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ABSTRACT

In this paper, we deal with modelling infinitely
repeated games by using infinite words. These
games are supposed noncooperative and with a
perfect knowledge of the previous moves. In
this context, we give a general definition of a
Nash equilibrium, that we illustrate with a fa-
mous example.

Index Terms— Modelling, infinite words,
formal languages, game theory, strategy, Nash
equilibrium.

1. INTRODUCTION

Game theory [5] is usually defined as a mathe-
matical tool used to analyze strategical interac-
tion, the game, between individuals which are
called players. The games studied in this paper
are supposed simultaneous, noncooperative, in-
finitely repeated and with a perfect knowledge
of the previous moves. We will elucidate these
ideas through a famous example.
In game theory, the distinction between the co-
operative and noncoperative game is crucial. The
Prisoner’s Dilemma [2] is an interesting exam-
ple to explain these notions. It is a game involv-
ing two players where each one has two possi-
ble actions : cooperate (c) or defect (d). The
game consists of simultaneous actions of both
players (called moves). It can be represented
using the matrix :

π c d
c (4,4) (0, 5)
d (5, 0) (1, 1)

where each entryeij is an ordered pair of real
numbers. The two players are referred to as
the row player and the column player respec-
tively. The actions of the first player are iden-
tified with the rows of the matrix and those of
the second one with the columns. If the row
player chooses actioni and the second action
j, the components of the ordered paireij are
the payoff received by the first and the second
player respectively. It is clear that if they could
play cooperatively and make a binding agree-
ment, they would both play c. If the game is
noncooperative, the best action for each player
is d.

Suppose now that we consider now infi-
nite repetitions of a noncooperative base game.
This game is just as noncooperative as the base
one, but it allows a certain form of interaction.
Suppose that each player has a perfect knowl-
edge of the previous moves of all the others.
Then his strategy may depend on these previ-
ous moves and he may coordinate it with that
of his opponents. For instance, if the base game
is the Prisoner’s Dilemma, grim-trigger is the
strategy of cooperating in the first move and
until your adversary defects, then of always de-
fecting after the first defection of your oppo-
nent. Tit-for-tat is the strategy of playing at
each step the action played by your adversary
at the previous one ; the initial move is free.



In this paper, we make use of infinite
words to analyze the kind of games we want
to model. A match of such a game is repre-
sented as an infinite word on the alphabetA of
moves. In this context, a strategy for playeri
can be viewed as a relation from the set of finite
words onA to that of the actions of this player.
The whole strategy of the game is defined as
the vector composed by using the strategies of
all players. We can associate to each strategy
vector a languageL of infinite words onA, de-
fined as the set of all matches that the players
may make if everyone follows the strategy he
decided to apply.

Nash equilibrium is one of the most im-
portant notions in games theory. The whole
strategy of the game is defined as the vector
composed by using the strategies of all play-
ers. Intuitively, a strategy vector is a Nash equi-
librium if one player’s departure from it while
the others remain faithful to it results in pun-
ishment. The idea is that once the players start
playing according to such a strategy vector, then
they all have a good reason to stay with it.

More precisely, our study will be orga-
nized as follows. Sections 1 contains some ba-
sic notions on game theory. In Section 2, we
introduce the notion of strategy and give the
definition of language generated by a strategy.
Section 3 is devoted to the formal definition of
a Nash equilibrium with some examples.

2. MATHEMATICAL MODEL FOR
GAMES

Non cooperative games in which moves con-
sist of simultaneous actions ofn players, can
be represented by a collection ofn utility func-
tions. The values of these functions define the
expected amount paid to the players. A game
is a tupleG = (P, A, π) where

- P = {1, · · · , n}, n ∈ IN, is the set of
players.

- Ai is the set of the actions for playeri.

- A = A1× . . .×An is the alphabet of the
moves.

- πi : A −→ IR. is the utility function for
playeri.

- π = (π1, . . . , πn) : A −→ IRn is the
utility vector.

We consider in this paper theδ-discounted in-
finitely repeated game ofG, which we note by
Gω . In such a game, we model a matchh as an
infinite sequence of moves which can be rep-
resented by an infinite word on the alphabet
of the movesA : h = h0h1 · · ·ht · · · ∈ Aω .
We denote byhi,j thejth component of move
hi ∈ A.
The utility with discounting factorδ ∈ (0, 1) of
a matchh for playeri is defined as :

πδ
i (h) = (1 − δ)

∞
∑

k=0

πi(hk)δk.

Example 2.1 As concerns the Prisoner’s Dilem
ma, we haveP = {1, 2}, A1 = A2 = {c, d},
A = {c, d} × {c, d} and the utility function is
defined by the matrix given in the Introduction.
The infinite wordh = (c, c)ω is an example of
a match in which the two players cooperate in-
finitely. The value of the utility function with
discounting factorδ ∈ (0, 1) of h for player i
is :

πδ
i (h) = (1 − δ)

∑∞
k=0 πi((c, c))δ

k

= 4(1 − δ)
∑∞

k=0 δk

= 4.

