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Abstract.
We consider properties of the operators D(r, M) = ar(a†a)M (which we call generalized
Laguerre-type derivatives), with r = 1, 2, ... , M = 0, 1, ... , where a and a† are
boson annihilation and creation operators respectively, satisfying [a, a†] = 1. We
obtain explicit formulas for the normally ordered form of arbitrary Taylor-expandable
functions of D(r, M) with the help of an operator relation which generalizes the
Dobiński formula. Coherent state expectation values of certain operator functions
of D(r, M) turn out to be generating functions of combinatorial numbers. In many
cases the corresponding combinatorial structures can be explicitly identified.
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1. Introduction

Among many ways of generalizing the ordinary derivative d
dx

, the notion of the so-called

Laguerre derivative [1] seems to be particularly fruitful. The idea is to extend the

operator d
dx

to a simple homogeneous counterpart Dx, which we define as in [2],[3] (note

that here we omit the factor (−1) present in these references):

Dx =
d

dx
x
d

dx
. (1)

In Refs. [1],[2],[3] many important consequences of the replacement d
dx
→ Dx in the

integral transform methods and in the operational calculus were investigated. The link

between Dx and the Laguerre polynomials becomes clear if one notices the operational

relation (see Eq.(5) of Ref.[2])

eyDxxn = n! ynLn(−x
y

), (2)

where Ln(z) are Laguerre polynomials, which a posteriori justifies the name Laguerre

derivative for Dx. Eq. (2) permits one to obtain the result of action of eλDx on various

functions, using different generating function of Laguerre polynomials listed in the

Section 5.11 of [4]. In particular, using the well known ordinary generating function

of Ln(x) (formula 5.11.2.1 for α = 0 of [4] ) one obtains [5]

eλDxe−bx =
1

1 + bλ
exp

(
− bx

1 + bλ

)
(3)

valid for |bλ| < 1 [5]. Analogously, using the formula 5.11.2.6 of [4], one gets

eλDx1 F1 [b], [1], x) =
1√

1− λb]1F1

[
b], [1], x

1−λ

)
,

(4)

with 1F1 the hypergeometric function which for many values of b specializes to

elementary or known special functions. Note that for both these examples the action

of eλDx results in a substitution and a prefactor which is a reminiscent of the so-called

Sheffer-type operators [6], [7].

We now employ the operational equivalence

[
d

dx
, x] = 1←→ [a, a†] = 1, (5)

where a, a† are boson annihilation and creation operators respectively and rewrite

Dx ←→ D as

D = aa†a. (6)

By going one step further we extend Eq.(6) into the definition of the generalized Laguerre

derivative D(r,M) as

D(r,M) = ar(a†a)M ∼ Dx(r,M) = ( d
dx

)r(x d
dx

)M , r = 1, 2, ... , M = 0, 1, ... .

(7)

These operators are the object of our present study. Although the equivalence in Eq.(7)

between D(r,M) and Dx(r,M) is formal since the domains of a, a† and d
dx

, x are

different, we shall show that it provides one with an effective calculational tool.
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Since (a†a)M conserve the number of bosons, operators D(r,M) act as monomials

in boson operators which annihilate r bosons. Recent experiments in quantum optics

have shown how one may produce quantum states with specified numbers of photons.

This in turn raises the interesting possibility of producing exotic coherent states; that

is states other than the standard ones which satisfy a|z〉 = z|z〉 [?]. The current work

introduces operators whose eigenstates may be used to model new coherent states which,

while having many of the features of the standard ones, still permit explicit analytic

description. The explicit forms of these new generalized coherent states can be used to

evaluate relevant physical parameters, such as the photon distribution and the Mandel

parameter, squeezing factors and signal-to-noise ratio, etc.

Much theoretical work has been devoted to the description of nonstandard coherent

states; for example, the so-called non-linear coherent states [8], multiphoton coherent

states [9] and q-deformed coherent states [10]. The structure embodied in definition

Eq.(7) is a special case of the extension of boson operators put forward in the

construction of non-linear coherent states [8]. In these references one defines the

generalized boson annihilator b by

b = af(a†a) (8)

choosing the f(x) that most suits the problem in question. Evidently for this

identification r = 1 and f(x) = xM . In this case the commutator is equal to

[D(1,M), D†(1,M)] = (a†a+ 1)2M+1 − (a†a)2M+1. (9)

This emphasizes the fact that although D(1,M) and D†(1,M) annihilate and create

one boson, respectively, they are not canonical boson operators (unless M = 0). Eq.(9)

is a special case of

[D(r,M), D†(r,M)] = (a†a+ r)2M

(
r+1∑
k=1

|σ(r + 1, k)|(a†a)k−1

)

− (a†a)2M

(
r∑

k=1

|σ(r, k)|(a†a)k

)
, (10)

where the σ(r, k) are Stirling numbers of the first kind [11].

