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Abstract

The Heisenberg–Weyl algebra, which underlies virtually all physical
representations of quantum theory, is considered from the combinatorial point
of view. We provide a concrete model of the algebra in terms of paths on
a lattice with some decomposition rules. We also discuss the rook problem
on the associated Ferrers board; this is related to the calculus in the normally
ordered basis. From this starting point we explore combinatorial underpinning
of the Heisenberg–Weyl algebra, which offers novel perspectives, methods and
applications.

PACS numbers: 03.65.Fd, 02.10.Ox

1. Introduction

From a modern viewpoint, the formalism and structure of quantum theory are founded
on the theory of Hilbert space [1, 2]. The physical content of the theory consists of
representing physical quantities as operators which satisfy some algebraic relations. Virtually
all correspondence schemes come endowed with the Heisenberg–Weyl algebra structure,
be it the canonical quantization scheme, the occupation number representation in quantum
mechanics or the second quantization formalism of quantum field theory. This derives from the
analogy with classical mechanics whose Poissonian structure is reflected in the commutator
of position and momentum observables [3]. Ubiquitous and profound, the Heisenberg–Weyl
algebra has become the hallmark of non-commutativity in quantum theory.

An exemplary model of the Heisenberg–Weyl algebra involves combinations of derivative
D, multiplication X and identity I operators acting on the space of polynomials. Physical
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examples are the position x̂ and momentum p̂ operators in the space of square integrable
functions, or the annihilation a and creation a† operators in Fock space. Here, without loss of
generality, we conform to the notation {a, a†} for the generators of the (associative) algebra5,
satisfying

aa† = a†a + I, (1)

where I is multiplicative identity. We shall be interested in combinatorial aspects of this
relation and discuss one of the ensuing models of the Heisenberg–Weyl algebra.

Indeed, the combinatorial properties of equation (1) were recognized early and
successfully applied to the domain of algebraic enumeration, principally concerning the action
of the operators X and D on generating series. From this point of view, these operators are
auxiliary constructions facilitating enumeration of discrete structures [4–10].

However, in this paper we adopt another approach, which leads towards a combinatorial
model of the algebra itself. Starting from the definition of the Heisenberg–Weyl algebra as
the algebra of words in a and a† supplemented by the relation of equation (1), we will recast
it in the language of paths on a lattice with some decomposition rules. We shall also consider
a convenient choice of basis, here taken to be normally ordered monomials, which permits a
direct link to the combinatorics of words and the related algebra of paths. In this way, algebraic
problems may be expressed in the more concrete form of the decomposition and enumeration
of paths. For illustration, we consider the normal ordering procedure which reduces to the
familiar rook problem on the Ferrers board and then derive the structure constants of the
algebra by a simple combinatorial argument.

2. Heisenberg–Weyl algebra

In this paper, we consider an algebra A to be a linear vector space over a field K with a bilinear
multiplication law:

A × A � (b, c) −→ b c ∈ A, (2)

which is associative and possesses a unit element I. More precisely, it is called an associative
algebra with the unit as distinct from an algebraic structure lacking associativity or a unit
(e.g. Lie algebra). A basis of an algebra is a basis for its vector space structure. Each basis
(bi)i∈� defines a unique family γ k

ij ∈ K such that for every ordered pair (i, j) ∈ � × �, the
set of k ∈ � is such that γ k

ij �= 0 is finite and

bibj =
∑
k∈�

γ k
ij bk. (3)

γ k
ij are called the structure constants of the algebra A with respect to the basis (bi)i∈�, from

which the multiplication law can be uniquely recovered.
The Heisenberg–Weyl algebra, denoted by H, is the algebra generated by a, a†, satisfying

the relation of equation (1). Elements of the algebra A ∈ H are linear combinations of finite
products of a and a† of the form

A =
∑
r,s

αr,s a†r1as1a†r2as2 . . . a†rk ask , (4)

where r = (r1, . . . , rk) and s = (s1, . . . , sk) are non-negative integer multi-indices (with
the convention a0 = a†0 = I ). This representation is ambiguous, however, due to the

5 We do not attach much weight to this particular realization, however, as we shall study algebraic properties only,
for which the underlying Fock space plays no role. Our considerations hold true for any representation of the
Heisenberg–Weyl algebra.
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commutation relation (1) which yields different representations of the same element of the
algebra, e.g. aa† = a†a + I . The problem can be resolved by fixing the preferred order of
the generators a and a†. Conventionally, it is done by choosing the normally ordered form in
which all annihilators stand to the right of creators. In this case, each element of the algebra
H is uniquely written in the normally ordered form as

A =
∑
r,s

βrs a†ras . (5)