3. STRATEGIES AND LANGUAGES

A nondeterministic strategy, called also quasi-
strategy,σi is a relation fromA∗ into Ai that
describes the behaviour of playeri during the
game. A strategy vector onA is the relation

σ = (σ1, . . . , σn) : A∗ −→ A

defined by :

(a1, . . . , an) ∈ σ(w) ⇐⇒ ai ∈ σi(w),

∀w ∈ A∗, ∀ai ∈ Ai, 1 ≤ i ≤ n.
LetΣ be the set of all strategy vectors onA. We
consider the map :γ : Σ −→ P(Aω), where
P(Aω) denotes the set of all languages inAω ,
which associates to each strategyσ ∈ Σ, the
language of infinite wordsγ(σ) given by :

γ(σ) = {h ∈ Aω | h0 ∈ σ(ǫ) and ht+1 ∈ σ(h0



· · ·ht), ∀t ≥ 0}.
The languageγ(σ) represents the set of all matches
that the players can play according toσ.

Example 3.1 We give a strategy for the Pris-
oner’s Dilemma game.

σ(w) =















{(c, c), (c, d)} ifw ∈ (c, c)∗

{(d, c), (d, d)} ifw ∈ (c, c)∗(c, d)
((d, c) + (d, d))∗

∅ otherwise

It is usually called the ”grim-trigger” strategy.
The languageL = γ(σ) is described by theω-
rational expression

(c, c)ω + (c, c)∗(c, d)((d, c) + (d, d))ω .

Example 3.2 Consider the following strategy
σ on the alphabetA = {a, b} :

σ(w) =

{

{a, b} if | w |a<| w |b
b otherwise

The languageL = γ(σ) associated is

{h ∈ Aω | Pref(h) ∈ {w ∈ A∗ | |w|a ≤ |w|b}}.

We note that this language is notω-rational, in
the sense of language theory.

In the following examples, we deal with
strategies in which the players need only a fi-
nite memory to store the past moves. Such strate-
gies can be represented by finite Büchi automata
[4]. The languages associated to these strate-
gies areω-rationals. We suppose that all states
of the automata considered in this paper are fi-
nal.

Example 3.3 Grim-trigger strategy for player
1
The grim-trigger strategy in Example 3.1 is given
by the following automaton. Notice that this

     (c,c)   (d,c) (d,d)

   (c,d)

automaton describes a strategy function for the
first player. Indeed, all the arrows starting from
each state are labelled with the same first com-
ponent.

Example 3.4 Tit-for-tat strategy for player 1
The strategy described by this automaton is in

(d,d)

(d,c)

(c,c)

(c,d)

fact composed of two elementary strategy func-
tions for the first player, which depend on the
initial state chosen at the beginning of the match.
We denote byLc (resp. Ld) the set of matches
played if the first player chooses action c (resp.
d) to start. The language recognized by this au-
tomaton isL = Lc

⋃

Ld, where :

Lc = ((c, c)+(c, d)(d, d)∗(d, c))(d, d)ω+((c, c)
+ (c, d)(d, d)∗(d, c))ω ,
Ld = ((d, d)+(d, c)(c, c)ω(c, d))∗(d, c)(c, c)ω

+ ((d, d) + (d, c)(c, c)(c, d))ω .

Example 3.5 Weak grim-trigger strategy for
player 1 Here we have a deterministic automa-

     (c,c)

   (c,d)

   A

ton, the strategy of which is a pure relation.
The behaviour of the first player becomes un-
predictable after the defection of player 2. The
set of matches recognized by this automaton is
the language :

L = (c, c)ω + (c, c)∗(c, d)Aω .

4. NASH EQUILIBRIUM

Intuitively, a strategy vector is a Nash equilib-
rium if no player has any interest in leaving his
strategy, while his opponents remain faithful to
theirs. Let us first introduce some basic no-
tions, in order to give a formal definition of a
Nash equilibrium.



Let α = (α1, . . . , αn) ∈ A. We calli-variation
of α everyβ ∈ A such thatαi 6= βi andαj =
βj , ∀j 6= i.
Let X be a language ofAω. We calli-variation
of a matchh = h0h1 . . . ht . . . in X every match
h ∈ X for which there existst ≥ 0, an i-
variationα of ht and a wordw ∈ Aω such that
h = h0 . . . ht−1αw ∈ X .
A good match for player i in X is a match
h ∈ X verifying πi(h) ≥ πi(h) for every i-
variationh of h. Denote byGMi(X) the set of
all good matches for playeri in X .

Example 4.1 Consider the languageL = (c, c)ω+
(d, d)ω . It is obvious that the words(c, c)ω and
(d, d)ω do not admit anyi-variation in L. So
we haveGMi(L) = L, ∀i = 1, 2.