Eq.(10) was obtained by using the following two equations

ar(a)† r =
r∏
p=1

(a†a+ p) (11)

=
r+1∑
k=1

|σ(r + 1, k)|(a†a)k−1 (12)

Eq.(11) is readily proved by induction. To prove Eq.(12) we use the generating function

for |σ(r + 1, k)| in the form [?]

∏r+1
k=1 |σ(r + 1, k)|xr+1−k =

r∏
p=1

(1 + px) (13)
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from which, by substituting x = 1/n and using Eq.(11), Eq.(12) follows.

The basic objective of this work is the investigation of arbitrary powers of D(r,M)

which in turn will allow one to evaluate Taylor-expandable functions of D(r,M). We

achieve our goal following recently developed methods of construction of normally

ordered products [14], [15], [16]. As we shall show, results derived in this way have

a combinatorial flavour and lend themselves to a combinatorial interpretation.

The paper is organized as follows. In Section 2 we introduce generalizations of the

Stirling and Bell numbers well known from classical combinatorics and relate them to

the normally ordered powers of operators D(r,M). These numbers, as shown in Section

3, may be explicitly found using generalized Dobiński relations. In Section 4 we compare

calculations of purely analytical origin with those based on methods of graph theory and

give a combinatorial interpretation of our results. Examples of various applications of

our approach are presented in Section 5 while Section 7 summarizes the paper.

2. Normal ordering: Generalized Stirling and Bell Numbers

The normally ordered form of F (a, a†), denoted by FN (a, a†) [17] is obtained by moving

all annihilators to the right using the canonical commutation relation of Eq.(5). It

satisfies FN (a, a†) = F (a, a†). On the other hand the double dot operation : G(a, a†) :

means that we are applying the same ordering procedure but without taking account of

the commutation relation. Conventionally the solution to the normal ordering problem

is obtained if a function G(a, a†) is found satisfying

FN (a, a†) = : G(a, a†) : . (14)

A large body of research has been recently devoted to finding the solution of Eq.(14)

[18]. A general approach which facilitates a combinatorial interpretation of quantum

mechanical quantities is to use the coherent state representation. Standard coherent

states

|z〉 = e−|z|
2/2

∞∑
n=0

zn√
n!
|n〉 (15)

with the number states |n〉 satisfying a†a|n〉 = n|n〉, 〈n|n′〉 = δn,n′ and z complex, are

eigenstates of the annihilation operator, i.e. a|z〉 = z|z〉. The latter eigenstate property

shows that having solved the normal ordering problem Eq.(14) for an operator F (a, a†)

we immediately find

〈z|FN (a, a†)|z〉 = G(z, z∗) . (16)

An early observation on how to extract combinatorial content from normally ordered

forms [20] was based on the formula eλa
†a = : ea

†a(eλ−1) :, attributed to Schwinger. It

led to the identification

〈z|(a†a)n|z〉 z=1
= B(n), (17)

where the B(n) are conventional Bell numbers described in [11]. Eq.(17) may be taken

as a definition of the Bell numbers. For Stirling numbers of the second kind [29] we
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have [11],

(a†a)n =
n∑
k=1

S(n, k)(a†)kak (18)

(which may also be used as a practical definition) in terms of which one defines the Bell

polynomials by

B(n, x) =
n∑
k=1

S(n, k)xk. (19)

We have extended and developed the coherent state method methodology for

operators other than a†a in [13], [14] and [15].

After the seminal observation by Katriel [20], combinatorial methods found

widespread application in this context [22],[14], [15], [16], [7]. We apply these methods

to F (a, a†) = [D(r,M)]n, n = 1, 2, ... .