Hence, the normally ordered monomials a†ras constitute a natural basis for the Heisenberg–
Weyl algebra:

Basis of H : b(r,s) = a†ras, (6)

indexed by pairs of integers r, s = 0, 1, 2, . . . , and equation (5) is the expansion of the
element A in this basis. We should note that the normally ordered representation of the
elements of the algebra suggests itself as the simplest one [11]. It is important and commonly
used in practical applications in quantum optics [12–14] or quantum field theory [15, 16].
Working in this basis entails the reshuffling of a and a† to the normally ordered form, which
in general is a nontrivial task [17]. This brings up the issue of efficient calculation methods
and intuitive schemes providing insight into the ordering procedure itself. Below, we provide
a combinatorial model for the Heisenberg–Weyl algebra and then propose a resolution of the
problem from this starting point.

3. Combinatorics of the Heisenberg–Weyl algebra

3.1. Words, paths and rook problems

We start by showing that each word in a two-letter alphabet can be uniquely encoded as a
staircase path on a plane rectangular lattice. This observation will lead us to considering the
associated Ferrers board and the rook problem. Rather than giving a formal construction,
we shall illustrate it by an example from which the general scheme can be straightforwardly
recovered.

Suppose we consider a word, say

w = aa†aa†a†a†aa†a (7)

to which we assign a staircase path on a rectangular lattice. Starting from the point (0, 0), it
is constructed by reading the word w from the left and drawing a line to the right if the letter
is a† and up if the letter is a, as shown in figure 1 on the left. We observe that this scheme
provides a unique encoding of words.

With each path (or word), one can associate a Ferrers board Bw by retaining rectangular
cells below the path, see figure 1. Note that this is a many-one procedure as paths differing by
a horizontal line at the beginning and a vertical line at the end yield the same board [5, 10].

The rook problem for the given board B consists in enumerating non-capturing
arrangements of k rooks on the board which defines a finite sequence rB(k), k = 0, 1, 2, . . .,
called the rook numbers. In our example, one has

rB(k) = 1, 10, 23, 9, 0, 0, . . . k = 0, 1, 2, 3, . . . . (8)

A rook sequence can be conventionally encoded in a rook polynomial defined by

RB(x) =
∑
k�0

rB(k)xk. (9)
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a+a a+ a a+ Ferrers boarda+ a a+ a

Figure 1. Path defined by the word w and the associated Ferrers board Bw.

It is straightforward to show that these polynomials satisfy the recursion [4, 5, 10]

RB(x) = RB′(x) + xRB′′(x),

RØ (x) = 1,
(10)

obtained by choosing a cell which forms a step in the diagram B. This step-forming cell has
no neighbouring cell to its left or above it. We now consider two cases: a rook is placed on
the cell and a rook is not placed on the cell. This reduces the problem to the boards B′′ (with
the row and column in which the cell is placed removed) and B′ (with the chosen cell removed
only). We note that there are many possible choices of such a cell, and these give different
decompositions of the board yielding various recursive patterns; see figure 2.

3.2. Normal ordering procedure

It has been shown [18–20] that the normal ordering of a word w in a and a† satisfying
equation (1) reduces to the rook problem on the associated Ferrers board Bw. Namely,

w =
∑
k�0

rBw(k)w(k), (11)

where w(k) are normally ordered monomials a†ras obtained from w by crossing out k pairs of
a and a† and then reshuffling the rest as if they were commuting variables (called the double
dot operation used in quantum field theory). For example, for a word in equation (7) we have
w(0) = a†5a4, w(1) = a†4a3, w(2) = a†3a2, etc, and hence its normally ordered form reads
(see equation (8)) as

w = a†5a4 + 10 a†4a3 + 23 a†3a2 + 9 a†2a. (12)

A rigorous proof of equation (11) relies on the observation that each word can be reduced
to the sum of two simpler ones by choosing the places in which a precedes a† (which correspond
to step-forming cells of the previous section) and reshuffling them according to equation (1),
i.e. aa† → I + a†a. For example, for a word of equation (7) there are three choices which
exactly correspond to possible decompositions of the associated Ferrers diagramBw in figure 2.
We note that although there are various possible decomposition schemes, it can be shown that
the result is unique.

In short, the normal ordering of a word reduces to the enumeration of possible
non-capturing rook arrangements on the associated Ferrers board. The problem can be
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Figure 2. Three possible decompositions of the Ferrers board Bw and the corresponding reduction
of the word w.

systematically handled by successive decompositions of the board. Moreover, one can devise
simple algorithms based on the recursive rule given in equation (10). The methods described
in this paper may be extended to the q-deformed case (see e.g. [20, 21]).