Example 4.2 LetL be the language of infinite
words recognized by the following automaton.
This language involves the Prisoner’s Dilemma

     (d,d)   (c,c) (c,d)

(d,c)

strategy in which the first player defects as far
as his adversary defects and cooperates infinitely
as soon as his opponent cooperates. It is clear
thatL = (d, d)ω+(d, d)∗(d, c)((c, c)+(c, d))ω .
We claim thath = (d, c)(c, d)ω ∈ GM2(L) if
δ > 1/5, otherwise(d, d)ω ∈ GM2(L). In-
deed, leth be a 2-variation of h. Thenh ∈
(d, d)ω + (d, d)∗((c, c) + (c, d))ω . But, at the
sight of the payment matrix given in the Intro-
duction, we notice it pays more payful for the
second player always to choose d instead of c
after his first cooperation. Thus, we will only
examine the2-variations belonging to(d, d)ω+
(d, d)∗(d, c)(c, d)ω . We obtain successively for
n ∈ IN :
πδ

2((d, d)n(d, c)(c, d)ω) =
(1 − δ)(

∑n
k=0 δk +

∑∞
k=n+2 5δk) =

(1−δ)[
∑n

k=0 δk +5(
∑∞

k=0 δk−
∑n+1

k=0 δk)] =
1 − δn+1 + 5δn+2 =
1 + δn+1(5δ − 1).
The case ofh = (d, d)ω can be dropped when

δ > 1/5, because we have1+ δn+1(5δ− 1) >
1 = πδ

2((d, d)ω). Furthemore, one can easily
verify that the maximum of the functionn 7−→
1 + δn+1(5δ − 1) is reached forn = 0. Hence,
the word(d, c)(d, c)ω belongs toGM2(L).

The notion of Nash equilibrium also requires
the introduction of some basic strategy vectors.
Let σ = (σ1, . . . , σn) be a strategy vector and
let X = γ(σ) be the associated language. We
denote by̟ i : A∗ −→ Ai the unpredictable
strategy for playeri, given by̟ i(w) = Ai, ∀w ∈
A∗.
We define for all1 ≤ i ≤ n, the following
strategy vectors :

µ(i) = (̟1, . . . , ̟i−1, σi, ̟i+1, . . . , ̟n)

ν(i) = (σ1, . . . , σi−1, ̟i, σi+1, . . . , σn).

We denote byXi = γ(µ(i)) and byYi = γ(ν(i))

Proposition 4.3 We have :

• X =
⋂

1≤i≤n Xi;

• Yi =
⋂

j 6=i Xj ∀1 ≤ i ≤ n.

Proof. For the first part, we obtain the succes-
sion of equations :
X =
{h ∈ Aω| h0 ∈ σ(ǫ) and ht+1 ∈ σ(h0 . . . ht),
∀t ≥ 0} =
{h ∈ Aω| h0,i ∈ σi(ǫ) and ht+1,i ∈ σi(h0

. . . ht), ∀1 ≤ i ≤ n, ∀t ≥ 0} =
⋂

1≤i≤n{h ∈ Aω| h0,i ∈ σi(ǫ) and
ht+1,i ∈ σi(h0 . . . ht), ∀t ≥ 0} =
⋂

1≤i≤n γ(µ(i)) =
⋂

1≤i≤n Xi.
The second part of the proof is easier, since we
immediately obtain by using the lines above :
Yi =
{h ∈ Aω| h0,j ∈ σj(ǫ) and ht+1,j ∈ σj(h0

. . . ht), ∀t ≥ 0, ∀j 6= i} =
⋂

j 6=i γ(µ(j)) =
⋂

j 6=i Xj .

Definition 4.4 A strategy vector

σ = (σ1, . . . , σn)



is a Nash equilibrium if

n
⋂

i=1

GMi(Yi) 6= ∅.

In other words, a strategy vector is a Nash equi-
librium if there exists a match that represents a
good match for each player in the set of matches
of the others [2]. In particular, in the case of
two players, the general definition becomes :

GM1(X2)
⋂

GM2(X1) 6= ∅.

Example 4.5 We consider in the Prisoner’s
Dilemma game, the vectorσ = (σ1, σ2) in which
both players follow the grim-trigger strategy.
In this case we have :

X1 = (c, c)ω + (c, c)∗(c, d)((c, c), (d, d))ω ,
X2 = (c, c)ω + (c, c)∗(d, c)((c, d), (d, d))ω .

We claim that(σ1, σ2) is a Nash equilibrium if
and only if the discounting factorδ ≥ 1/4.
Indeed(c, c)ω ∈ GM1(X2)∩GM2(X1). Sup-
poseh = (c, c)k−1(c, d)(d, d)ω be a match with
defection of the first player at the rankk ≥ 0.
We obtain after computations

πδ
1(h) − πδ

1(h) = δk(4δ − 1).

Thenπδ
1(h) − πδ

1(h) ≤ iff δ ≤ 1/4, which
proves thath ∈ GM1(X2) wheneverδ ≥ 1/4.
In the same way, we can show thath ∈ GM2(X1).
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