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Université de Rouen
Laboratoire d’Informatique Fondamentale et Appliquée de Rouen

76821 Mont-Saint Aignan, France

KAROL A. PENSON
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In this communication, we consider the normal ordering of operators of the type

Ω =
X

α+β=r

cα,β(a+)αa(a+)β , α, β, r integers

where a (resp. a+) is a boson annihilation (resp. creation) operator; these satisfy

[a, a+] ≡ aa+ − a+a = 1, and for the purposes of this note may be thought of as
a ≡ d/dx and a+ ≡ x. We discuss the integration of the one-parameter groups

eλΩ and their combinatorial by-products. In particular we show how these groups
can be realized as groups of substitutions with prefactor functions.

1. Introduction

This text is the continuation of a series of works on the combinatorial and
analytic aspects of normal forms of boson strings[1,2,3,4,5,11,13,14,15,20].
Let w ∈ {a, a+}∗ be a word in the letters {a, a+} (i.e. a boson string),
and define (as in Blasiak, Penson and Solomon1,2,3,4) by r, s, respectively
|w|a+ (the number of creation operators), |w|a (the number of annihilation
operators) and m = min(r, s) then the normal form of wn is

N (wn) =
nm∑
k=0

Sw(n, nm− k)(a+)nr−kans−k (1)

which, according to whether the excess e = r− s is positive or negative,
reads

(a+)ne

( ∞∑
k=0

Sw(n, k)(a+)kak

)
or

( ∞∑
k=0

Sw(n, k)(a+)kak

)
(a)n|e| (2)

It has been observed that the numbers Sw are rook numbers [12,24] .
Consider, as examples, the upper-left corner of the following (doubly

infinite) matrices.

For w = a+a, one gets the usual matrix of Stirling numbers of the
second kind. 

1 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 · · ·
0 1 1 0 0 0 0 · · ·
0 1 3 1 0 0 0 · · ·
0 1 7 6 1 0 0 · · ·
0 1 15 25 10 1 0 · · ·
0 1 31 90 65 15 1 · · ·
...

...
...

...
...

...
...
. . .

(3)
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For w = a+aa+, we have

1 0 0 0 0 0 0 · · ·
1 1 0 0 0 0 0 · · ·
2 4 1 0 0 0 0 · · ·
6 18 9 1 0 0 0 · · ·

24 96 72 16 1 0 0 · · ·
120 600 600 200 25 1 0 · · ·
720 4320 5400 2400 450 36 1 · · ·

...
...

...
...

...
...

...
. . .

(4)

For w = a+aaa+a+, one gets

1 0 0 0 0 0 0 0 0 · · ·
2 4 1 0 0 0 0 0 0 · · ·

12 60 54 14 1 0 0 0 0 · · ·
144 1296 2232 1296 306 30 1 0 0 · · ·

2880 40320 109440 105120 45000 9504 1016 52 1 · · ·
...

...
...

...
...

...
...

...
...
. . .

(5)

Remark 1.1. In each case, the matrix Sw is of staircase form and the
“step” depends on the number of a’s in the word w. More precisely, due to
equation (1) one can prove that each row ends with a ‘one’ in the cell (n, nr),
where r = |w|a and we number the entries from (0, 0). Thus all the matrices
are row-finite and unitriangular iff r = 1, which case will be of special in-
terest in the following. Moreover, the first column is (1, 0, · · · , 0, · · · , 0, · · · )
iff w ends with an a (this means that N (wn) has no constant term for all
n > 0).

In this communication, we concentrate on boson strings and more gen-
erally (homogeneous) boson operators involving only one “a”. We will see
that this case is closely related to one-parameter substitution groups and
their conjugates.
The structure of the paper is the following.
In section 2 we define the framework for our transformation matrices
(spaces, topology and decomposition), then we concentrate on the Rior-
dan subgroup (i.e. transformations which are substitutions with prefactor
functions) and adapt the classical theory (Sheffer condition) to the present
context. In section 3 we analyse unipotent transformations (Lie group struc-
ture and combinatorial examples). The divisibility property of the group of
unipotent transformations tells us that every transformation is embedded
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in a one-paramater group. This will be analysed in section 4 from the for-
mal and analytic points of view. Section 5 is devoted to some concluding
remarks and further interesting possibilities.