3.3. Combinatorial realization of the Heisenberg–Weyl algebra

We observed in section 3.1 that each word in two letters, here taken as a and a†, can be encoded
as a path; see figure 1. This establishes an isomorphism between the algebra W of words in
two letters and the algebra P of paths. In W multiplication is given by simple concatenation of
words with the unit being the void word, while in P multiplication is given by concatenation
of paths. In both cases we shall indicate the unit, which is the void word or path respectively,
by the symbol �. Both algebras are free. The Heisenberg–Weyl algebra arises by imposing on
W the relation of equation (1), i.e. H = W/{aa†=a†a+I }. In P , this relation takes the symbolic
form

= + , (13)

by which we mean that a given staircase path is equivalent to the sum of two staircase paths
obtained by
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Figure 3. Path defined by the word w = a†r asa†kal and the associated Ferrers board.

(i) replacing an upper-left-hand corner ( ) by a lower-right-hand corner ( ), and
(ii) removing the row and column which intersect in the given cell ( ).

Note that this reduction is exactly equivalent to the decomposition of the associated Ferrers
board induced by the rook problem. In fact, any path can be uniquely decomposed into a finite
sum of paths without steps (paths pertaining to monomials a†ras). The latter constitute the
basis in P/{ = + } corresponding to the normally ordered basis in H.

In this way, we obtain the combinatorial model of the Heisenberg Weyl algebra as the
algebra of paths with relation (13), i.e.

H = W/{aa†=a†a+I } ∼= P/{ = + . (14)

With this equivalence the algebraic structure of H and its calculus are recast in combinatorial
terms, thus providing different perspectives and making accessible intuitive combinatorial
arguments.

3.4. Example: structure constants

To illustrate the above equivalence, we show how to calculate the structure constants
equation (3) of the Heisenberg–Weyl algebra by simple combinatorial enumeration. In the
form suited for our purposes here we multiply two elements of the basis of equation (6), say
b(r,s) and b(k,l), defining the structure constants γ

(p,q)

(r,s)(k,l) in the form

b(r,s) b(k,l) =
∑
p,q

γ
(p,q)

(r,s)(k,l) b(p,q). (15)

Expansion in this basis of the product b(r,s) b(k,l) essentially comes from the normal ordering
of the word

w = a†rasa†kal. (16)

Following the scheme of section 3.1, we draw the associated path and subsequently read off
the Ferrers board Bw which has a simple rectangular form; see figure 3. Enumeration of
non-capturing rook arrangements on the board is a direct result of the following observations:

(1) the maximum number of rooks on the board is min{s, k}, and
(2) there are as many possible arrangements of i rooks as unordered choices of i columns and

rows in the board Bw.
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Hence, the rook numbers are

rBw(i) = i!

(
s

i

)(
k

i

)
, (17)

for i = 0 . . . min{s, k} and zero otherwise. Consequently, equation (11) gives the normally
ordered form of the word w:

a†rasa†kal =
min{k,s}∑

i=0

i!

(
s

i

)(
k

i

)
a† r + k−ias + l − i . (18)

Finally, from equation (15) one may read off the structure constants of the algebra H in the
normally ordered basis. For fixed (r, s) and (k, l), the only non-vanishing γ ’s are

γ
(r + k−i,s + l−i)
(r,s)(k,l) = i!

(
s

i

)(
k

i

)
for i = 0, . . . , min {k, s}. (19)

Note that the right-hand side of equation (19) is, in fact, independent of r and l since the outer
elements are not included in the commutation.

4. Summary

We considered the Heisenberg–Weyl algebra H starting from the (two generator) free algebra
of words W and imposing the relation of equation (1), i.e.

We showed that words can be uniquely encoded as staircase paths on a plane, thus providing a
realization of W as a combinatorial algebra of paths P . This allowed us to construct a model
of H in terms of paths with the decomposition rule of equation (13) in P which reflects the
defining relation of equation (1) in W . The following diagram illustrates the whole scheme:

We further looked at the normally ordered basis in H and the corresponding basis in
P/{ = + }. We pointed out that the decomposition rule of equation (13), reducing the number
of steps in a path, is closely related to the familiar rook problem on the associated Ferrers
board. This permits a graphical illustration of the calculus in this basis and, more generally,
of the normal ordering problem.

In this paper, we have advocated a combinatorial approach to the Heisenberg–Weyl algebra
by showing that it can be conceived as having a purely combinatorial origin. This gives a new
perspective on the whole algebraic framework which is easily amenable to the sophisticated
methods of discrete mathematics. Finally, we should mention other models of the algebra
based on various discrete structures such as set partitions, graphs or urn models [22–24] as
well as results deriving from combinatorial methodology; see [17] and references therein.
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