The Fourth International Workshop on Advanced Computation for Engineering Applications (ACEA 2008) MACIS 2 Al-Balqa Applied University, Salt, Jordan

Corson Nathalie, Aziz Alaoui M.A. University of Le Havre, LMAH

July 24th, 2008

Biological introduction

Table of contents

[Biological introduction](#page-1-0)

[Mathematical models](#page-7-0)

[Numerical analysis](#page-16-0)

[Synchronization](#page-20-0)

[Conclusion and perspectives](#page-36-0)

メロトメ 御 メメ 老人 メモメー 差し

 2990

Neuron

- ▶ *a cell body*, extended by :
- **•** dendrites
- **an axon**
- **an axon terminal**

Kロト K伊 K

 \mathcal{A} 画す 4 重っ $2Q$

Biological introduction

Ionic channels

Membrane is composed of :

- \blacktriangleright a double lipidic layer
- \blacktriangleright ionic channels

lipidic lavers

Ionic channels :

- \blacktriangleright voltage-dependant
- \triangleright open / close / inactive

4 ロ > 4 何 > 4 ミ > 4 ミ >

÷.

 QQ

 \blacktriangleright conductance

Some important channels

- ► *Sodium channels* : 4 gates :
	- ► *3 to control the opening*
	- ^I *1 to control the inactivity*
	- → particularity : **inactivity period**
- ► *Potassium channels* : 4 gates *all control the opening* → particularity : **delay**
- **Leakage channels**: → particularity : **always opened**

KOD KARD KED KED E YOUR

Resting potential

Potential difference between both sides of the membrane:

KORK STREET A BY A GRAN

- \triangleright more *Na*₊ outside
- **If** more K_{+} inside

- ^I Experimentally,−90*mV* < *ddp* < −50*mV*
	- \blacktriangleright intra-cellular space more negative
	- \triangleright extra-cellular space more positive

Action potential

ACTION POTENTIAL:

- I: Resting state
- **I-II**: Stimulation
- II&III : Depolarization
- IV: Repolarization & hyperpolarization
- V: Resting state

IONIC SCALE:

- II : Sodium channels open III : More sodium channels open III-IV : Sodium channels close
- III-IV : Potassium channels open
- IV-V : Potassium channels close

Mathematical models

Table of contents

[Biological introduction](#page-1-0)

[Mathematical models](#page-7-0)

[Numerical analysis](#page-16-0)

[Synchronization](#page-20-0)

[Conclusion and perspectives](#page-36-0)

メロメメ 御きメモ メモ おく 老人

 2990

Hodgkin-Huxley model (1)

Alan Lloyd Hodgkin and *Andrew Fielding Huxley* :

- \blacktriangleright neurophysiologists
- \triangleright experiments on squid giant neuron ;
- \blacktriangleright discovery of ionic channels ;
- \triangleright description of electric activity of a neuron by mathematical equations ;

KORK STARK STARK AND KORK

 \triangleright Nobel price of physiology and medecine in 1952;

Hodgkin-Huxley model (2)

$$
\begin{cases}\n-C\frac{dV}{dt} = I_K + I_{Na} + I_L - I \\
\frac{dm}{dt} = \alpha_m(1 - m) - \beta_m m \\
\frac{dn}{dt} = \alpha_n(1 - n) - \beta_n n \\
\frac{dh}{dt} = \alpha_h(1 - h) - \beta_h h\n\end{cases}
$$

KOXK@XKEXKEX E 1990

10/39

Hodgkin-Huxley model (3)

$$
I = C\frac{dV}{dt} + I_K + I_{Na} + I_L \Rightarrow -C\frac{dV}{dt} = I_K + I_{Na} + I_L - I
$$

$$
\blacktriangleright I_K = n^4 g_K (E - E_K) ;
$$

- \triangleright $n =$ one of the 4 gates of a potassium channel is open;
- g_K = conductance of a potassium channel \times number of opened channels ;

KORK STREET A BY A GRAN

 E_K = equilibrium potential of potassium (= Nernst potential) ;

Hodgkin-Huxley model (4)

