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Biological introduction

Neuron
I a cell body, extended by :
I dendrites
I an axon
I an axon terminal
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Biological introduction

Ionic channels
Membrane is composed of :

I a double lipidic layer
I ionic channels

Ionic channels :
I voltage-dependant
I open / close / inactive
I conductance
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Biological introduction

Some important channels

I Sodium channels : 4 gates :
I 3 to control the opening
I 1 to control the inactivity

→ particularity : inactivity period

I Potassium channels : 4 gates
all control the opening
→ particularity : delay

I Leakage channels :
→ particularity : always opened
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Biological introduction

Resting potential

I Potential difference between both sides of the membrane ;
I more Na+ outside
I more K+ inside

I Experimentally,−90mV < ddp < −50mV
I intra-cellular space more negative
I extra-cellular space more positive
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Action potential
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Mathematical models

Hodgkin-Huxley model (1)

Alan Lloyd Hodgkin and Andrew Fielding Huxley :

I neurophysiologists
I experiments on squid giant neuron ;
I discovery of ionic channels ;
I description of electric activity of a neuron by mathematical

equations ;
I Nobel price of physiology and medecine in 1952 ;
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Mathematical models

Hodgkin-Huxley model (2)



−C
dV
dt

= IK + INa + IL − I
dm
dt

= αm(1−m)− βmm

dn
dt

= αn(1− n)− βnn

dh
dt

= αh(1− h)− βhh
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Mathematical models

Hodgkin-Huxley model (3)

I = C
dV
dt

+ IK + INa + IL ⇒ −C
dV
dt

= IK + INa + IL − I

I IK = n4gK (E − EK ) ;

I n = one of the 4 gates of a potassium channel is open ;

I gK = conductance of a potassium channel × number of
opened channels ;

I EK = equilibrium potential of potassium (= Nernst
potential) ;
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Mathematical models

Hodgkin-Huxley model (4)

Similarly, we have :

I INa = m3hgNa(E − ENa) ;

I IL = gL(E − EL) ;

I αi = opening coefficient, i = m,n,h ;

I βi = closing coefficient, i = m,n,h ;
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Mathematical models

Hodgkin-Huxley model (5)



−C
dV
dt

= INa + IK + IL − I
dm
dt

= αm(1−m)− βmm

dn
dt

= αn(1− n)− βnn

dh
dt

= αh(1− h)− βhh
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Mathematical models

Hindmarsh-Rose 1982 model (1)

From Hodgkin-Huxley model to Hindmarsh-Rose 1982 model ;

⇒ Mathematical simplification
thanks to biological observa-
tions :

I m is substituted by a
constant because of its
fast activation ;

I h + n = 0.8
(experimentally) ;



−C
dV
dt

= IK + INa + IL − I
dm
dt

= αm(1−m)− βmm

dn
dt

= αn(1− n)− βnn

dh
dt

= αh(1− h)− βhh
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Mathematical models

Hindmarsh-Rose 1982 model (2)

A Fitzhugh-Nagumo type model :


dx
dt

= y − x3 + ax2 + I

dy
dt

= 1− dx2 − y

a,d : parameters determined experimentally .
I : applied current.
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Mathematical models

Hindmarsh-Rose 1984 model

A third equation to be closer to reality : an adaptation equation

dx
dt

= y − x3 + ax2 − z + I

dy
dt

= 1− dx2 − y

dz
dt

= ε(b(x − xc)− z), ε << 1

→ slow-fast system
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Numerical analysis

Numerical analysis (1)

Time series (t , x) : bursting, and projections of the phase
portrait on the planes (x , y), (x , z) et (y , z)
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Numerical analysis

Numerical analysis (2)

Bifurcation
Qualitative change of solutions due to parameters changes

I I = 1.5: 3-cycle
I I = 2 : 5-cycle
I I = 3: 10-cycle
I 3.25 . I . 3.295 :

chaos
I I & 3.295 : stop

generating bursts
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Numerical analysis

Numerical analysis (3)

I = 1.5, I = 2, I = 2.5, I = 3
I = 3.25, I = 3.33 I = 3.35 I = 3.50
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Synchronization

Synchronization-Generalities

I characteristic of many processes in natural systems and
non linear science

I syn : common, chronos : time
I to share the same motion at the same time
I there exist many kind of synchronization (identical,

generalized, phase...)
I neurons : optimal transmission of information
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Synchronization

Coupling systems (1)
Coupling
Making different entities be dependant one from the others.

