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Abstract. It has been found by A. Varvak (TODO improve) and others that the
structure constants of the Heisenberg-Weyl algebra (HW ) could be computed through
rook placement numbers. We here give a diagrammatic realization of this formula in
terms of graphs which constitute an algebra. It is also possible to keep track of the
number cancellation in Wick’s formula and this provides at once a q-analogue B̃q of
the previous algebra. It tuns out that the latter can be very naturally endowed with
the structure of a Hopf algebra. Returning to HW , it is well known that it has a 3-
dimensional LHW Lie subalgebra which generates (as an algebra) HW . We construct
a Hopf arrow between the enveloping algebra U(LHW ) and B̃q. It is there, in our sense,
that resides the obstruction of HW to have finite dimensional non-zero representation.
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1. Introduction

Since the advent of Hopf algebras in Combinatorial Physics, when facing an algebra, one

always asks oneself whether its structure could be (more or less naturally) be enriched to

a Hopf algebra one. For one of the simplest in Quantum Physics, the Heisenberg-Weyl

(HW) algebra, the answer is “no” since the counit provides one with a one-dimensional

representation HW and it is well-known (and easily checked) that this algebra has no

non-zero finite dimensional representation (the ground field is supposed to that of the

complex numbers or another field of zero characteristic).

The paper is devoted ...

B̃q

ϕ3 ϕ4

B̃ ϕ5

ϕ2

U(LHW )

ϕ1

HW

2. Construction of the diagram algebras B̃ and B̃q.

2.1. Heisenberg-Weyl graphs and their matching

As usual in graph theory, a graph Γ is given by the data of two sets Γ(1), the edges, Γ(0),

the vertices and two functions (head and tail) h, t : Γ(1) → Γ(0). We are intesrested

here by graphs with some edges having a “‘free tail” or a “free head” but not both, so

we allow the functions h, t to be partially defined with the condition that

dom(t) ∪ dom(h) = Γ(1) (1)

(every edge has at least a tail or a head maybe both). The edges a with no origin i. e.

such that a /∈ dom(t) (resp. with no endpoint i. e. such that a /∈ dom(h)) will be called

“ingoing edges” and denoted Γ− (resp. “outgoing edges”, denoted Γ+).

A cycle is a sequence of edges a1a2 · · · an such that, forall k < n, h(ak) = t(ak+1) and

h(an) = t(a1). We will call HW -graph a finite graph with (possibly) ingoing and out-

going edges and no cycle.

Figure TODO : Heisenberg-Weyl Graphs

One can then see that a HW -graph has a natural partition in three parts :

• the outgoing edges dom(t)−dom(h) and its associated subgraph Γ+ (with restriction

of the tail mapping and void head mapping)

• the ingoing edges dom(h)−dom(t) and its associated subgraph Γ− (with restriction

of the head mapping and void tail mapping)

• the inner edges dom(t)∩ dom(h) and its associated subgraph Γ(in) (with restriction

of the tail and head mappings everywhere defined)



Now, in order to define algebra structures on these graphs, one has to define what is

a matching between two HW -graphs. In general set theory a matching or one-to-one

correspondence is a set of pairs

m ⊂ pr1(m)× pr2(m) (2)

such that two different pairs have different components i. e. for c1, c2 ∈ m with

ci = (xi, yi) one has

c1 6= c2 =⇒ (x1 6= x2) and (y1 6= y2) . (3)

If U, V are finite sets |U | = p, |V | = q the number of matchings m ⊂ U×V with |m| = i

is (
p

i

)(
q

i

)
i! . (4)

This formula will do the job when we construct the arrow ϕ2.

