Dynamic combinatorics, complex systems and applications to physics

> **Gérard H. E. Duchamp (a) Cyrille Bertelle (b) Rawan Ghnemat (b)**

(a) LIPN, *Université de Paris XIII***, France (b) LITIS,** *Université du Havre,* **France**

MACIS2, ACEA, 23-24 July 2008 Al-Balqa Applied University, As-Sult, Jordan

C **Combinatorics** (discrete mathematics)

Information (computer sci.) (classical/quant.) Physics

C Combinatorics (discrete mathematics)

Complex Systems

Information (computer sci.) (classical/quant.) **Physics**

Complex Systems Complexity

Combinatorics

Dynamic Combinatorics

What is the Legacy ?

-
- Representations = Automata

• Formulas, Universal Algebra

Mathematics | Comp. Sciences | Physics

- Transition **Structures**
	- Trees with **Operators**

- Noncommutative $\qquad \qquad \bullet$ Words $\qquad \qquad \bullet$ Strings of operators
	- Fields, Flows, Dynamic Systems (Chaos, Catastrophes)
	- Diagrams

• Deformations \cdot q-analogues \cdot Quantum Groups

C o m b i n a t o r i c s

C o m b i n a t o r i c s

- Langages
- Theory of codes
- Automata
- **Transition** structures
- Grammars

• …

• Transducers Rational and algebraic expressions

\dots on words $\left| \begin{array}{c} \end{array} \right|$ enumerative, $\left| \begin{array}{c} \end{array} \right|$ algebraic analytic

- Polyominos
- Paths
- (Dyck,…)
- Configurations
- q-grammars
- Generating Functions
- Continued Fractions (mono, multivariate,.)
- Orthogonal Polynomials • …

- Non commutative Continued fractions
- Representations of groups and deformations
- Quantum Groups Functors
- Characters
- Special Functions
- …

A first example...

 $a_1 = 0$

 \bullet $a_{i+1} \leq a_i + 1$

Figure 4.2: Maximal, minimal (dotted) and two intermediate trajectories. Their codes are on the right.

We will return to the Dyck paths later on. For the moment let us define what is a transition structure.

Definition (transition structure) : It is a graph (finite of infinite) with its arcs marked with pairs (command letter | coefficient) Examples : Prisoner's dilemma, Markov chains, classical engineering.

Example : A Markov chain generated by a game.

Example : An automaton generated by arbitrary transition coefficients.

Example of Probabilistic Automaton

LINEAR REPRESENTATION

Behaviour of an Automaton and how to compute it effectively

An automaton is a machine which takes a string (sequence of letters) and returns a value.

This value is computed as follows :

1) The weight of a path is the product of the weights (or coefficients) of its edges

2) The label of a path is the product (concatenation) of the labels of its edges

Behaviour ... (cont'd)

3) The behaviour between two states $\langle r,s \rangle$ w.r.t. A word $\langle w \rangle$ is the product of 3a) the ingoing coefficient of the first state (here $\langle r \rangle$) by 3b) the sum of the weights of the paths going from $\ll r \gg t$ o « s » with label « w » by 3c) the outgoing coefficient of the second state (here « s »)

Behaviour ... (cont'd)

4) The behaviour of the automaton under consideration w.r.t. a word « w » is then the sum of all the behaviours of the automaton between two states « r,s » for all possible pairs of states.

Behaviour ... (cont'd)

There is a simple formula using the linear representation. The behaviour of an automaton with linear representation (I,M,T) is the product

IM(w)T

where M(w) is the canonical exention of M to the strings. $M(a_1a_2... a_n) = M(a_1)M(a_2)...M(a_n)$ n)

Behaviour ... (end)

The behaviour, as a function on words belongs to the rational class. If time permits, we will return to its complete calculation as a rational expression and the problem of its algorithmic evaluation by means of special cancellation operators. Linear representations can also be used to compute distances between automata.

Example -> use of genetic algorithms to control indirect (set of) parameters : the spectrum of a matrix.

Genetic algorithms : general pattern

Genetic algorithms : implementation

Genetic algorithms : implementation

Below, the results of an experiment aiming to control the second greatest eigenvalue of the transfer matrix of a population of probabilistic automata.

• The fitness function of each automaton corresponds to the second greatest eigenvalue (in module). The first being, of course, of value 1.

Final result : the population is rendered homogeneous

- Automata (finite number of edges)
- Sweedler's duals (physics, finite number of states)
- Representations
- Level systems (Quantum Physics)
- Markov chains (prob. automata when finite)

Example in Physics : annilhilation/creation operators

The (classical, for bosons) normal ordering problem goes as follows.

• Weyl (two-dimensional) algebra defined as $<$ a⁺, a ; [a, a⁺]=1 >

• Known to have no (faithful) representation by bounded operators in a Banach space.

There are many « combinatorial » (faithful) representations by operators. The most famous one is the Bargmann-Fock representation $a \rightarrow d/dx$; $a^{+} \rightarrow x$ where a has degree -1 and a⁺ has degree 1.

Example with $\Omega = a^+ a a^+ a a^+$

Through Bargmann-Fock representation $a \rightarrow d/dx$; $a^{+} \rightarrow x$ Operators who have only one annihilation have exponentials who act as one-parameter groups of substitutions. One can thus use computer algebra to determine their generating function.