Formally, we write [D(r,M)]n in normally ordered form as

[D(r,M)]n =

[
Mn∑
k=M

S(M)
r (n, k)(a†)kak

]
arn. (20)

Clearly, from Eq.(18) the integers S
(M)
r (n, k) are generalizations of the conventional

Stirling numbers of the second kind (which are recovered for r = 0,M = 1). Analogously

to Eq.(19) the numbers S
(M)
r (n, k) serve to define the generalized Bell polynomials

B(M)
r (n, x) =

Mn∑
k=M

S(M)
r (n, k)xk. (21)

Finding the explicit form of these generalized Stirling numbers will give the normally

ordered form of [D(r,M)]n. We proceed to do this in the next section by use of a

generalization of the famous Dobiński formula.

3. Generalized Dobiński formula

We first write Eq.(20) in derivative form as

[Dx(r,M)]n =

[
Mn∑
k=M

S(M)
r (n, k)xk

(
d

dx

)k](
d

dx

)rn
. (22)

Acting with the r.h.s. of Eq.(22) on ex one obtains B
(M)
r (n, x)ex. The action of the

l.h.s. of Eq.(22) on ex is obtained by acting with generalized Laguerre derivatives on

monomials xn

Dx(r,M) xn = nrnMxn−r, (23)

where nr = n(n − 1)...(n − r + 1) is the falling factorial, then extending it to the p-th

power

[Dx(r,M)]p xn =

[
p−1∏
j=0

(n− rj)r(n− rj)M
]
xn−rp, (24)
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and next summing up contributions for xn/n!. This leads to the Dobiński-type

representation of generalized Bell polynomials [30],[31],[16]:

B(M)
r (n, x) = e−x

∞∑
l=0

[
n∏
i=1

(l + (i− 1)r)

]M
xl

l!
. (25)

The classic Dobiński formula [11] corresponds to r = 0,M = 1

B(n, x) = e−x
∞∑
l=0

lnxl

l!
. (26)

From Eq.(25) the generalized Stirling numbers are obtained by standard Cauchy

multiplication of series

S(M)
r (n, k) =

1

k!

k∑
j=0

(
k

j

)
(−1)k−j

[
n∏
i=1

(j + (i− 1)r)

]M
. (27)

We point out that Eqs.(25) and (27) are the central results for further calculations.

For practical applications it is useful to note that the generalized Stirling and Bell

numbers, as well as generalized Bell polynomials, can be expressed through generalized

hypergeometric functions pFq. ‡
Below we quote some examples of such relations.

S
(M)
1 (n, k) =

(−1)k(n!)M

k!
· M+1FM([−k, n+ 1, ..., n+ 1︸ ︷︷ ︸

M times

], [1, ..., 1︸ ︷︷ ︸
M times

], 1) (28)

B
(M)
1 (n, x) = e−x(n!)M · MFM([n+ 1, ..., n+ 1︸ ︷︷ ︸

M times

], [1, ..., 1︸ ︷︷ ︸
M times

], x) (29)

The numbers BM
1 (n) = BM

1 (n, 1) can be shown to be related to the numbers Bp,p(n)

characterizing the normal order of [(a(†)pap] introduced in Ref.[13] by the formula

BM
1 (n) = Bn,n(M + 1) , (30)

aseen by comparing Eq.[] in Ref.[13] with the Eq.(25) in the present work.

B
(M)
2 (n, x) = 2Mn−1e−xx

x(n!)M · MFM+1([n+ 1, ..., n+ 1︸ ︷︷ ︸
M times

], [ 1, ..., 1︸ ︷︷ ︸
M−1 times

, 3/2, 2], x2/4)

+2

(
Γ(n+ 1/2)√

π

)M
· MFM+1([n+ 1/2, ..., n+ 1/2︸ ︷︷ ︸

M times

], [1/2, ..., 1/2︸ ︷︷ ︸
M times

, 3/2], x2/4)

 (31)

‡ We use a convenient and self-explanatory notation for the hypergeometric functions of type qFp:
qFp([List of p upper parameters],[List of q lower parameters],x).
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B
(M)
3 (n) = e−13Mn

1

6
(n!)M · MFM+2([n+ 1, ..., n+ 1︸ ︷︷ ︸

M times

], [ 1, ..., 1︸ ︷︷ ︸
M−1 times

, 4/3, 5/3, 2], 1/27)

+

(√
3

2π
Γ(2/3)Γ(n+ 1/3)

