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Abstract. The Heisenberg–Weyl algebra, which underlies virtually all physical

representations of Quantum Theory, is considered from the combinatorial point of

view. We provide a concrete model of the algebra in terms of paths on a lattice with

some decomposition rules. We also discuss the rook problem on the associated Ferrers

board; this is related to the calculus in the normally ordered basis. From this starting

point we explore a combinatorial underpinning of the Heisenberg–Weyl algebra, which

offers novel perspectives, methods and applications.
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1. Introduction

From a modern viewpoint the formalism and structure of Quantum Theory is

founded on the theory of Hilbert space [1, 2]. The physical content of the theory

consists of representing physical quantities as operators which satisfy some algebraic

relations. Virtually all correspondence schemes come endowed with the Heisenberg–

Weyl algebra structure, be it the canonical quantization scheme, the occupation number

representation in quantum mechanics, or the second quantization formalism of quantum

field theory. This derives from the analogy with classical mechanics whose Poissonian

structure is reflected in the commutator of position and momentum observables [3].

Ubiquitous and profound, the Heisenberg–Weyl algebra has become the hallmark of

non-commutativity in Quantum Theory.

An exemplary model of the Heisenberg–Weyl algebra involves combinations of

derivative D, multiplication X and identity I operators acting on the space of

polynomials. Physical examples are the position x̂ and momentum p̂ operators in the

space of square integrable functions, or the annihilation a and creation a† operators in

Fock space. Here, without loss of generality, we conform to the notation {a, a†} for the

generators of the (associative) algebra‡, satisfying

aa† = a†a + I, (1)

where I is the multiplicative identity. We shall be interested in combinatorial aspects

of this relation and discuss one of the ensuing models of the Heisenberg–Weyl algebra.

Indeed, the combinatorial properties of Eq.(1) were recognized early and

successfully applied to the domain of algebraic enumeration, principally concerning

the action of the operators X and D on generating series. From this point of view

these operators are auxiliary constructions facilitating enumeration of discrete structures

[4, 5, 6, 7, 8, 9, 10].

However, in this note we adopt another approach, which leads towards a

combinatorial model of the algebra itself. Starting from the definition of the Heisenberg–

Weyl algebra as the algebra of words in a and a† supplemented by the relation of Eq. (1)

we will recast it in the language of paths on a lattice with some decomposition rules.

We shall also consider a convenient choice of basis, here taken to be normally ordered

monomials, which permits a direct link to the combinatorics of words and the related

algebra of paths. In this way algebraic problems may be expressed in the more concrete

form of the decomposition and enumeration of paths. For illustration we consider the

normal ordering procedure which reduces to the familiar rook problem on the Ferrers

board and then derive the structure constants of the algebra by a simple combinatorial

argument.

‡ We do not attach much weight to this particular realization, however, as we shall study algebraic

properties only, for which the underlying Fock space plays no role. Our considerations hold true for

any representation of the Heisenberg–Weyl algebra.
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2. Heisenberg–Weyl algebra

In this note we consider an algebra A to be a linear vector space over a field K with

bilinear multiplication law

A×A ∋ (b, c) Ð→ b c ∈ A (2)

which is associative and possesses a unit element I. More precisely, it is called an

associative algebra with unit as distinct from an algebraic structure lacking associativity

or a unit (e.g. Lie algebra). A basis of an algebra is a basis for its vector space

structure. Each basis (bi)i∈Λ defines a unique family γk
ij ∈ K such that for every ordered

pair (i, j) ∈ Λ ×Λ the set of k ∈ Λ such that γk
ij ≠ 0 is finite and

bi bj = ∑
k∈Λ

γk
ij bk . (3)

The γk
ij are called the structure constants of the algebra A with respect to the basis

(bi)i∈Λ, from which the multiplication law can be uniquely recovered.

The Heisenberg–Weyl algebra, denoted by H, is the algebra generated by a, a†,

satisfying the relation of Eq. (1). Elements of the algebra A ∈ H are linear combinations

of finite products of a and a† of the form

A =∑
r,s

αr,s a† r1as1a† r2as2 ... a† rkask , (4)

where r = (r1, ..., rk) and s = (s1, ..., sk) are nonnegative integer multi-indexes (with

the convention a0 = a† 0 = I). This representation is ambiguous, however, due to the

commutation relation Eq. (1) which yields different representations of the same element

of the algebra, e.g. aa† = a†a + I. The problem can be resolved by fixing the preferred

order of the generators a and a†. Conventionally, it is done by choosing the normally

ordered form in which all annihilators stand to the right of creators. In this case, each

element of the algebra H is uniquely written in the normally ordered form as

A =∑
r,s

βrs a† ras . (5)