For example, with $\Omega = a^{+2}a a^+ + a^+a a^{+2}$ the computation reads

数 Maple 9 - [Untitled (1) - [Server 1]]

File Edit View Insert Format Spreadsheet Window Help

leidi Σ Γ Γ [1][호][현] וכו

Bytes: 1.94M | Available: 1.33G

Time: $0.2s$

 $\lfloor - \Vert \sigma \Vert$

 $-1 = 1$

And the action of $exp(\lambda \omega)$ on $[f(x)]$ is

$$
U_{\lambda} (f) = x^{-\frac{3}{2}} f(s_{\lambda} (x)) (s_{\lambda} (x))^{\frac{3}{2}}
$$

= $\sqrt[4]{\frac{1}{(1 - 4\lambda x^2)^3}} f(\sqrt{\frac{x^2}{1 - 4\lambda x^2}})$

which explains the prefactor. Again we can check by computation that the composition of (U_1) samounts to simple addition of parameters !! Now suppose that $exp(\lambda \omega)$ is in normal form. In view of Eq1 (slide 15) we must have

$$
\exp(\lambda \omega) = \sum_{n\geq 0} \frac{\lambda^n \omega^n}{n!} = \sum_{n\geq 0} \frac{\lambda^n}{n!} x^{ne} \sum_{k=0}^{ne} S_{\omega}(n, k) x^k \left(\frac{d}{dx}\right)^k
$$

So, using this new technique, one can compute easily the coefficients of the matrix giving the normal forms.

For these one-parameter groups and conjugates of vector fields G. H. E. Duchamp, K.A. Penson, A.I. Solomon, A. Horzela and P. Blasiak,

One-parameter groups and combinatorial physics,

Third International Workshop on Contemporary Problems in Mathematical Physics (COPROMAPH3), Porto-Novo (Benin), November 2003. arXiv : quant-ph/0401126.

For the Sheffer-type sequences and coherent states

K A Penson, P Blasiak, G H E Duchamp, A Horzela and A I Solomon,

Hierarchical Dobinski-type relations via substitution and the moment problem,

J. Phys. A: Math. Gen. 37 3457 (2004) arXiv : quant-ph/0312202

A second application : Dyck paths (systems of brackets, trees, physics, …)

Equation : $D = \text{void} + (D) D \dots$ one counts strings using an « x » by bracket and one finds $T(x)=x^0 + x^2T^2(x)$ which can be solved by elementary methods …

 $x^2T^2 - T + 1 = 0$ Variable : T Parameter : x

Positifs = $D(aD)^*$

$$
Pos := \frac{Dyck}{1 - x Dyck}
$$

 $solve(x^2*T^2-T+1=0,T);$ $1 + \sqrt{1 - 4x^2}$ $1 - \sqrt{1 - 4x^2}$ $2x^2$ $2x^2$ $\mathcal{F} = \frac{1}{(2*x^2) * (1 - (1 - 4*x^2)^{1/2})};$ $f:=\frac{1-\sqrt{1-4x^2}}{2x^2}$ $>$ taylor(f, x=0,20);

 $1 + x^{2} + 2x^{4} + 5x^{6} + 14x^{8} + 42x^{10} + 132x^{12} + 429x^{14} + 1430x^{16} +$ $O(x^{18})$

> seq(binomial(2*k,k)/(k+1),k=1..8);

1, 2, 5, 14, 42, 132, 429, 1430

 $> Pos:=simply(byck/(1-x*Dyck));$

$$
Pos := -\frac{2}{-1 - \sqrt{1 - 4xy + 2x}}
$$

> coeftayl (Pos, [x, y] = [0, 0], [6, 4]);

90

- $>$ S:=0:for 1 from 0 to 6 do for k from 0 to 6 do S:=S+coeftayl(Pos, [x, y]=[0,0], [k, 1]) *x^k*y^l od $od: S;$
- $1 + x + xy + 20x^{6}y^{2} + 14x^{5}y^{2} + 5x^{3}y^{3} + 2x^{2}y^{2} + x^{3} + 28x^{5}y^{3} + x^{4} + x^{5}$ $x^{6} + x^{6} + x^{2} + 132 x^{6} y^{5} + 2 x^{2} y + 5 x^{3} y^{2} + 90 x^{6} y^{4} + 42 x^{5} y^{5} + 3 x^{3} y^{5}$ + 132 $x^6 y^6$ + 4 $x^4 y$ + 14 $x^4 y^4$ + 14 $x^4 y^3$ + 5 $x^5 y$ + 9 $x^4 y^2$ + 48 $x^6 y^3$ $+ 42 x^5 y^4 + 6 x^6 y$

Automata and rationality

FIG. 1 – Un $\mathbb Q$ -automate A.

Le comportement de A est :

$$
\mathsf{component}(\mathcal{A}) = \sum_{a,b \in A} (a+b)^*(6+a^*b).
$$

Un type particulier d'automate à multiplicités est constitué des automates à multiplicités avec des ε -transitions.

Un k- ε -automate $\mathcal{A}_{\varepsilon}$ est un k-automate sur l'alphabet $A_{\varepsilon} = A \cup {\{\tilde{\varepsilon}\}}.$

$$
\mathsf{component}(\mathcal{A}_{\varepsilon})=18\tilde{\varepsilon}\left(\sum_{i\in\mathbb{N}}2^i(a\tilde{\varepsilon})^i\right)\tilde{\varepsilon}.
$$

A correct implementation of Schelling's model

Problem : If one scans the board, addressing the inhabitants one after one, result is sensitive to the order of scanning.

Solution : Invent a (combinatorial) data structure which adapted to the parallel structure of the moving intentions of the inhabitants.

Problem : If one scans the board, addressing the inhabitants one after one, result is sensitive to the order of scanning.

Solution : Invent a (combinatorial) data structure which adapted to the parallel structure of the moving intentions of the inhabitants --> this must be a global model.

Combinatorics (mathematics)

Complex Systems

Information (comp. sci.)

Physics (class. quant.)

Thank You