)M

· MFM+2([n+ 1/3, ..., n+ 1/3︸ ︷︷ ︸
M times

], [1/3, ..., 1/3︸ ︷︷ ︸
M−1 times

, 1/3, 2/3, 4/3], 1/27)

+
1

2

(
Γ(n+ 2/3)

Γ(2/3)

)M
· MFM+2([n+ 2/3, ..., n+ 2/3︸ ︷︷ ︸

M times

], [2/3, ..., 2/3︸ ︷︷ ︸
M−1 times

, 2/3, 4/3, 5/3], 1/27)

 (32)

We conjecture that in general B
(M)
r (n) is a combination of r hypergeometric

functions of typa MFMr of argument 1
rr

.

Examples of numbers resulting from Eqs.(29)-(32) for n = 0, . . . , 6 are

M = 1 B
(1)
1 (n) = 1, 2, 7, 34, 209, 1546, 13227,

M = 2 B
(2)
1 (n) = 1, 5, 87, 2971, 163121, 12962661,

M = 3 B
(3)
1 (n) = 1, 15, 1657, 513559, 326922081, 363303011071,

(33)

which are positive integers and as such admit combinatorial interpretation. Indeed, the

first two sequences above may be identified as A002720 (which enumerates matching

numbers of a perfect graph K(n, n)) and A069948 respectively in Ref. [25].

We note in passing that the numbers B
(M)
r (n) are solutions to the Stieltjes moment

problem, i.e. are the n-th moments of positive weight functions on the positive half axis.

This can be deduced from their Dobiński-type relations Eq.(25), whose form allows one

to obtain the weight functions for any r and M . For the first two sequences in Eq.(33)

the Stieltjes weights are given in [25] under their entries.

As a second illustration of our approach we shall apply it to D(r, 1). Note that[
ar(a†a)M

]n
= : B(M)

r (n, a†a) arn : , (34)

which upon using the Dobiński relation Eq.(25) for M = 1 leads to

eλD(r,1) = :
1

1− λrar
exp

(
a†a

(1− λrar)1/r
− a†a

)
: . (35)

The operator D(r, 1) is of Sheffer-type viewed through hermitean conjugation (see refs

[7]) and Eq.(35) can also be obtained through the methods developed in these references

(see Appendix). Consequently,

〈z|eλD(r,1)|z〉 z=1
=

1

1− rλ
exp

(
1

(1− rλ)1/r
− 1

)
(36)

≡
∞∑
n=0

B(1)
r (n)

λn

n!
, (37)



Laguerre-type Derivatives: Dobiński relations and combinatorial identities 8

where [25]

〈z|
(
ara†a

)n |z〉 z=1
= B(1)

r (n) =
n+1∑
p=1

|σ(n+ 1, p)|rn−p+1B(p− 1) . (38)

In Eq.(38) σ(n, k) are the Stirling numbers of the first kind and B(n) are conventional

Bell numbers.

Using Eqs.(20) and (29) we obtain for r = 1 the following formula in a compact

notation

[D(1,M)]n = (n!)M : e−a
†a · MFM([n+ 1, ..., n+ 1︸ ︷︷ ︸

M times

], [1, ..., 1︸ ︷︷ ︸
M times

], a†a)an : .(39)

The last formula can be used to normally order H(λD(1,M)) for any Taylor-expandable

H(x).

4. Combinatorics of normally ordered Laguerre derivatives

In previous Sections we considered the normal ordering of Laguerre derivatives for which

the results heavily exploited combinatorial identities stemming from the underlying

iterative character of the problem. Indeed, the reordering of the operators a and a† is

a purely combinatorial task which can be interpreted in terms of graphs [26],citearXiv,

[28]. Briefly, to each operator in the normally ordered form H =
∑

r,s αr,s a
† ras one

associates a set of one-vertex graphs such that each vertex • carries weight αr,s and

has r outgoing and s incoming lines whose free ends are marked with white ◦ and

gray •◦ spots respectively. Multi-vertex graphs are built in a step-by-step manner by

adding one vertex at each consecutive step and joining some of its incoming lines

with some the free outgoing lines of the graph constructed in the previous step.