For two HW -graphs Γ2,Γ1 with disjoint sets of vertices (i. e. Γ
(0)
2 ∩ Γ

(0)
1 = ∅), we will

call matching of Γ1 over Γ2 any matching between Γ+
2 and Γ−1 , their set will be denoted

match(Γ2,Γ1). Any matching of match(Γ2,Γ1) allows the “pluging” of Γ2 into Γ1 as

follows

Figure TODO : a matching between two Heisenberg-Weyl Graphs

The result will be denoted Γ1

m

Γ2


which can be formally defined byΓ1

m

Γ2

(1)

= Γ
(1)
1 ∪ Γ

(1)
2 ∪m− (pr1(m) ∪ pr2(m)) . (5)

Tail and head functions defined accordingly: remark that condition (1) implies that,

Γ
(0)
2 ∩ Γ

(0)
1 = ∅ =⇒ Γ

(1)
2 ∩ Γ

(1)
1 = ∅ (6)

so, there is no ambiguity to define them on Γ
(1)
1 ∪Γ

(1)
2 − (pr1(m)∪pr2(m)) and we define

tail and head functions on m (a subset, remind it, of Γ+
2 × Γ−1 ) by

t(a2, a1) := t(a2) ; h(a2, a1) := h(a1) where (a2, a1) ∈ m . (7)

We have a sort of associativity of the matchings which will be useful later. Let

Γi, i = 1, 2, 3 be three disjoint HW -graphs. Let

m′ ∈ match(Γ2,Γ1) and m′′ ∈ match(Γ3,

 Γ1

m′

Γ2

)



then m′′ can be partitioned in m′′3,2 = m′′ ∩ (Γ+
3 × Γ−2 ) and m′′3,1 = m′′ ∩ (Γ+

3 × Γ−1 ) and

one has 
 Γ1

m′

Γ2


m′′

Γ3

 =


Γ1

m′ ∪m′′31 Γ2

m′′32

Γ3


 (8)

2.2. Multiplication of graphs and structure of the algebra B̃q.

Following the general conventions in graph theory, an isomorphism of graphs between

Γ1 = (Γ
(1)
1 ,Γ

(0)
1 , t1, h1) and Γ2 = (Γ

(1)
2 ,Γ

(0)
2 , t2, h2) is the data of two one-to-one mappings

α(1) : Γ
(1)
1 → Γ

(1)
2 and α(0) : Γ

(0)
1 → Γ

(0)
2 such that the following commutative diagrams

of partially defined functions hold

Γ
(1)
1

t1

α(1)

Γ
(0)
1

α(0)

Γ
(1)
2

t2
Γ

(0)
2

and Γ
(1)
1

h1

α(1)

Γ
(0)
1

α(0)

Γ
(1)
2

h2

Γ
(0)
2 .

(9)

It is straightforward to check that the class of HW -graphs is closed under isomorphisms.

We will call B, the set (it can be shown to be denumerable) of classes of HW -graphs

“up to isomorphisms”.

The algebra B̃ (resp. B̃q) is the vector space CB (resp. the module C[q]B). The

multiplication table in B̃q is given by

Γ̃1 ∗ Γ̃2 =
∑

m∈match(Γ2,Γ1)

q|m|

̃Γ1

m

Γ2

 (10)

where Γ1, Γ2 are representatives of the classes Γ̃1, Γ̃2 with disjoint set of vertices (i. e.

Γ
(0)
1 ∩ Γ

(0)
2 = ∅).

It can be checked easily that the result is independent of the choice of disjoint

representatives.

It is straightforward that, for all Γ, Γ̃ ∗ ∅̃ = ∅̃ ∗ Γ̃ = Γ̃. Hence ∅̃ (which, in fact is {∅})
is neutral for the law and will be denoted here 1B̃q

. Let us prove now that the law is

associative. To this end, take three disjoint HW -graphs Γi, i = 1, 2, 3 (we need two and

a third which is disjoint of the results of the matchings of the two first). Then one has,

using the denotations of formula (8)

(Γ̃1 ∗ Γ̃2) ∗ Γ̃3 =
∑

m′∈match(Γ2,Γ1)

∑
m′′∈match(Γ3,

(
Γ1
m′

Γ2

)
)

q|m
′|q|m

′′|


 Γ1

m′

Γ2


m′′

Γ3


˜

=



∑
m′∈match(Γ2,Γ1)

∑
m′′∈match(Γ3,

(
Γ1
m′

Γ2

)
)

q|m
′|q|m

′′|


Γ1

m′ ∪m′′31 Γ2

m′′32

Γ3



˜

=

∑
m′∈match(Γ2,Γ1)

