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Neuron

» a cell body, extended by :
» dendrites

> an axon

» an axon terminal

Axon

terminal

Nucleus
cell body

Axon

terminal
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LBit:)logical introduction

lonic channels

Membrane is composed of :
» a double lipidic layer
» ionic channels

extra—cellular space

ionic harmsl

|
lpidie 50 § § S@ § § § lonic channels :
fayers » voltage-dependant
» open / close / inactive
lZ@ Z@ Z@ Z@ é é é » conductance

intra—cellular space
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LBit:)lo:)gical introduction

Some important channels

» Sodium channels : 4 gates :

» 3 to control the opening
» 1 to control the inactivity

— particularity : inactivity period

» Potassium channels : 4 gates
all control the opening
— particularity : delay

» Leakage channels :
— particularity : always opened
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LBit:)lo:)gical introduction

Resting potential

» Potential difference between both sides of the membrane ;

» more Na, outside
» more K, inside

» Experimentally,—90mV < ddp < —50mV

» intra-cellular space more negative
» extra-cellular space more positive
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Action potential
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ACTION POTENTIAL :
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I : Resting state

I-IT : Stimulation

1I&IT : Depolarization

IV : Repolarization & hyperpolarization
V : Resting state

IONIC SCALE :

II : Sodium channels open

111 : More sodium channels open
III-1V : Sodium channels close
[I-IV : Potassium channels open
IV-V : Potassium channels close
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L Mathematical models

Hodgkin-Huxley model (1)

Alan Lloyd Hodgkin and Andrew Fielding Huxley :
» neurophysiologists
» experiments on squid giant neuron ;
» discovery of ionic channels ;

» description of electric activity of a neuron by mathematical
equations ;

» Nobel price of physiology and medecine in 1952 ;
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Hodgkin-Huxley model (2)

( "4
—Cd—=IK+/Na+I[_—/
at
am _ (1—m)— Bmm
ar =0m m
an
E=an(1 —n)—Bpn
dh
E=ah(1 —h) - Bph
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Hodgkin-Huxley model (3)

11/39

av av
/:CE+/K+/N3+/L:>—CE:/K—i-/Na—i-/L—/
> Ix = n*gk(E — Ex) ;
» n = one of the 4 gates of a potassium channel is open ;

» gy = conductance of a potassium channel x number of
opened channels ;

» Ex = equilibrium potential of potassium (= Nernst
potential) ;
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Hodgkin-Huxley model (4)

Similarly, we have :
> Ing = mstha(E — Ena) ;
» I =9i1(E-EL);

» «; = opening coefficient, i = m,n, h;

» (; = closing coefficient, i= m,n, h;
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Hodgkin-Huxley model (5)
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am _ (1—m)— Bmm
ar =0m m
an
E=an(1 —n)—Bpn
dh
E=ah(1 —h) - Bph
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Hindmarsh-Rose 1982 model (1)

From Hodgkin-Huxley model to Hindmarsh-Rose 1982 model ;

= Mathematical simplification

thanks to biological observa- | _ CCZf\t/ =t g+l — 1
tions : dm
» mis substituted by a gt = Cm(t=m) = Bmm
constant because of its an
fast activation : at - an(1 = n) = Gan
» h+n=0.8 dh
(experimentally) ; ar = ol = h) = Bph
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Hindmarsh-Rose 1982 model (2)

A Fitzhugh-Nagumo type model :

ax 3 5
v y—x°+ax=+1
a 5

v 1—dxc—y

a, d : parameters determined experimentally .
| : applied current.
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Hindmarsh-Rose 1984 model

A third equation to be closer to reality : an adaptation equation

((dx 3 5

v y—x+axc—z+1

ay 5

v 1—dxc—y

az

il e(b(x —xc) —2), e<<1

— slow-fast system
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Numerical analysis (1)

I
i,mm;‘mM

TTREST.

i

Time series (t, x) : bursting, and projections of the phase
portrait on the planes (x,y), (x,z) et(y, z)

o F = £ DA
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Numerical analysis (2)

Bifurcation
Qualitative change of solutions due to parameters changes

4 » | =1.5: 3-cycle
- | » I=2:5<cycle
- s =3 10-cycle
| »325</1<3.295:

. N —— chaos
= | » 1>3.295: stop

c .. . .. 5 .. . generating bursts
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Numerical analysis (3)

_2.5, I=3




21/39

From neuronal oscillations to complexity
I—Synchronization

Table of contents

Synchronization



From neuronal oscillations to complexity

LSynchronization

Synchronization-Generalities

» characteristic of many processes in natural systems and
non linear science

» syn: common, chronos : time
» to share the same motion at the same time

» there exist many kind of synchronization (identical,
generalized, phase...)

» neurons : optimal transmission of information
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LSynchronization

Coupling systems (1)
Coupling
Making different entities be dependant one from the others.