Additionally, one keeps track of the history by labeling each vertex by the number

of steps in which it was introduced. As a result, one obtains a set of increasingly

labeled multi-vertex graphs with some free incoming and outgoing lines. It can be

shown that normal ordering of powers of operator H can be obtained by enumeration

of such structures. Namely, the coefficient of a† kal in the normally ordered form of the

operator Hn is obtained by counting all possible graphs with n vertices • and having

k white ◦ and l gray •◦ spots respectively. For illustration, we give two examples of

Laguerre derivatives D(1, 1) = aa†a = a†a2 + a and D(2, 1) = a2a†a = a†a3 + 2 a2 and

their graph representation leading to the solution of the normal ordering problem by

simple enumeration, see Fig. 1. One should compare these “graphical results” with the

explicit formulas of Eqs.(27) and (25) or the expansion coefficients of the generating

function in Eq.(36) for r = 1, 2 and M = 1. Thus, using Eq.(??) the coefficients

multiplying the operators in Fig.(1a) are the first two terms in B
(1)
1 (n) = 2, 7, 34, 209

for n = 1, 2, . . . (A002720). Similar coefficients in Fig. (1b) are the first two terms in

B
(1)
2 (n) = 3, 16, 121, 1179 for n = 1, 2, . . . (A121629).
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Figure 1. Building blocks (in the inset) and the associated graphs of order n = 1, 2
for Laguerre derivatives: (a) D(1, 1) and (b) D(2, 1).

5. Examples

1. For r = M = 1, i.e. for D(1, 1) = aa†a one obtains [32]:

[D(1, 1)]n = n! : Ln(−a†a) : an, (40)
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where Ln(y) are Laguerre polynomials and Eq.(40) is derived from Eq.(39) and using

the definition of Ln(y) via the function 1F1. Then

eλD(1,1) =
∞∑
n=0

λn

n!
[D(1, 1)]n

= :
∞∑
n=0

Ln(−a†a)(λa)n : = :
1

1− λa
exp

(
λa†a2

1− λa

)
: , (41)

(compare Eq. (3)), where in Eq.(41) we have used the ordinary generating function

(o.g.f.) for the Laguerre polynomials [4].

Using other generating functions listed on p.704 of Ref.[4] one can derive further

formulas of type Eq.(41). (In a), b) and c) below: λ 6= 0, p = 1, 2, ...).

a) Consider the formula 5.11.2.8 of [4]:
∞∑
n=0

(
n+ p

n

)
tnLn+p(x) =

1

(1− t)p+1
e−

tx
1−tLp

(
x

1−t

)
(42)

Using Eq.(40) we obtain the normally ordered form of [λD(1, 1)]p exp(λD(1, 1))/p! :

1

p!

∞∑
n=0

[λD(1, 1)]n+p

n!
=

∞∑
n=0

(n+ p)!

p!n!
: Ln+p(−a†a)(λa)n+p : (43)

= :
1

(1− λa)p+1
e
λa†a2
1−λa Lp(− a†a

1−λa) : (λa)p . (44)

b) Formula 5.11.2.9 of [4]w for α = 0:
∞∑
n=0

(p+ 1)n
(1)n

tnLn(x) =
1

(1− t)p+1
e−

tx
1−tLp(

tx
1−t), (45)

gives the normally ordered form

eλD(1,1)Lp(−λD(1, 1)) = :
1

(1− λa)p+1
e−

λa†a2
1−λa Lp(−λa†a2

1−λa ) : . (46)

In Eq.(45) (y)k is the Pochhammer symbol.

c) Similarly, formula 5.11.2.6 of [4] for α = 0 provides the normal ordering of

1F1 [b], [1], (1, 1)) =:
1

(1− λa)b 1

F1

[
b], [1],

λa†a2

1− λa

)
: . (47)

which for b integer and half-integer can be written down in terms of known functions.