∑
m′′∈match(Γ3,

(
Γ1
m′

Γ2

)
)

q|m
′∪m′′31|q|m

′′
32|


Γ1

m′ ∪m′′31 Γ2

m′′32

Γ3



˜

(11)

the result comes from the fact that the correspondence (m′,m′′) 7→ (m′ ∪
m′′31,m

′′
32) between pairs of matchings in match(Γ2,Γ1) × match(Γ3,

(
Γ1
m′

Γ2

)
) and pairs

in match(
(

Γ2
m′′

32
Γ3

)
,Γ1)×match(Γ3,Γ2) is one-to-one. Then the sum amounts to

∑
m′′∈match(Γ3,Γ2)

∑
m′∈match(

(
Γ2
m′′

Γ3

)
,Γ1)

q|m
′′|q|m

′|


Γ1

m′ Γ2

m′′

Γ3



˜

= Γ̃1 ∗ (Γ̃2 ∗ Γ̃3) . (12)

2.3. Specialization to q = 1: the algebra B̃.

Having constructed B̃q, one can specialize q to one (i. e. send each sum
∑

i∈I pi(q)Γ̃i to∑
i∈I pi(1)Γ̃i) this (C-linear) correspondence (which will be called ϕ3 below) ranges in

B̃ and endows the latter with the structure of C-AAU.

3. Ado’s theorem, the Lie algebra LHW and its enveloping algebra.

TODO : This paragraph will be put as a remark. Replace it by physical

motivations for central elements.

It is well known that, in characteristic 0, HW admits no finite dimensional proper

representation (its admits neither no representation in a Banach unital algebra). But

one observes that the subspace L = Ca⊕Ca+⊕C1HW is closed for the Lie bracket and

hence a Lie subalgebra of (HW, [, ]). Now, by Ado theorem such a finite-dimensional

Lie algebra admits finite dimensional faithful representations. As an example, one can

give the following one (noted ρ)

ρ(a) =

 0 1 0

0 0 0

0 0 0

 ; ρ(a+) =

 0 0 0

0 0 1

0 0 0

 ; ρ(1HW ) =

 0 0 1

0 0 0

0 0 0

 . (13)

One sees that the image of 1HW is not a unity and, in order not to get confused in our

forthcoming development, we will take a copy of the Lie algebra L = Ca⊕Ca+⊕C1HW
as LHW = C{b, b+, u} with the multiplication table



[↓,→] b+ b u

b+ 0 −u 0

b −u 0 0

u 0 0 0

Now, we have a morphism of Lie algebras φ1 : LHW → HW given by

φ1(b) = a ;φ1(b+) = a+ ;φ1(u) = 1HW (14)

and, by the universal propoerty of the envelopping algebras this can be extended

uniquely as a morphism of AAU ϕ1 : U(LHW ) → HW . We can make it explicit,

using the basis of Poincaré-Birkhoff-Witt of U(LHW ) which is given (using the order

b+ ≺ b ≺ u as in the multiplication table above) by the products {(b+)p bq ur}p,q,r∈N. We

then have ϕ((b+)p bq ur) = (a+)p aq.

4. The arrow ϕ4 : B̃q → U(LHW ).

The algebra B̃q is a C[q]-AAU, but onee can restrict the scalars to C. In this case, it is a

C-AAU with basis qnΓ̃ (n in N and Γ choosen in a set of distinguished representatives).

One sets

ϕ4(qnΓ̃) := (b+)|Γ
+|b|Γ

−|un . (15)

In order to prove that ϕ4 is a morphism of C-AAU, one has to prove that

ϕ4(qsΓ̃1 ∗ qtΓ̃2) = ϕ4(qsΓ̃1)ϕ4(qtΓ̃2)

which can be rephrased as

ϕ4(Γ̃1 ∗ Γ̃2)us+t = ϕ4(Γ̃1)ϕ4(Γ̃2)us+t

so, one only has to prove the equality for s = t = 0.