Similarly, we have :

$$
\blacktriangleright I_{Na} = m^3 h g_{Na}(E - E_{Na}) ;
$$

$$
\blacktriangleright l_L = g_L(E - E_L) ;
$$

- \bullet α_i = opening coefficient, $i = m, n, h$;
- \triangleright β_i = closing coefficient, $i = m, n, h$;

K ロ > K @ > K 할 > K 할 > 1 할 > 9 Q Q ·

Hodgkin-Huxley model (5)

$$
\begin{cases}\n-C\frac{dV}{dt} = I_{Na} + I_{K} + I_{L} - I \\
\frac{dm}{dt} = \alpha_{m}(1 - m) - \beta_{m}m \\
\frac{dn}{dt} = \alpha_{n}(1 - n) - \beta_{n}n \\
\frac{dh}{dt} = \alpha_{h}(1 - h) - \beta_{h}h\n\end{cases}
$$

KOXK@XKEXKEX E 1990

13/39

Hindmarsh-Rose 1982 model (1)

From Hodgkin-Huxley model to Hindmarsh-Rose 1982 model ;

 $\begin{array}{|c|c|} \hline \rule{0pt}{12pt} \rule{0pt}{2pt} \rule{0pt}{2$

⇒ *Mathematical simplification* thanks to *biological observations* : $\sqrt{ }$ $\begin{array}{c} \hline \end{array}$

- \blacktriangleright *m* is substituted by a constant because of its fast activation ;
- $h + n = 0.8$ (experimentally) ;

$$
-C\frac{dV}{dt} = I_K + I_{Na} + I_L - I
$$

$$
\frac{dm}{dt} = \alpha_m(1 - m) - \beta_m m
$$

$$
\frac{dn}{dt} = \alpha_n(1 - n) - \beta_n n
$$

$$
\frac{dh}{dt} = \alpha_h(1 - h) - \beta_h h
$$

Hindmarsh-Rose 1982 model (2)

A Fitzhugh-Nagumo type model :

$$
\begin{cases}\n\frac{dx}{dt} = y - x^3 + ax^2 + l \\
\frac{dy}{dt} = 1 - dx^2 - y\n\end{cases}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할 수 있어 안

a, *d* : parameters determined experimentally . *I* : applied current.

Hindmarsh-Rose 1984 model

A third equation to be closer to reality : an *adaptation equation*

$$
\begin{cases}\n\frac{dx}{dt} = y - x^3 + ax^2 - z + l \\
\frac{dy}{dt} = 1 - dx^2 - y \\
\frac{dz}{dt} = \epsilon (b(x - x_c) - z), \quad \epsilon << 1\n\end{cases}
$$

→ *slow-fast system*

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할 수 있어 안

Numerical analysis

Table of contents

[Biological introduction](#page-1-0)

[Mathematical models](#page-7-0)

[Numerical analysis](#page-16-0)

[Synchronization](#page-20-0)

[Conclusion and perspectives](#page-36-0)

メロトメ 御 メメ 老人 メモメー 差し

 2990

Numerical analysis

Numerical analysis (1)

Time series (*t*, *x*) *: bursting, and projections of the phase portrait on the planes* (x, y) *,* (x, z) *et* (y, z)

 $($ \Box $)$ $($ \Box $)$

 \mathcal{A} G. B

 $2Q$

Numerical analysis

Numerical analysis (2)

Bifurcation

Qualitative change of solutions due to parameters changes

- $I = 1.5: 3$ -cycle
- $I = 2:5$ -cycle
- $I = 3:10$ -cycle
- \blacktriangleright 3.25 \leq *I* \leq 3.295 : chaos
- ► *I* \ge 3.295 : stop generating bursts

Numerical analysis

Numerical analysis (3)

 $I = 1.5, I = 2, I = 2.5, I = 3$ *I* = 3.25, *I* = 3.33 *I* = 3.35 *I* = 3.50

Synchronization

Table of contents

[Biological introduction](#page-1-0)

[Mathematical models](#page-7-0)

[Numerical analysis](#page-16-0)

[Synchronization](#page-20-0)

[Conclusion and perspectives](#page-36-0)

メロトメ 御 メメ 老人 メモメー 差し

 2990

Synchronization-Generalities

 \triangleright characteristic of many processes in natural systems and non linear science

KORK STREET A BY A GRAN

- ▶ *syn* : common, *chronos* : time
- \triangleright to share the same motion at the same time
- **In there exist many kind of synchronization (***identical*, *generalized, phase...*)
- \blacktriangleright neurons : optimal transmission of information

Coupling systems (1)

Coupling

Making different entities be dependant one from the others.