Examples are:

1F1 [3], [1], (1, 1)) =:
1

(1− λa)3
L2

(
λa†a2

1− λa

)
exp

(
λa†a2

1− λa

)
: . (48)

1F1

[
3

2
], [1], (1, 1)

)
=:

1

(1− λa)
3
2

exp
1

2
Θ

)(
I0(

Θ

2
)(1 + Θ) +1 (

Θ

2
)

)
: .(49)

where Θ = λa†a2

1−λa .
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2. The normal order of the modified Bessel function of the first kind

I0
(
2(λD(1, 1))1/2

)
may be derived:

I0(2(λD(1, 1))1/2) = :
∞∑
n=0

Ln(−a†a)(λa)n

n!
:

= : eλaJ0(2
√
λ(−aa†a)) := : eλaI0(2

√
λa†a2) : , (50)

where in the last line we have used the exponential generating function (e.g.f.) of

Laguerre polynomials [4]. Analogous formula for J0

(
2(λD(1, 1))1/2

)
reads

J0(2(λD(1, 1))1/2) = :
∞∑
n=0

Ln(−a†a)(−λa)n

n!
:

= : e−λaI0(2
√
λa†a2) : . (51)

3. We quote here the eigenfunctions of Dx(r,M) with eigenvalue 1 satisfying

Dx(r,M)E(r,M ;x) = E(r,M, x), with the following r boundary conditions:

E(r,M ; 0) = 1,
d

dxr
E(r,M ;x)|x=0 = 0, p = 1, 2, 3, . . . , (p− 1) (52)

which are[?]

E(r,M ;x) = 0FM+r−1([ ], [1/r, 2/r, ..., (r − 1)/r,︸ ︷︷ ︸
r−1 times

1, ..., 1︸ ︷︷ ︸
M times

], xr/rr+M) (53)

Useful normal ordering formulas can be obtained by applying the Dobiński relations to

the eigenfunctions of Dx(1,M) with the argument taking operator values, see Eq.(53),

i.e. E(r,M ;Dx(1,M)). We briefly show the calculation, in boson notation, for

E(1, 2;λD(1, 2)) =0F2([ ], [1, 1];λD(1, 2)), see Eq.(36) :

0F2([ ], [1, 1];λD(1, 2)) =
∞∑
n=0

λn

(n!)3
[a(a†a)2]n (54)

= : e−a
†a
∞∑
l=0

(a†a)l

l!

∞∑
n=0

((n+ l)!)2

(l!)3
(λa)n : (55)

= : e−a
†a
∞∑
l=0

(a†a)l

l!
2F2([1 + l, 1 + l], [1, 1], λa) : ,(56)

and similarly

E(1,M ;λD(1,M)) = 0FM([ ], [1, 1, ...1︸ ︷︷ ︸
M times

], λD(1,M)) = (57)

= : e−a
†a
∞∑
l=0

(a†a)l

l!
MFM([1 + l, 1 + l, ..., 1 + l︸ ︷︷ ︸

M times

], [1, 1, ..., 1︸ ︷︷ ︸
M times

], λa) : , (58)

which indicates a pattern appearing in the course of this procedure.

Indeed, by evaluating the coherent state expectation value of Eq.(59) between

〈z = 1| . . . |z = 1〉 in the spirit of Eq.(??) we furnish the hypergeometric generating
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functions of the numbers B
(M)
1 as then

e−1

∞∑
l=0

1

l!
MFM([l + 1, l + 1, . . . , l + 1︸ ︷︷ ︸

M times

], [1, 1, ...1︸ ︷︷ ︸
M times

], λ)) = (59)

=

(M)

1](n) λl

(l!)M+1
.∑

l=0

(60)

In spite of its apparent complexity the l.h.s of the above equation can be straighforwardly

handled by computer algebra systems.

6. Appendix

We derive Eq.(3) with the help of methods developed in Ref.[]. First, observe that

D(r, 1) = a†ar+1 + rar from which it follows that D†(r, 1) = (a†)r+1a + r(a†)r is the

operator of Sheffer-type: D†(r, 1) = v(a†) + q(a†)a with q(x) = xr+1 and v(x) = rxr.

The normally ordered form of exp(λD†(r, 1)) is obtained by solving the linear differential

equations (Eqs.(2) and (3) of Ref.[]) for T (λ, x) and g(λ, x) yielding

T (λ, a†) =
a†

(1− λr(a†)r)1/r
, (61)

and

g(λ, a†) =
1

1− λr(a†)r
. (62)

According to Eq.(29) of [] the normally ordered form of eλD(r,1) is

eλD(r,1) =
[
eλD

†(r,1)
]†

= : g(λ, a)ea
†(T (λ,a)−a) : (63)

which gives Eq.(3).