Suppose that two disjoint HW -graphs Γi, i = 1, 2 are given. For convenience, set

match(Γ2,Γ1; i) = {m ∈ match(Γ2,Γ1)| |m| = i}

it is not difficult to get the following enumerations

|match(Γ2,Γ1; i)| =


(
|Γ+

2 |
i

)(
|Γ−1 |

i

)
i! for i ≤ min(|Γ+

2 |, |Γ−1 |)

0 for i > min(|Γ+
2 |, |Γ−1 |)

(16)

then, one has

ϕ4(Γ̃1 ∗ Γ̃2) = ϕ4

( ∑
m match(Γ2,Γ1)

q|m|

̃Γ1

m

Γ2

) =

min(|Γ+
2 |,|Γ

−
1 |)∑

i=0

ui
∑

m match(Γ2,Γ1;i)

ϕ4

(̃Γ1

m

Γ2

) =



min(|Γ+
2 |,|Γ

−
1 |)∑

i=0

ui
∑

m match(Γ2,Γ1;i)

(b+)

∣∣∣( Γ1
m
Γ2

)+
∣∣∣
b

∣∣∣( Γ1
m
Γ2

)−∣∣∣
=

min(|Γ+
2 |,|Γ

−
1 |)∑

i=0

ui
∑

m match(Γ2,Γ1;i)

(b+)|Γ
+
1 |+|Γ

+
2 |−i b|Γ

−
1 |+|Γ

−
2 |−i . (17)

Now it is a easy exercise to get, in U(LHW ), the formula

(b+)p1 bq1 (b+)p2 bq2 =

min(q1,p2)∑
i=0

(
q1

i

)(
p2

i

)
i! (b+)p1+p2−i bq1+q2−i ui (18)

which implies that the sum in eq (17) is equal to

(b+)|Γ
+
1 | b|Γ

−
1 | (b+)|Γ

+
2 | b|Γ

−
2 | = ϕ4(Γ̃1)ϕ4(Γ̃2) (19)

5. Construction of the section s3 : B̃ → B̃q and of ϕ5 : B̃ → U(LHW )

For a HW -diagram Γ, we note Γin the set of inner edges i. e. Γin = dom(t) ∩ dom(h).

Now, we construct an arrow s3 : B̃ → B̃q by

s3(Γ) = q|Γ
in|Γ (20)

and one checks at once that

s3(Γ1 ∗1 Γ2) =
∑

m∈match(Γ2,Γ1)

s3(

̃Γ1

m

Γ2

) =
∑

m∈match(Γ2,Γ1)

q|Γ
in
1 |+|Γin

2 |+|m|

̃Γ1

m

Γ2

 =

∑
m∈match(Γ2,Γ1)

q|m|

̃Γ1

m

Γ2

 = s3(Γ1) ∗ s3(Γ2) . (21)

From there, ϕ5 is defined as ϕ5 = ϕ4 ◦ s3. It should be noted that ϕ5 is onto.

6. Diagram of algebras

We have, so far, constructed the following diagram of algebras

B̃q
ϕ3 ϕ4

B̃ ϕ5

ϕ2

s3

U(LHW )

ϕ1

HW LHWφ1

nat



7. Coproducts and Hopf Algebra structures.

7.1. Comultiplications and section coefficients.

In a pioneering paper [31], G-C Rota introduced the concept of “section coefficients”

and gave many combinatorial examples (set partitions, classes of intervals, placements

...).

Let us take, for simplicity, the example of binomial coefficients but presented here as

“section coefficients”. One has, for n, p, q ∈ N(
n

p, q

)
=


n!

p! q!
=

(
n

p

)
if p+ q = n

0 otherwise
(22)

in this spirit, these coefficients count the number of ways of splitting a n-set into two

disjoint subsets with, respectively p and q elements. Now consider the number of ways

of splitting a n-set in three parts with respectively p, q, r elements (of course it will be

0 if p + q + r 6= n). This can be performed by first splitting the set in two parts and

re-splitting the second part in two again or by first splitting the set in two parts and

re-splitting the first part in two again. These two procedures provide the “trichotomy

identity” ∑
m∈N

(
n

p,m

)(
m

q, r

)
=
∑
m∈N

(
n

m, r

)(
m

p, q

)
(23)

which, in this case is obvious as the two sums have only one term.

