the 
moving mapping). 
The « moving mapping » is a generalized 
derangement (one never moves from a place to 
itself !). If m(n,k) is the number of moving 
mappings for n inhabitants into n+k lodgings, 
one gets 

m(n,k)=m(n,k-1)+n. m(n -1,k)  



A third example . . .



Let us define in full 
generality what is a 

Definition (transition structure) : It is a 
graph (finite of infinite) with its arcs 
marked with pairs 

(command letter | coefficient)
Examples : Prisoner's dilemma, Markov 
chains, classical engineering. 



Example : A Markov chain generated by 
 a game. 



Example : An automaton generated by 
 arbitrary transition coefficients (real, 
complex or taken in an arbitrary semiring). 



Example of Probabilistic Automaton  



Behaviour of an Automaton and 
how to compute it effectively  

An automaton is a machine which takes a 
string (sequence of letters) and returns a 
value.
This value is computed as follows : 

1) The weight of a path is the product 
of the weights (or coefficients) of its  
edges

2) The label of a path is the product 
(concatenation) of the labels of its  edges



Behaviour ... (cont'd) 

3) The behaviour between two states 
« r,s » w.r.t. A word « w » is the product 
of 

3a) the ingoing coefficient of the 
first state (here « r ») by 

3b) the sum of the 
weights of the paths going from « r » to 
« s » with label « w » by 

3c) the outgoing coefficient of 
the second state (here « s »)  



4) The behaviour of the automaton 
under consideration w.r.t. a word « w » 
is then the sum of all the behaviours of the 
automaton between two states « r,s » for 
all possible pairs of states.  

Behaviour ... (cont'd) 



There is a simple formula using the 
linear representation.  The behaviour of 
an automaton with linear representation 
(I,M,T) is the product

 IM(w)T
where M(w) is the canonical exention of M
to the strings.

M(a
1
a

2 
... a

n
)=M(a

1
)M(a

2
)...M(a

n
)

Behaviour ... (cont'd) 



The behaviour, as a function on words
belongs to the rational class. If time 
permits, we will return to its complete 
calculation as a rational expression and the 
problem of its algorithmic evaluation by 
means of special cancellation operators. 
Linear representations can also be used to 
compute distances between automata. 

Behaviour ... (end) 



Example -> use of genetic algorithms to 
control indirect (set of) parameters : in 
what follows, the spectrum of a matrix.



Genetic algorithms : general pattern



Genetic algorithms : implementation



Genetic algorithms : implementation

Below, the results of an experiment aiming to control 
the second greatest eigenvalue of the transfer matrix of 
a population of probabilistic automata. 

● The fitness function of each automaton corresponds 
to the second greatest eigenvalue (in module). 
The first being, of course, of value 1.



Genetic algorithms ; results 



Genetic algorithms ; results 



Genetic algorithms ; results 



Genetic algorithms ; results 



Genetic algorithms ; results 

Final result : the population is 
rendered homogeneous 



General transition systems 

a|w

●  Automata (finite number of edges) 
● Sweedler's duals (physics, finite number of 
states)
● Representations
● Level systems (Quantum Physics)
● Markov chains (prob. automata when finite)



Example in Physics : 
annilhilation/creation

0 1 2 3 4 5 6 7 8 ...

a+|(k+1)1/2

a|(k+1)1/2

Level k Level k+1
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The (classical, for bosons) normal ordering problem 
goes as follows.

• Weyl (two-dimensional) algebra defined as
< a+, a ; [a , a+ ]=1 >

• Known to have no (faithful) representation by 
bounded operators in a Banach space.

There are many « combinatorial » (faithful) 
representations by operators. The most famous one 
is the Bargmann-Fock representation 

a  d/dx ; a+  x
where a has degree -1 and a+ has degree  1.
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Example with Ω = a+ a a+ a a+ 

    a+               a          a+              a              a+ 
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    a+               a          a+              a              a+ 
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    a+               a          a+              a              a+ 
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    a+               a          a+              a              a+

a+aa+aa+= 1 a+a+a+aa + 3 a+a+a + 1 a+
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Through Bargmann-Fock representation 
a  d/dx ; a+  x

Operators who have only one annihilation have 
exponentials who act as one-parameter groups of 
substitutions. 
One can thus use computer algebra to determine their 
generating function.

For example, with 
Ω = a+2a a+ + a+a a+2

 the computation reads
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And the action of exp(λ ω) on [f(x)] is  

3 3
2 2

2

4 22 3

1
1 4(1 4 )

( ) ( ( )).( ( ))

 ( )  x
xx

U f x f s x s x

f

λ λ λ

λλ

−

−−

=

=

which explains the prefactor. Again, we can check by 
computation that the composition of (Uλ s) amounts to 
simple addition of parameters !! 
Now suppose that exp(λ ω) is in normal form. 
In view of  Eq1 (slide 15) we must have

  
0 0 0

exp( )  ( , ) ( )
! !

nen n n
ne k k

n n k

dx S n k x
n n dxω

λ ω λλ ω
≥ ≥ =

= =∑ ∑ ∑
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So, using this new technique, one can compute easily
the coefficients of the matrix giving the normal forms. 
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For these one-parameter groups and conjugates of vector fields 

G. H. E. Duchamp, K.A. Penson, A.I. Solomon, A. Horzela and P. 
Blasiak,  

One-parameter groups and combinatorial physics, 

Third International Workshop on Contemporary Problems in 
Mathematical Physics (COPROMAPH3), Porto-Novo (Benin), 
November 2003. arXiv : quant-ph/0401126.

For the Sheffer-type sequences and coherent states

K A Penson, P Blasiak, G H E Duchamp, A Horzela  and A I Solomon, 

Hierarchical Dobinski-type relations via substitution and the moment 
problem,

J. Phys. A: Math. Gen. 37 3457 (2004) arXiv : quant-ph/0312202



  

A second application : Dyck paths   
(systems of brackets, trees, physics, …)

(     )     (      (     (      )    (      )     (      )     )      )



  

(     )     (      (     (      )    (      )     (      )     )      )

Equation : D = void + (D) D … one counts strings using an « x »
by bracket and one finds T(x)=x0 + x2 T2(x) which can be solved by 
elementary methods  …

x2 T2 –T+1=0   Variable : T Parameter : x



  

Change of level (physics)

Positifs = D(aD)* 

2

0

1



  



  



  

Automata and rationality



  



A correct implementation of 
Schelling’s model

Problem : If one scans the board, addressing the 
inhabitants one after one, result is sensitive to the 
order of scanning.

Solution : Invent a (combinatorial) data structure which 
adapted to the parallel structure of the moving 
intentions of the inhabitants.



Problem : If one scans the board, addressing the 
inhabitants one after one, result is sensitive to the 
order of scanning.

Solution : Invent a (combinatorial) data structure which 
adapted to the parallel structure of the moving 
intentions of the inhabitants --> this must be a global 
model.
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Thank You
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