Hence the normally ordered monomials a† ras constitute a natural basis for the

Heisenberg–Weyl algebra

Basis of H ∶ b(r,s) = a† ras , (6)

indexed by pairs of integers r, s = 0,1,2, ..., and Eq. (5) is the expansion of the element A

in this basis. We should note that the normally ordered representation of the elements

of the algebra suggests itself as the simplest one [11]. It is important and commonly

used in practical applications in quantum optics [12, 13, 14] or quantum field theory

[15, 16]. Working in this basis entails the reshuffling of a and a† to the normally ordered

form, which in general is a nontrivial task [17]. This brings up the issue of efficient

calculation methods and intuitive schemes providing insight into the ordering procedure

itself. Below, we provide a combinatorial model for the Heisenberg–Weyl algebra and

then propose a resolution of the problem from this starting-point.
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Figure 1. Path defined by the word w and the associated Ferrers board Bw.

3. Combinatorics of the Heisenberg–Weyl algebra

3.1. Words, paths and rook problems

We start by showing that each word in a two-letter alphabet can be uniquely encoded

as a staircase path on a plane rectangular lattice. This observation will lead us to

considering the associated Ferrers board and the rook problem. Rather than giving a

formal construction, we shall illustrate it by an example from which the general scheme

can be straightforwardly recovered.

Suppose we consider a word, say

w = aa†aa†a†a†aa†a (7)

to which we assign a staircase path on a rectangular lattice. Starting from the point

(0,0), it is constructed by reading the word w from the left and drawing a line to the

right if the letter is a† and up if the letter is a, as shown in Fig. 1 on the left. We observe

that this scheme provides a unique encoding of words.

To each path (or word) one can associate a Ferrers board B
w
by retaining rectangular

cells below the path, see Fig. 1. Note that this is a many-one procedure as paths differing

by a horizontal line at the beginning and a vertical line at the end yield the same board

[5, 10].

The rook problem for the given board B consists in enumerating non–capturing

arrangements of k rooks on the board which defines a finite sequence rB(k), k = 0,1,2, ...,

called the rook numbers. In our example one has

rB(k) = 1,10,23,9,0,0, ... k = 0,1,2,3, ... . (8)
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Figure 2. Three possible decompositions of the Ferrers board Bw and the

corresponding reduction of the word w.

A rook sequence can be conventionally encoded in a rook polynomial defined by

RB(x) = ∑
k≥0

rB(k)xk . (9)

It is straightforward to show that these polynomials satisfy the recursion [4, 5, 10]

RB(x) = RB′(x) + xRB′′(x),
RØ(x) = 1,

(10)

obtained by choosing a cell which forms a step in the diagram B. This step-forming cell

has no neighboring cell to its left or above it. We now consider two cases: a rook is

placed on the cell or not. This reduces the problem to the boards B′′ (with the row and

column in which the cell is placed removed) and B′ (with the chosen cell removed only).

We note that there are many possible choices of such a cell, and these give different

decompositions of the board yielding various recursive patterns, see Fig. 2.
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3.2. Normal ordering procedure

It has been shown [18, 19, 20] that the normal ordering of a word w in a and a† satisfying

Eq. (1) reduces to the rook problem on the associated Ferrers board B
w
. Namely,

w = ∑
k≥0

rBw(k)w (k) (11)

where w (k) are normally ordered monomials a† ras obtained from w by crossing out k pairs

of a and a† and then reshuffling the rest as if they were commuting variables (called the

double dot operation used in quantum field theory). For example, for a word in Eq. (7)

we have w (0) = a† 5a4, w (1) = a† 4a3, w (2) = a† 3a2, etc., and hence its normally ordered form

reads (see Eq. (8))

w = a† 5a4 + 10a† 4a3 + 23a† 3a2 + 9a† 2a . (12)

A rigorous proof of Eq. (11) relies on the observation that each word can be reduced

to the sum of two simpler ones by choosing the places in which a precedes a† (which

correspond to step-forming cells of the previous section) and reshuffling them according

to Eq. (1), i.e. aa†
→ I +a†a. For example, for a word of Eq. (7) there are three choices

which exactly correspond to possible decompositions of the associated Ferrers diagram

B
w

in Fig. 2. We note that although there are various possible decomposition schemes

it can be shown that the result is unique.

In short, the normal ordering of a word reduces to the enumeration of possible

non-capturing rook arrangements on the associated Ferrers board. The problem can be

systematically handled by successive decompositions of the board. Moreover, one can

devise simple algorithms based on the recursive rule given in Eq. (10). The methods

described in this paper may be extended to the q-deformed case (see e.g. [21, 20]).