2. The algebra L(CN) of sequence transformations

Let CN be the vector space of all complex sequences, endowed with the
Frechet product topology [23]. It is easy to check that the algebra L(CN)
of all continuous operators CN → CN is the space of row-finite matrices
with complex coefficients. Such a matrix M is indexed by N×N and has
the property that, for every fixed row index n, the sequence (M(n, k))k≥0

has finite support. For a sequence A = (an)n≥0, the transformed sequence
B = MA is given by B = (bn)n≥0 with

bn =
∑
k≥0

M(n, k)ak (6)

Remark that the combinatorial coefficients Sw defined above are indeed
row-finite matrices.

We may associate a univariate series with a given sequence (an)n∈N, us-
ing a sequence of prescribed (non-zero) denominators (dn)n∈N , as follows:∑

n≥0

an
zn

dn
. (7)

For example, with dn = 1, we get the ordinary generating functions (OGF),
with dn = n!, we get the exponential generating functions (EGF) and with
dn = (n!)2, the doubly exponential generating functions (DEGF) and so on.
Thus, once the denominators have been chosen, to every (linear continuous)
transformation of generating functions, one can associate a corresponding
matrix.

The algebra L(CN) possesses many interesting subalgebras and groups,
such as the algebra of lower triangular transformations T (N,C), the group
Tinv(N,C) of invertible elements of the latter (which is the set of infinite
lower triangular matrices with non-zero elements on the diagonal), the sub-
group of unipotent transformations UT (N,C) (i.e. the set of infinite lower
triangular matrices with elements on the diagonal all equal to 1) and its Lie
algebra NT (N,C), the algebra of locally nilpotent transformations (with
zeroes on the diagonal). One has the inclusions (with Dinv(N,C), the set
of invertible diagonal matrices)

UT (N,C) ⊂ Tinv(N,C) ⊂ T (N,C) ⊂ L(CN)
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Dinv(N,C) ⊂ Tinv(N,C) and NT (N,C) ⊂ L(CN). (8)

We remark that Tinv(N,C) = Dinv(N,C) ./ UT (N,C) because UT is
normalized by Dinv and Tinv = Dinv.UT (every invertible transformation
is the product of its diagonal by a unipotent transformation).

We now examine an important class of transformations of T as well as
their diagonals: the substitutions with prefactor functions which, from now
on, will be called substitutions with prefunctions.

2.1. Substitutions with prefunctions

Let (dn)n≥0 bet a fixed set of denominators. We consider, for a generating
function f , the transformation

Φg,φ[f ](x) = g(x)f(φ(x)). (9)

The matrix of this transformation Mg,φ is given by the transforms of the
monomials xk

dk
hence∑
n≥0

Mg,φ(n, k)
xn

dn
= Φg,φ

[
xk

dk

]
= g(x)

φ(x)k

dk
. (10)

If g, φ 6= 0 (otherwise the transformation is trivial), we can write

g(x) = al
xl

dl
+
∑
r>l

ar
xr

dr
, φ(x) = αm

xm

dm
+
∑
s>m

αs
xs

ds
(11)

with al, αm 6= 0 and then, by (9,10,11),

Φg,φ

[
xk

dk

]
= al(αm)k xl+mk

dldk
mdk

+
∑

t>l+mk

bt
xt

dt
. (12)

One then has

Mg,φ is row − finite ⇐⇒ φ has no constant term (13)

and in this case it is always lower triangular.

The converse is true in the following sense. Let T ∈ L(CN) be a matrix
with non-zero two first columns and suppose that the first index n such
that T (n, k) 6= 0 is less for k = 0 than k = 1 (which is, from (10) the case
when T = Mg,φ). Set

g(x) := d0

∑
n≥0

T (n, 0)
xn

dn
; φ(x) :=

d1

g(x)

∑
n≥0

T (n, 1)
xn

dn
(14)
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then T = Mg,φ iff, for all k,∑
n≥0

T (n, k)
xn

dn
= g(x)

φ(x)k

dk
. (15)

Remark 2.1. Eq. (10) is called the Sheffer condition (see [16,20,21,25]) and,
for EGF (dn = n!) it amounts to stating that∑

n,k≥0

T (n, k)
xn

n!
yk = g(x)eyφ(x). (16)

From now on, we will suppose that φ has no constant term (α0 = 0).
Moreover Mg,φ ∈ Tinv if and only if a0, α1 6= 0 and then the diagonal term

with address (n, n) is a0
d0

(
α1
d1

)n

. We get

Mg,φ ∈ UT ⇐⇒
a0

d0
=

α1

d1
= 1. (17)

In particular for the EGF and the OGF, we have the condition that

g(x) = 1 + higher terms and φ(x) = x + higher terms. (18)

Note 2.1. In classical combinatorics (for OGF and EGF), the matrices
Mg,φ(n, k) are known as Riordan matrices (see [16,17] for example).