Linear coupling function
Mutual coupling of 2 neurons by a linear function : electrical

connection
(X1 = ax§ —x§ —y1— 21— k(e - xi)
o= (a+a)xf -y
z1 = p(bxy+c¢c—2z)
X = axs — x5 — y» — 2o — k(xy — X2)
Y2 = (a+ a)xg — ye
( 22 = p(bxe+c—2)

k(x1 — x2) : coupling function, k : coupling strength
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LSynchronization

Coupling systems (2)
Sigmoid coupling function
Mutual coupling of 2 neurons by a sigmoid function : chemical

connection

4 . 1
Xg = ax?—x3—y1—z1—(x — Vs)ke + exp(—A(x2 — ©5))
yi = (a+a)x?—y
Zi = p(bxy +c—2z)

: 2,3 1

Xo = axy =Xy — Y2~ 22— (X — Vs)koq + exp(—A(x1 — Os))
Yo = (@a+a)x@—y»
Zo = pu(bxo+c— 2o)

O : threshold, k» : coupling strength.
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LSynchronization

Coupling 2 neurons

Two neurons identically synchronize if :

Xo — Xq XL:X1—X2—>0
Yo—=y1 oS Yi=y1—y2—0
Zo — Z4 ZL:Z1—22—>0

= Stability study of the transverse system :

X = X1 — Xo

Yi=Yi1—Ye

Z, =21— 2
= Example of theoretical tool to study this system : Lyapunov
function.

25/30



From neuronal oscillations to complexity

LSynt:hronization

HR neurons mutually coupled by a sigmoid function

X1
¥
Z4
X2

Yo
22
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1
1+ exp(—A(Xx2 — ©s))

ax?2 —x3 —y1 —z1 — (x1 — Vs)ko
(a+ a)x? — yy
pw(bxs + ¢ — zq)

1

2 33 v o (xo—
axs — X5 — Y2 — 22 — (X2 Vs)k21+exp(—)\(X1—@s))

(a+a)xg — yo
p(bxa + ¢ — 22)
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LSynchronization

Numerical results

Remark
Diagonal & xy = x» < synchronization

% . ”

X1 VS Xo for kg = 0.8,k2 = 1,k2 = 122,k2 =1.26.

Same minimal coupling strength to obtain synchronization
between y; and y» and between z; and z..
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Coupling 3 neurons

X1 VS Xo for k3 = 0.2,ks = 0.4,k5 = 0.6,k3 = 0.63.

— same resuts for x; vs Xj, y; vs yj, zi vs z; (Vi,j = 1,2,3)
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Coupling 4 neurons

7

X1 VS Xo for k4 =041 ,k4 = 0.3,k4 = 042,k4 =0.5.

— same results for x; vs x;, yi vs y;, zj vs z; (Vi,j =1,...,4)

[m]
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Coupling 5 neurons

£

e
20/39

X1 VS Xo for k5 =01 ,k5 = 0.2,k5 = 0.29,k5 =0.3.

— same results for x; vs x;, y; vs y;, zi vs z; (Vi,j = 1,...,5)
[m] = = =
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Coupling 6 neurons

7%

X1 VS Xo for ke =0.1 ,ke = 0.2,k5 = 0.23,/(6 =0.24

— same results for x; vs x;, y; vs yj, zi vs z; (Vi,j=1,...,6)
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Coupling 7 neurons

X1 VS Xo for k7 =01 ,k7 = 0.17,/(7 = 0.2,k7 =0.21

— same results for x; vs x;, y; vs yj, zivs z; (Vi,j=1,...,7)
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Coupling 8 neurons

x8 @

y 4

X1 VS Xo for kg =0.1 ,kg = 0.15,/(8 = 0.16,/(8 =0.17.
22/29

— same results for x; vs x;, y; vs yj, zi vs z; (Vi,j=1,...,8)
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LSynchronization

Coupling n neurons

» each neuron is connected to all the others < in a network
of n neurons each neuron is connected to n — 1 neurons
(n— 1 inputs)

» ko : 2 neurons mutually coupled synchronization threshold
» n—1: number of inputs for each neuron
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:

:
- " ; i h .
s :
k \ Tergd ko .
1 y -\\
5 0.5 o
! \ u R
" -M\r D -1 .
[ 1 2 3 Y I3 5 7 G .5 1 C.3 2 0.5
n-1 log (n-1)

= classical law which is found in
systems

many self-organized complex
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Examples

» earthquakes : 1000 of
magnitude 4 for 100 of
magnitude 5 and 10 of
magnitude 6

» linguistic : for 1000
occurrences of 'the’ in text,
100 occurrences of ’I' and 10
of 'say’

» urban systems : big cities are
rare and small ones are
frequent in an exponential way.
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Conclusion and perspectives

» intersection between synchronization in coupled nonlinear
systems and complex networks

» study conditions under which a complex network of
dynamical systems synchronizes

» study of the different topological structures of networks and
their consequences on the synchronization phenomenon

» synchronization and complex networks theoretical study
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:

THANK YOU !
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