Linear coupling function
Mutual coupling of 2 neurons by a linear function : electrical
connection

ẋ1 = ax2
1 − x3

1 − y1 − z1 − k(x2 − x1)
ẏ1 = (a + α)x2

1 − y1
ż1 = µ(bx1 + c − z1)

ẋ2 = ax2
2 − x3

2 − y2 − z2 − k(x1 − x2)
ẏ2 = (a + α)x2

2 − y2
ż2 = µ(bx2 + c − z2)

k(x1 − x2) : coupling function, k : coupling strength
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Synchronization

Coupling systems (2)
Sigmoid coupling function
Mutual coupling of 2 neurons by a sigmoid function : chemical
connection

ẋ1 = ax2
1 − x3

1 − y1 − z1 − (x1 − Vs)k2
1

1 + exp(−λ(x2 −Θs))
ẏ1 = (a + α)x2

1 − y1
ż1 = µ(bx1 + c − z1)

ẋ2 = ax2
2 − x3

2 − y2 − z2 − (x2 − Vs)k2
1

1 + exp(−λ(x1 −Θs))
ẏ2 = (a + α)x2

2 − y2
ż2 = µ(bx2 + c − z2)

Θs : threshold, k2 : coupling strength.
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Synchronization

Coupling 2 neurons
Two neurons identically synchronize if :


x2 → x1
y2 → y1
z2 → z1

⇔


x⊥ = x1 − x2 → 0
y⊥ = y1 − y2 → 0
z⊥ = z1 − z2 → 0

⇒ Stability study of the transverse system :
˙x⊥ = ẋ1 − ẋ2
˙y⊥ = ẏ1 − ẏ2
˙z⊥ = ż1 − ż2

⇒ Example of theoretical tool to study this system : Lyapunov
function.
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Synchronization

HR neurons mutually coupled by a sigmoid function



ẋ1 = ax2
1 − x3

1 − y1 − z1 − (x1 − Vs)k2
1

1 + exp(−λ(x2 −Θs))
ẏ1 = (a + α)x2

1 − y1
ż1 = µ(bx1 + c − z1)

ẋ2 = ax2
2 − x3

2 − y2 − z2 − (x2 − Vs)k2
1

1 + exp(−λ(x1 −Θs))
ẏ2 = (a + α)x2

2 − y2
ż2 = µ(bx2 + c − z2)

26/39



From neuronal oscillations to complexity

Synchronization

Numerical results

Remark
Diagonal⇔ x1 = x2 ⇔ synchronization

x1 vs x2 for k2 = 0.8,k2 = 1,k2 = 1.22,k2 = 1.26.

Same minimal coupling strength to obtain synchronization
between y1 and y2 and between z1 and z2.
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Synchronization

Coupling 3 neurons

x1 vs x2 for k3 = 0.2,k3 = 0.4,k3 = 0.6,k3 = 0.63.

→ same resuts for xi vs xj , yi vs yj , zi vs zj (∀i , j = 1,2,3)
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Synchronization

Coupling 4 neurons

x1 vs x2 for k4 = 0.1,k4 = 0.3,k4 = 0.42,k4 = 0.5.

→ same results for xi vs xj , yi vs yj , zi vs zj (∀i , j = 1, ...,4)
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Synchronization

Coupling 5 neurons

x1 vs x2 for k5 = 0.1,k5 = 0.2,k5 = 0.29,k5 = 0.3.

→ same results for xi vs xj , yi vs yj , zi vs zj (∀i , j = 1, ...,5)
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Synchronization

Coupling 6 neurons

x1 vs x2 for k6 = 0.1,k6 = 0.2,k6 = 0.23,k6 = 0.24.

→ same results for xi vs xj , yi vs yj , zi vs zj (∀i , j = 1, ...,6)
31/39



From neuronal oscillations to complexity

Synchronization

Coupling 7 neurons

x1 vs x2 for k7 = 0.1,k7 = 0.17,k7 = 0.2,k7 = 0.21.

→ same results for xi vs xj , yi vs yj , zi vs zj (∀i , j = 1, ...,7)
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Synchronization

Coupling 8 neurons

x1 vs x2 for k8 = 0.1,k8 = 0.15,k8 = 0.16,k8 = 0.17.

→ same results for xi vs xj , yi vs yj , zi vs zj (∀i , j = 1, ...,8)
33/39



From neuronal oscillations to complexity

Synchronization

Coupling n neurons

I each neuron is connected to all the others⇔ in a network
of n neurons each neuron is connected to n − 1 neurons
(n − 1 inputs)

I

kn =
k2

n − 1

I k2 : 2 neurons mutually coupled synchronization threshold
I n − 1 : number of inputs for each neuron
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Synchronization

⇒ classical law which is found in many self-organized complex
systems
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Synchronization

Examples

I earthquakes : 1000 of
magnitude 4 for 100 of
magnitude 5 and 10 of
magnitude 6

I linguistic : for 1000
occurrences of ’the’ in text,
100 occurrences of ’I’ and 10
of ’say’

I urban systems : big cities are
rare and small ones are
frequent in an exponential way.
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Conclusion and perspectives

I intersection between synchronization in coupled nonlinear
systems and complex networks

I study conditions under which a complex network of
dynamical systems synchronizes

I study of the different topological structures of networks and
their consequences on the synchronization phenomenon

I synchronization and complex networks theoretical study
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THANK YOU !
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