3. Unipotent transformations

3.1. Lie group structure

We first remark that n × n truncations (i.e. taking the [0..n] × [0..n] sub-
matrix of a matrix) are algebra morphisms

τn : T (N,C) →M([0..n]× [0..n],C). (19)

We can endow T (N,C) with the Frechet topology given by these mor-
phisms. We will not develop this point in detail here, but this topology is
metrisable, complete and given by the following convergence criterion:

a sequence (Mk) of matrices in T (N,C) converges iff
for all fixed n ∈ N

the sequence of truncated matrices (τn(Mk)) converges.

This topology is compatible with the C-algebra structure of T (N,C).

The two maps exp : NT (N,C) → UT (N,C) and log : UT (N,C) →
NT (N,C) are continous and mutually inverse.
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3.2. Examples

3.2.1. Provided by the exponential formula

The “classical exponential formula” [7,9,21] tells us the following: consider a
class a of finite labelled graphs C and denote by Cc the subclass of connected
graphs in C. Then the exponential generating series of C and Cc are related
as follows:

EGF (C) = eEGF (Cc). (20)

The following examples give us some insight into why combinatorial matri-
ces of the type:

T (n, k) = Number of graphs of C on n vertices having k connected components

give rise to substitution transformations.

Example 3.1. Stirling numbers.

From now on, let v(Γ), c(Γ) denote parameters n, k above, namely the
number of vertices of Γ and the number of connected components of Γ.
Consider first the class of graphs Γ of equivalence relations. Then using the
statistics xv(Γ)yc(Γ) we get

∑
n,k≥0

S(n, k)
xn

n!
yk =

∑
all equivalence

graphs Γ

xv(Γ)

v(Γ)!
yc(Γ) =

exp

( ∑
Γ connected

xv(Γ)

v(Γ)!
yc(Γ)

)
= exp

∑
n≥1

y
xn

n!

 = ey(ex−1) (21)

and we will see that the transformation associated with the matrix
S(n, k) is f(x) → f(ex − 1).

Example 3.2. Idempotent numbers.
We consider here the class of graphs of endofunctions (i.e. functions from a
finite set into itself). Then, using the statistics xv(Γ)yc(Γ) and denoting by
I(n, k) the number of graphs of idempotent endofunctions (i.e. being equal
to their compositional square) of a given set with n elements and having k

connected components, we get

aClosed under relabelling (of the vertices), disjoint union, and taking connected compo-

nents.



June 24, 2004 10:26 WSPC/Trim Size: 9in x 6in for Proceedings 1param4

8

∑
n,k≥0

I(n, k)
xn

n!
yk =

∑
all graphs Γ of

endofunctions in the class (1, 2)

xv(Γ)

v(Γ)!
yc(Γ) =

exp

( ∑
Γ connected

xv(Γ)

v(Γ)!
yc(Γ)

)
= exp

∑
n≥1

y
nxn

n!

 = eyxex

. (22)

Corresponding to these numbers we get the (doubly) infinite matrix



1 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 · · ·
0 2 1 0 0 0 0 · · ·
0 3 6 1 0 0 0 · · ·
0 4 24 12 1 0 0 · · ·
0 5 80 90 20 1 0 · · ·
0 6 240 540 240 30 1 · · ·
...

...
...

...
...

...
...
. . .

(23)

and we will see that the transformation associated with this matrix is
f(x) → f(xex)

Remark 3.1. i) More generally, call the Burnside class with parameters
a < b (a, b integers), the class of graphs of (finite) endofunctions such
that fa = f b (compositional power) and Burna,b(n, k), the corresponding
numbers as in section (3.2.1). Then, exponential formula shows us that the
matrices Burna,b are all matrices of substitutions.
ii) For the special cases a = 1, b = l + 1, the mixed series (EGF in x and
OGF in y) is explicit and reads∑

n,k≥0

Burn1,l+1(n, k)
xn

n!
yk = e

y
“P

h|l
xh

h ehx
”

(24)

3.2.2. Normal ordering powers of boson strings

To get unipotent matrices, one has to consider boson strings with only one
annihilation operator. In the introduction, we have given examples with
a+a, a+aa+ (the matrix of the third string, a+aaa+a+, with two annihila-
tors, is not unipotent). Such a string is then w = (a+)r−pa(a+)p and we
will see shortly that

• if p = 0, Sw(n, k) is the matrix of a unipotent substitution
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• if p > 0, Sw(n, k) is the matrix of a unipotent substitution with
prefunction

To cope with the matrices coming from the normal ordering of powers
of boson strings we have to make a small detour to analysis and formal
groups.