Now, one has also an interplay with the sum, called Van der Monde identity [31](
n1 + n2

p , q

)
=

∑
p1+p2=p
q1+q2=q

(
n1

p1, q1

)(
n2

p2, q2

)
. (24)

In general, section coefficients (i|j, k) count the number of ways of splitting an object

i into two sub-objects j, k. they may or may not fulfill identities (23) and/or (27) and

have a deep relationship with modern algebra.

Let us give another example which generalizes the preceding. For a word w = a1a2 · · · an
and I ⊂ {i1, i2, · · · ik} (i1 < i2 < · · · < ik) one defines the subword w[I] as

w[I] = ai1ai2 · · · aik . For three words u, v, w, one can define the section coefficient

(w | u , v) = #
{

(I, J) | I + J = [1..|w|], w[I] = u, w[J ] = v
}

(25)

for example, one has

(abab | aa , bb) = 1 ; (abab | ba , ba) = 0 ; (abab | ab , ba) = 1 ; (abab | ab , ab) = 2.

These coefficients can be considered as “word functions”, they are a generalization of

the binomial section coefficients as

(an | ap , aq) =

(
n

p, q

)
.



For these coefficients, one has the trichotomy identity∑
m∈A∗

(w | s ,m)(m | t , u) =
∑
m∈N

(w | m,u)(m | s , t) (26)

and the Van der Monde one reads

(w1w2 | u , v) =
∑

u=u1u2
v=v1v2

(w1 | u1 , v1)(w2 | u2 , v2) . (27)

The connection with modern algebra is done through the notion of a comultiplication.

Taking C the vector space freely generated by the objects under consideration (the basis

will be denoted (ei)i∈I), one can consider the section coefficients as structure constants

for a linear mapping (called comultiplication)

∆ : C → C ⊗ C (28)

by

∆(
∑
i∈I

αiei) =
∑
i∈I

αi∆(ei) =
∑
i∈I

∑
j,k∈I

αi(ei | ej , ek)ej ⊗ ek . (29)

(for the notion of structure constants of a comultiplication see [20]). Calling I the

identity mapping C → C, the trichotomy identity reads

(∆⊗ I) ◦∆ = (I ⊗∆) ◦∆ (30)

whereas the Van der Monde Identity (providing C be given an algebra law µ : C⊗C →
C) reads

∆ ◦ µ = µ⊗ 2 ◦∆ (31)

where µ⊗ 2 is the law on C ⊗ C defined by

µ⊗ 2(x1 ⊗ y1, x2 ⊗ y2) = µ(x1 ⊗ y1)⊗ µ(x2 ⊗ y2) . (32)

7.2. Coproducts and Hopf Algebra structures.

As it is classical, U(LHW ) is endowed with a structure of Hopf Algebra by the

comultiplication ∆U given by the fact that the generators b, b+ and u are primitive

i. e.

∆U(x) = x⊗ 1U + 1U ⊗ x for x = b, b+, u (33)

one then gets at once the comultiplication of an element of the PBW basis

∆U((b+)p bq ur) =
∑

(α,β,γ)≤(p,q,r)

(
p

α

)(
q

β

)(
r

γ

)
(b+)α bβ uγ ⊗ (b+)p−α bq−β ur−γ (34)

the counity is given by εU((b+)p bq ur) = 0 unless p = q = r = 0 in which case it equals

1. The antipode is given classically by S(∆U((b+)p bq ur)) = (−1)p+q+rur bq ((b+)p. This

is the standard structure of any enveloping algebra as a Hopf algebra. The question

solved in this paper is a construction on B̃q of a structure of Hopf algebra such that ϕ4

be a Hopf arrow.



7.3. Partitions of a HW -graph and the comultplication.

Let Γ be a HW -graph and R ⊂ Γ(1), one defines Γ[R] as the subgraph with lines

R, tail and head functions restricted to R (call them tR, hR) and vertices Γ[R](0) as

tR(R) ∪ hR(R). It is easy to check that Γ[R] is a HW -graph. It is also not difficult to

check that, if R1 ⊂ R2 ⊂ Γ(1), on has the transitivity of restrictions i. e.