7. Conclusions and outlook

We have used generalized Dobiński relations to investigate the properties of Laguerre-

type differential operators. We provided a large number of operational formulas

involving functions of Laguerre derivatives, which can alternatively be applied within

the boson language. The framework developed above enables one to construct and

analyze new coherent states relevant to nonlinear quantum optics, which is a subject of

forthcoming research.
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Laguerre-type Derivatives: Dobiński relations and combinatorial identities 13

References

[1] G Dattoli, ”Hermite-Bessel functions: a byproduct of the monomiality principle”, in Proceedings
of the Workshop ”Advanced Special Functions and Applications”, Melfi, Italy, May 1999, D.
Cocolicchio, G Dattoli and M Srivastava, Eds.

[2] G Dattoli, M R Martinelli and P E Ricci, ”On new families of integral transforms for the solution
of partial differential equations”, Int. Transf. and Spec. Functions 16 661-667 (2005).

[3] G Dattoli, P E Ricci and I Khomasuridze, ”Operational methods, special polynomials and functions
and solution of partial differential equations”, Int. Transf. and Spec. Functions 15 309-321
(2004).

[4] A P Prudnikov, Yu A Brychkov and O I Marichev, Integrals and Series, V.2: Special functions

(Gordon and Breach Science Publishers, 1998).
[5] G Dattoli, A M Mancho, M Quatromini and A Torre, ”Exponential operators, generalized

polynomials and evolution problems”, Radiation Physics and Chemistry 61 99-108 (2001).
[6] G Dattoli, P L Ottaviani, A Torre and L Vásquez, “Evolution operator equations: integration

within algebraic and finite-difference methods. Applications to physical problems in classical
and quantum mechanics and quantum field theory,” Riv. Nuovo Cim. 20, serie 4 no.2, 1-133
(1997).

[7] P Blasiak, A Horzela, K A Penson, G H E Duchamp and A I Solomon, “Boson normal ordering
via substitutions and Sheffer-type polynomials”, Phys. Lett. A 338 108-116 (2005); P Blasiak, G
Dattoli, A Horzela, and K A Penson,“Representations of monomiality principle with Sheffer-type
polynomials and boson normal ordering,” Phys. Lett. A 352 7-12 (2006).

[8] Mattos Filho + Vogel,
[9] ,

[10] Solomon A I 1994 Phys. Lett. A196 29
[11] L Comtet, Advanced Combinatorics (Reidel, Dordrecht, 1974)
[12] E Weissstein,
[13] P Blasiak, K A Penson and A I Solomon, ”Some useful combinatorial formulas for bosonic

operators”, Phys. Lett. A (2003)
[14] P Blasiak, K A Penson and A I Solomon, ”The boson normal ordering problem and generalized

Bell numbers, Annals of Combinatorics 7 127 - (2003).
[15] P Blasiak, K A Penson, A I Solomon, A Horzela and G H E Duchamp, ”Some useful combinatorial

formulas for bosonic operators”, J. Math. Phys. 46 052110 (2005)
[16] M A Méndez, P Blasiak, and K A Penson, “Combinatorial approach to generalized Bell and Stirling

numbers and boson normal ordering problem,” J. Math. Phys. 46, 083511 (2005).
[17] W. H. Louisell, Quantum Statistical Properties of Radiation (Wiley, New York, 1990).
[18] P Blasiak, A Horzela, K A Penson, A I Solomon and G H E Duchamp, “Combinatorics and Boson

normal ordering: A gentle introduction,” Am.J.Phys. 75, 639-646 (2008).
[19] J R Klauder and E C G Sudarshan, Fundamentals of Quantum Optics (Benjamin, New York, 1968);

J R Klauder and B-S Skagerstam, Coherent States. Application in Physics and Mathematical

Physics (World Scientific, Singapore, 1985).
[20] J Katriel,“Combinatorial aspects of boson algebra, ” Lett. Nuovo Cimento 10, 565–567 (1974).
[21] H S Wilf, Generatingfunctionology (Academic Press, New York, 1994)
[22] V. V. Mikhailov, ”Ordering of some boson operator functions”, J. Phys. A : Math. Gen. 16 3817

(1983); J. Katriel, ”Normal ordering formulae for some boson operators”, J. Phys. A : Math.
Gen. 16 231 (1985);

[23] P Blasiak, K A Penson and A I Solomon J. Phys. A: Math. Gen. , (2003)
[24] P Blasiak, A Horzela, K A Penson and A I Solomon, “Dobiński-type relations: Some properties
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