4. One-parameter subgroups of UT (N, C)

4.1. Exponential of elements of NT (N, C)

Let M = I + N ∈ UT (N,C) (I = IN is the indentity matrix). One has

M t =
∑
k≥0

(
t

k

)
Nk (25)

where
(

t

k

)
is the generalized binomial coefficient defined by

(
t

k

)
=

t(t− 1) · · · (t− k + 1)
k!

. (26)

One can see that, for k ≤ n, due to the local nilpotency of N , the ma-
trix coefficient M t(n, k) is well defined and, in fact, a polynomial of degree
n − k in t (for k > n, this coefficient is 0). We have the additive property
M t1+t2 = M t1M t2 and the correspondence t → M t is continuous. Con-
versely, let t → Mt be a continous local one-parameter group in UT (N,C);
that is, for some real ε > 0

|t1| and |t2| < ε =⇒ Mt1Mt2 = Mt1+t2 (27)

then there exists a unique matrix H ∈ NT (N,C) such that Mt =
exp(tH). (This may be proved using the projections τn and the classical
theorem about continuous one-parameter subgroups of Lie groups, see [10],
for example).
When Mt = M t is defined by formula (25) we have
H = log(I + N) =

∑
k≥1

(−1)k−1

k Nk.

The mapping t → M t will be called a one parameter group of UT (N,C).

Proposition 4.1. Let M be the matrix of a substitution with prefunction;
then so is M t for all t ∈ C.
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The proof will be given in a forthcoming paper and uses the fact that
“to be the matrix of a substitution with prefunction” is a property of poly-
nomial type. But, using composition, it is straightforward to see that M t

is the matrix of a substitution with prefunction for all t ∈ N. Thus, using
a “Zariski-type” argument, we get the result that the property is true for
all t ∈ C.

4.2. Link with local Lie groups : Straightening vector fields

on the line

We first treat the case p = 0 of subsection (3.2.2). The string (a+)ra cor-
rresponds, in the Bargmann-Fock representation, to the vector field xr d

dx

defined on the whole line.
Now, we can try (at least locally) to straighten this vector field by a dif-
feomorphism u to get the constant vector field (this procedure has been
introduced by G. Goldin in the context of current algebras[8]). As the one-
parameter group generated by a constant field is a shift, the one-parameter
(local) group of transformations will be, on a suitable domain

Uλ[f ](x) = f
(
u−1 (u(x) + λ)

)
. (28)

Now, we know from section (4.1) that, if two one-parameter groups have the
same tangent vector at the origin, then they coincide (tangent paradigm).
Direct computation gives this tangent vector :

d

dλ

∣∣∣∣
λ=0

f
(
u−1 (u(x) + λ)

)
=

1
u′(x)

f ′(x) (29)

and so the local one-parameter group Uλ has 1
u′(x)

d
dx as tangent vector field.

Here, we have to solve 1
u′(x) = xr in order to get the diffeomorphism u.

In the case r 6= 1, we have (with D =]0,+∞[ as domain)

u(x) =
x1−r

1− r
= y; u−1(y) = ((1− r)y)

1
1−r (30)

and

eλxr d
dx [f ](x) = f

(
x

(1− λ(r − 1)xr−1)
1

r−1

)
(31)

The substitution factor sλ(x) = x

(1−λ(r−1)xr−1)
1

r−1
has been already

obtained by other means in [1]. The computation is similar for the case
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when r = 1 and, for this case, we get

eλx d
dx [f ](x) = f

(
eλx
)

(32)

with sλ(x) = eλx as substitution factor.
These first examples are summarized in the following table

r sλ(x) Name
0 x + λ Shift
1 eλx Dilation
2 x

1−λx Homography
3 x√

1−2λx2 -

Comment 4.1. If one uses classical analysis (i.e. convergent Taylor series),
one must be careful about the domain where the substitutions are defined
and the one-parameter groups are defined only locally.
For each of these examples, one can check by hand that for suitable (and
small) values of λ, µ, one has sλ(sµ(x)) = sλ+µ(x) (one-parameter group
property).
It is possible to avoid discussion of the domains by considering λ, µ as new
variables and applying the “substitution principle”; namely by claiming
that it is possible to substitute a series without constant term in a series
(in the algebra C[[x, λ, µ]]).