Linear coupling function

Mutual coupling of 2 neurons by a linear function : electrical connection

$$
\begin{cases}\n\dot{x}_1 = ax_1^2 - x_1^3 - y_1 - z_1 - k(x_2 - x_1) \\
\dot{y}_1 = (a + \alpha)x_1^2 - y_1 \\
\dot{z}_1 = \mu(bx_1 + c - z_1) \\
\dot{x}_2 = ax_2^2 - x_2^3 - y_2 - z_2 - k(x_1 - x_2) \\
\dot{y}_2 = (a + \alpha)x_2^2 - y_2 \\
\dot{z}_2 = \mu(bx_2 + c - z_2)\n\end{cases}
$$

 $k(x_1 - x_2)$: coupli[n](#page-21-0)g function, *k*: coupling [st](#page-21-0)r[e](#page-23-0)n[gt](#page-22-0)[h](#page-23-0) $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$

23/39

Synchronization

Coupling systems (2)

Sigmoid coupling function

Mutual coupling of 2 neurons by a sigmoid function : chemical connection

$$
\begin{cases}\n\dot{x}_1 = ax_1^2 - x_1^3 - y_1 - z_1 - (x_1 - V_s)k_2 \frac{1}{1 + exp(-\lambda(x_2 - \Theta_s))} \\
\dot{y}_1 = (a + \alpha)x_1^2 - y_1 \\
\dot{z}_1 = \mu(bx_1 + c - z_1) \\
\dot{x}_2 = ax_2^2 - x_2^3 - y_2 - z_2 - (x_2 - V_s)k_2 \frac{1}{1 + exp(-\lambda(x_1 - \Theta_s))} \\
\dot{y}_2 = (a + \alpha)x_2^2 - y_2 \\
\dot{z}_2 = \mu(bx_2 + c - z_2)\n\end{cases}
$$

Θ*^s* : threshold, *k*² : coupling [stre](#page-22-0)[n](#page-24-0)[gt](#page-22-0)[h.](#page-23-0)

 QQ

Coupling 2 neurons

Two neurons identically synchronize if :

$$
\begin{cases}\nx_2 \rightarrow x_1 \\
y_2 \rightarrow y_1 \\
z_2 \rightarrow z_1\n\end{cases}\n\Leftrightarrow\n\begin{cases}\nx_1 = x_1 - x_2 \rightarrow 0 \\
y_1 = y_1 - y_2 \rightarrow 0 \\
z_1 = z_1 - z_2 \rightarrow 0\n\end{cases}
$$

 \Rightarrow Stability study of the transverse system :

$$
\begin{cases}\n\dot{x}_\perp = \dot{x}_1 - \dot{x}_2 \\
\dot{y}_\perp = \dot{y}_1 - \dot{y}_2 \\
\dot{z}_\perp = \dot{z}_1 - \dot{z}_2\n\end{cases}
$$

⇒ Example of theoretical tool to study this system : *Lyapunov function*.