Γ[R2][R1] = Γ[R1] . (35)

We define a comultiplication on B̃ by

∆(Γ̃) =
∑

R+Y=Γ(1)

Γ̃[R]⊗ Γ̃[Y ] (36)

of course, one has to check that the result does not depend of the choice of the

representative Γ which is straightforward. The proof of coassociativity rests on (35),

i. e.

(∆⊗ I)∆(Γ̃) = (∆⊗ I)
( ∑
R+Y=Γ(1)

Γ̃[R]⊗ Γ̃[Y ]
)

=∑
R+Y=Γ(1)

∑
R1+R2=Γ[R](1)

˜Γ[R][R1]⊗ ˜Γ[R][R2]⊗ Γ̃[Y ] (37)

but, by construction Γ[R](1) = R and then, using (35), one has

(∆⊗ I)∆(Γ̃) =
∑

R+Y=Γ(1)

∑
R1+R2=R

Γ̃[R1]⊗ Γ̃[R2]⊗ Γ̃[Y ] =∑
R1+R2+Y=R

Γ̃[R1]⊗ Γ̃[R2]⊗ Γ̃[Y ] (38)

which is the same as (I ⊗∆)∆(Γ̃).

One has now to prove that ∆B̃ → B̃ ⊗ B̃ is a morphism of algebras. Let Γi, i = 1, 2 be

two disjoint HW -graphs, one has

∆(Γ̃1) ∗⊗2

∆(Γ̃2) =
( ∑
R1+Y1=Γ

(1)
1

Γ̃1[R1]⊗ Γ̃1[Y1]
)
∗⊗2

( ∑
R1+Y1=Γ

(1)
1

Γ̃1[R1]⊗ Γ̃1[Y1]
)

=

∑
R1+Y1=Γ

(1)
1

R2+Y2=Γ
(1)
2

(Γ̃1[R1] ∗ Γ̃2[R2])⊗ (Γ̃1[Y1] ∗ Γ̃2[Y2]) =

∑
R1+Y1=Γ

(1)
1

R2+Y2=Γ
(1)
2

∑
mR∈match(Γ2[R2],Γ1[R1])

mY ∈match(Γ2[Y2],Γ1[Y1])

˜Γ1[R1]

mR

Γ2[R2]

⊗ ˜Γ1[Y1]

mR

Γ2[Y2]

 =



∑
m∈match(Γ2,Γ1)

∑
R+Y=


Γ1

m

Γ2


(1)

Γ1

m

Γ2

 [R]⊗

Γ1

m

Γ2

 [Y ] (39)

as the correspondence

(m,R, Y ) 7→ (R1, Y1, R2, Y2,mR,mY ) (40)

is one to one between the sets

{(m,R, Y ) such that (m ∈ match(Γ2,Γ1)) and (R + Y =

Γ1

m

Γ2

(1)

)} (41)

and

{(R1, R2, Y1, Y2,mR,mY ) such that (R1 + Y1 = Γ
(1)
1 , R2 + Y2 = Γ

(1)
2 )

(mR ∈ match(Γ2[R2],Γ1[R1]), mY ∈ match(Γ2[Y2],Γ1[Y1]))} (42)

8. Endnotes

Formula (11) : Strictly speaking, the (double) sum in the LHS of this formula is indexed

by the set

I1 :=
⋃

m′∈match(Γ2,Γ1)

{m′} ×match(Γ3,
(

Γ1
m′

Γ2

)
) (43)

and the RHS of this formula is indexed by the set

I2 :=
⋃

m′′∈match(Γ3,Γ2)

match(

 Γ2

m′′

Γ3

 ,Γ1)× {m′′} (44)

the (one-to-one) correspondence I1 → I2 is given by (m′,m′′) 7→ (m′ ∪m′′31,m
′′
32) and its

inverse by (m′,m′′) 7→ (m′21,m
′′ ∪m′31) with mij = m ∩ (Γ+

i × Γ−j ).
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