Using the same method, one can start with more complicated operators.
Examples and substitution factors are given below

Operator Substitution Factor Description

(
1 + (a+)2

)
a sλ(x) =

xcos(λ) + sin(λ)
cos(λ)− xsin(λ)

One-parameter group

of homographies

√
1 + (a+)2

a+
sλ(x) =

√
x2 + 2λ

√
1 + x2 + λ2 Composition of quadratic

direct and inverse functions
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4.3. Case p > 0: another conjugacy trick and a surprising

formula

Regarding vector fields as infinitesimal generators of one-parameter groups
leads to conjugacy since, if Uλ is a one-parameter group of transformation,
so too is V UλV −1 (V being a continuous invertible operator). We could
formally consider (a+)r−pa(a+)p; p > 0 as conjugate to

(
(a+)ra

)
in this

context. More generally, supposing all the terms well-defined, if

Ω = u1(x)
d

dx
u2(x) =

1
u2(x)

(
u1(x)u2(x)

d

dx

)
u2(x)

then

eλΩ =
1

u2(x)

(
eλu1(x)u2(x) d

dx

)
u2(x) (33)

This rather surprising formula (33) may be understood as an operator
equality.
Now, the tangent paradigm (see section 4.2) tells us that, if we adjust this
tangent vector to coincide with xr−p d

dxxp (recall that the original problem
was the integration of the operator Ω = (a+)r−pa(a+)p; p > 0), then we
get the right one-parameter group. Using this “conjugacy trick” we get

eλΩ[f ](x) =
(

sλ(x)
x

)
f(sλ(x)) with sλ(x) =

x

(1− λ(r − 1)xr−1)
1

r−1
(34)

Remark 4.1. (i) It can be checked that, if sλ(x) is a substitution factor
(i.e. at least locally sλ(sµ(x)) = sλ+µ(x)) such that sλ(0) = 0 for every
λ (which is the case in most of our examples) then the transformations
defined by Uλ[f ](x) =

(
sλ(x)

x

)
f(sλ(x)) form a one-parameter (possibly

local) group.
(ii) It is also possible to use the “ad” operator (Lie adjoint) instead of “Ad”
(conjugacy) to obtain integration formulas (see Dattoli 6).

4.4. Characteristic series ↔ one parameter group

correspondence

The preceding allows us to extend integration processes to linear combina-
tions of boson strings in the following sense. The algebra W1,∞ generated
by a+, (a+)−1, a is graded by

weight(a+) = 1, weight
(
(a+)−1

)
= weight(a) = −1 (35)
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and every homogeneous operator of this algebra which is of the form

Ω =
∑

|w|a=1, weight(w)=e

αww (36)

(there is only one annihilation operator in each monomial) can be integrated
as above. So one would like to reconstruct the characteristic series∑

n,k

SΩ(n, k)
xn

n!
yk (37)

from knowledge of the one-parameter subgroup eλΩ.
This is the aim of the following paragraph.

For every homogeneous operator as above with e ≥ 0, one defines the
coefficients SΩ(n, k) as in the Introduction by

N (Ωn) = (a+)ne
∞∑

k=0

SΩ(n, k)(a+)kak (38)

One has the following proposition

Proposition 4.2. With the definitions introduced, the following conditions
are equivalent:

∑
n,k≥0

SΩ(n, k)
xn

n!
yk = g(x)eyφ(x) (39)

Uλ[f ](x) = g(λxe)f (x (1 + φ(λxe))) (40)

Which solves the problem.

5. Conclusion and remaining problems

We have considered a class of elements of W1,∞ (see section 4.4 for a def-
inition) which describe some rational vector fields on the line. For these
operators, we have established a correspondence

One-parameter group (=integration of the field) ↔
Characteristic series (=coefficients of the normal ordering)

We have then seen that families of combinatorial matrices give rise through
the exponential formula to substitutions.
Further work which remains is to study the vector fields associated with
these combinatorial matrices. Also it would be desirable to adapt this
machinery to other algebras (quons, several boson modes).
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