KOD KAP K K B K K B K G B

 QQ

HR neurons mutually coupled by a sigmoid function

$$
\begin{cases}\n\dot{x}_1 = ax_1^2 - x_1^3 - y_1 - z_1 - (x_1 - V_s)k_2 \frac{1}{1 + exp(-\lambda(x_2 - \Theta_s))} \\
\dot{y}_1 = (a + \alpha)x_1^2 - y_1 \\
\dot{z}_1 = \mu(bx_1 + c - z_1) \\
\dot{x}_2 = ax_2^2 - x_2^3 - y_2 - z_2 - (x_2 - V_s)k_2 \frac{1}{1 + exp(-\lambda(x_1 - \Theta_s))} \\
\dot{y}_2 = (a + \alpha)x_2^2 - y_2 \\
\dot{z}_2 = \mu(bx_2 + c - z_2)\n\end{cases}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할 수 있어 안

Numerical results

Remark Diagonal $\Leftrightarrow x_1 = x_2 \Leftrightarrow$ synchronization

*x*₁ vs *x*₂ for $k_2 = 0.8, k_2 = 1, k_2 = 1.22, k_2 = 1.26$.

 Ω

Same minimal coupling strength to obtain synchronization between v_1 and v_2 and between z_1 and z_2 .

Synchronization

Coupling 3 neurons

*x*₁ vs *x*₂ for $k_3 = 0.2, k_3 = 0.4, k_3 = 0.6, k_3 = 0.63$.

 \rightarrow same resuts for x_i vs x_j , y_i vs y_j , z_i vs z_j $(\forall i,j=1,2,3)$

Synchronization

Coupling 4 neurons

*x*₁ vs *x*₂ for $k_4 = 0.1, k_4 = 0.3, k_4 = 0.42, k_4 = 0.5$.

 \rightarrow same results for x_i vs x_j , y_i vs y_j , z_i vs z_j $(\forall i,j=1,...,4)$

Synchronization

Coupling 5 neurons

*x*₁ vs *x*₂ for $k_5 = 0.1, k_5 = 0.2, k_5 = 0.29, k_5 = 0.3$.

 \rightarrow same results for x_i vs x_j x_j [,](#page-30-0) y_i vs y_j [,](#page-20-0) z_i vs z_j $(\forall i,j=1,...,5)$ $(\forall i,j=1,...,5)$

Synchronization

Coupling 6 neurons

 α

31/39

Synchronization

Coupling 7 neurons

 \rightarrow same results for x_i vs x_j x_j [,](#page-32-0) y_i vs y_j [,](#page-20-0) z_i vs z_j $(\forall i, j = 1, ..., 7)$ α

Synchronization

Coupling 8 neurons

 α

33/39

I

Coupling *n* neurons

 \triangleright each neuron is connected to all the others \Leftrightarrow in a network of *n* neurons each neuron is connected to *n* − 1 neurons (*n* − 1 inputs)

$$
k_n=\frac{k_2}{n-1}
$$

 \triangleright k_2 : 2 neurons mutually coupled synchronization threshold

KORK STREET A BY A GRAN

F $n-1$: number of inputs for each neuron

Synchronization

 \Rightarrow classical law which is found in many self-organized complex systems

メロメメ 御きメ 電子メ 電子

 2990

÷.

Synchronization

Examples

- \blacktriangleright earthquakes : 1000 of magnitude 4 for 100 of magnitude 5 and 10 of magnitude 6
- linguistic : for 1000 occurrences of 'the' in text, 100 occurrences of 'I' and 10 of 'say'
- \blacktriangleright urban systems : big cities are rare and small ones are frequent in an exponential way.

K ロ ⊁ K 伊 ⊁ K ヨ ⊁

 $\leftarrow \equiv$

 Ω

Conclusion and perspectives

Table of contents

[Biological introduction](#page-1-0)

[Mathematical models](#page-7-0)

[Numerical analysis](#page-16-0)

[Synchronization](#page-20-0)

[Conclusion and perspectives](#page-36-0)

メロトメ 御 メメ きょくきょうきつ

 2990

Conclusion and perspectives

Conclusion and perspectives

- \triangleright intersection between synchronization in coupled nonlinear systems and complex networks
- \triangleright study conditions under which a complex network of dynamical systems synchronizes
- \triangleright study of the different topological structures of networks and their consequences on the synchronization phenomenon
- \triangleright synchronization and complex networks theoretical study

Conclusion and perspectives

THANK YOU !

K ロ > K @ > K 할 > K 할 > 1 할 > 9 Q Q ·