3.3. Combinatorial realization of the Heisenberg–Weyl algebra

We observed in Sect. 3.1 that each word in two letters, here taken as a and a†, can be

encoded as a path, see Fig. 1. This establishes an isomorphism between the algebraW of

words in two letters, and the algebra P of paths. In W multiplication is given by simple

concatenation of words with the unit being the void word, while in P multiplication

is given by concatenation of paths. In both cases we shall indicate the unit, which

is the void word or path respectively, by the symbol Ø. Both algebras are free.

The Heisenberg–Weyl algebra arises by imposing on W the relation of Eq. (1), i.e.

H =W/{aa†=a†a+I}. In P this relation takes the symbolic form

⌜ = ⌟ + �, (13)

by which we mean that a given staircase path is equivalent to the sum of two staircase

paths obtained by

(i) replacing an upper-left-hand corner (⌜) by a lower-right-hand corner (⌟), and

(ii) removing the row and column which intersect in the given cell (�).
Note that this reduction is exactly equivalent to the decomposition of the associated
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Ferrers board induced by the rook problem. In fact, any path can be uniquely

decomposed into a finite sum of paths without steps (i.e. paths pertaining to monomials

a† ras). The latter constitute the basis in P/{⌜=⌟+�} corresponding to the normally

ordered basis in H.

In this way, we obtain the combinatorial model of the Heisenberg–Weyl algebra as

the algebra of paths with the relation Eq. (13), i.e.

H =W/{aa†=a†a+I} ≅ P/{⌜=⌟+�}. (14)

With this equivalence the algebraic structure of H and its calculus is recast in

combinatorial terms, thus providing different perspectives and making accessible

intuitive combinatorial arguments.

3.4. Example: Structure constants

To illustrate the above equivalence we show how to calculate the structure constants

Eq. (3) of the Heisenberg–Weyl algebra by simple combinatorial enumeration. In the

form suited for our purposes here we multiply two elements of the basis of Eq. (6), say

b(r,s) and b(k,l), defining the structure constants γ
(p,q)

(r,s)(k,l)
in the form

b(r,s) b(k,l) =∑
p,q

γ
(p,q)

(r,s)(k,l) b(p,q) . (15)

Expansion in this basis of the product b(r,s) b(k,l) essentially comes from the normal

ordering of the word

w = a† ras a†kal . (16)

Following the scheme of Section 3.1 we draw the associated path and subsequently read

off the Ferrers board B
w

which has a simple rectangular form, see Fig. 3. Enumeration
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of non–capturing rook arrangements on the board is a direct result of the observations:

(1 ) the maximum number of rooks on the board is min{s, k}, and

(2 ) there are as many possible arrangements of i rooks as unordered choices of i columns

and rows in the board B
w
.

Hence the rook numbers are

rBw(i) = i!(s
i
)(k

i
) , (17)

for i = 0 ... min {s, k} and zero otherwise. Consequently, Eq. (11) gives the normally

ordered form of the word w

a† ras a†kal =
min{k,s}

∑
i=0

i!(s
i
)(k

i
)a† r+k−ias+l−i . (18)

Finally, from Eq. (15) one may read off the structure constants of the algebra H in the

normally ordered basis. For fixed (r,s) and (k,l) the only non-vanishing γs are

γ
(r+k-i,s+l-i)

(r,s)(k,l)
= i!(s

i
)(k

i
) for i = 0 ... min {k, s} . (19)

Note that the right hand side of Eq. (19) is, in fact,independent of r and l since the

outer elements are not included in the commutation.

4. Summary

We considered the Heisenberg–Weyl algebra H starting from the (two generator) free

algebra of words W and imposing the relation of Eq. (1), i.e.

W [a,a†]=I
// H

We showed that words can be uniquely encoded as staircase paths on a plane, thus

providing a realization of W as a combinatorial algebra of paths P. This allowed us to

construct a model of H in terms of paths with the decomposition rule of Eq. (13) in P
which reflects the defining relation of Eq. (1) in W . The following diagram illustrates

the whole scheme

W oo ∼ //

��

P
��W/aa†=a†a+I

oo ∼ // P/{⌜=⌟+�}
We further looked at the normally ordered basis in H and the corresponding basis in

P/{⌜=⌟+�}. We pointed out that the decomposition rule of Eq. (13), reducing the number

of steps in a path, is closely related to the familiar rook problem on the associated

Ferrers board. This permits a graphical illustration of the calculus in this basis and,

more generally, of the normal ordering problem.

In this note we have advocated a combinatorial approach to the Heisenberg–Weyl

algebra by showing that it can be conceived as having a purely combinatorial origin.
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This gives a new perspective on the whole algebraic framework which is easily amenable

to the sophisticated methods of discrete mathematics. Finally, we should mention other

models of the algebra based on various discrete structures such as set partitions, graphs

or urn models [22, 23, 24] as well as results deriving from combinatorial methodology,

see [17] and references therein.
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