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1 Introduction

Combinatorics has a long history which can be traced badkettitnes when Greek, Chinese and Persian
mathematicians (to name but a few) began with this particatal fruitful blend of configuration and
counting.

More recently, due to the great masters of the past (Eulemd@dli etc ...), this “art of counting”
avoided the fate of becoming a “collections of recipes” amdder the impetus of the modern fields
of Algorithms and Computer Sciences, acquiredLigdters Patentand so pervaded many domains of
Classical Sciences, such as Mathematics and Physics.

In return, the sciences which interact with Combinatoris ttansmit to the latter some of their art.
This is the case of the emerging field of “Combinatorial Pbg/sivhich has the potential of revitalizing
mathematical features that have been familiar to physid@t over a century, such as tensor calculus,
structure constants, operator calculus, infinite matriaed so on.

In this paper we describe one aspect of this interaction;ehgrhow well-known concepts in quan-
tum physics such as creation and annihilation operatods|aatder operators, translate to combinatorial
"counting” ideas as exemplified by Stirling numbers, whichynfind their expression in terms of infinite
matrices. Such an infinite matrix is more generally to be ¢ginbwf as a (linear) transformation from a
linear space to itself, that is, a linear endomorphism. Thédso a rigorous context in which to describe
the traditionaladder operatorof physics.

The paper is organized as follows: We start by introduciegibll-known Heisenberg-Weyl associative
algebra generated by the creation and annihilation opsrat@econd-quantized physics; this is a graded
algebra. Consideration of exponentials of elements ofalyebra leads one to a generalization of the
classical combinatorial Stirling numbers, as well as oammeter groups - crucial in quantum physics.
Arrays of such numbers lead us to the algebra of row-finitanitefimatrices. We then consider linear
endomorphisms as a natural sequel to these matrices, aindepeesentations. We relate these to a
generalization of the idea of ladder operators, and cordhydyiving some results concerning the relation
between endomorphisms and ladder operators.
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2 The Heisenberg-Weyl algebra

2.1 Formal definition

In Quantum Physics [9, 10, 23] and more recently in Combiizgd22, 32] and Combinatorial Physics
[5], one often encounters pairs of operatoss B) such that

AB—-BA=1 1)

wherel stands for the identity in some associative algebra. Theapapce of this relation in 1925 at
once forced Born, Heisenberg and Jordan to the considerafiinfinite matrices. Indeed, it can be
shown that relation (1) cannot be represented by (finitejioest with elements in a field of characteristic
zero (simply take the trace of each side). The first choicaidiful representation for (1) is with (densely
defined) unbounded operators in a Hilbert space (traditiboek space) or with continuous operators in
a Frechet space [13, 19, 34].

One can formally define the Heisenberg-Weyl algebra by

HWe = C(b,b")/Tuw 2

whereC(b,b+) = C [{b,b* }*] is the algebra of the free monoid, b* }* [3, 4, 27]i. e. the algebra of
non-commutative polynomials; anfl;yy is the two-sided ideal generated Bp* — b*b — 1). Note that
this definition, together with the arrow

5:C(b,b") — HW¢ 3)

clears up all the ambiguities concerning normal forms (Narardering [31] and the so-called “double
dot” operation) which are traditional in Quantum Physicmrf now on, we set = s(b) anda™ = s(b™).

In general, by thexormal ordering[6] of a general expressioR(a', a) we meanF (™ (af, a) which is
obtained by moving all the annihilation operatart the rightusingthe commutation relation of Eq.(1).
This procedure yields an operator whose action is equivatethe original onej.e. F(™(af a) =
F(a',a) as operators, although the form (which livesGri(b, b*)) or C(b,b") ) of the expressions in
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terms ofa andat may be completely different. From (3), itis an easy exeritiggove that((a*)iaj)
i,jEN

is a basis off W¢ (basis of the normal order).

On the other hand th@ouble dotoperation: F'(a, a) : consists of applying the same ordering procedure

butwithouttaking into account the commutation relation of Eq.{3, moving all annihilation operators

a to the right as if they commuted with the creation operatdrsThe structure constants are given in [5]

and can be obtained from the following form{la
(aJr)ilajl (a+)i2aj2 — Z k! (]];> (%5) (a+)i1+i2*kaj1+j2*k ) (4)
k>0

2.2 Grading of the Heisenberg-Weyl algebra
Setting, fore € Z

HWée) = spanc((at)'a’);—j. (5)
one has
HWe = @@ HW andHWSY HWE ¢ HW ) 6)
eel

for all e1,e5 € Z. This natural grading maked W a Z-graded algebra. One often uses the following
(faithful) representatiops by operators oi€[[x]].

ppr(a) = 4
@)
ppr(a®) = (5+—xS).

This representation, known as the Bargmann-Fock reprasemis graded for the preceding grading as,
when restricted t€[x], ppr(a) is of degree-1 andppr(a™) of degreel.

In general, and more concretely, we may associate many tengarperators of quantum physics with
elements ofH W¢. In particular, an elemerfe € HW¢ being given, one would like to consider the

evolution group [15]
AQ
(e >>\€R '

For example, such one-parameter groups are important imtgmadynamics, where the parameleis
the timet; or in quantum statistical mechanics, wheris the negative inverse temperature.
Some questions which arise are

Q1) Is this group well defined ? through which representaiavhat is the domain ?
Q2) Which combinatorial methods may be extracted from kndgéeof this group ?

Ouir first task is to get the normal order of the pow@frs

O This formula can also easily be derived from the “rook” eqlewa of Wick’s theorem [35]. Note that the summation index
ranges in the intervdD..min(j1, i2)].
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3 Combinatorics of infinite matrices
3.1 Homogeneous operators and generalized Stirling numbers

Before defining representations (or realizations) of the-parameter grouéem) . one can consider
eR
the problem of normal ordering the powers(of

N@) = > an,i,j)(a)a’ . (8)

1,jEN

In general this is a three-parameter problem but, takinguighge of the preceding gradation, one can
start with a homogeneous operator of degree (or exeess)

Q=Y a(i,j)(a")d ©)

i—j=e

and remark that

(@) S0y Sa(n, k) (a*)kak ;ife >0
N(@Q") = (10)
(Ziio Sa(n, k)(cﬁ)”“ak)a"‘€| ;ife<0

which was used as the definition of “Generalized Stirling Mens” as introduced in [7, 8] for strings
and generalized to homogeneous operators in [19] (see283p [These numbers recently attracted the
attention of Combinatorialists [20] who found it a nontalgeneralization of numbers known for some
200 years [2].
The reason for the nantgtirling Numberdies in the first example below, following which we give two
more examples.

ForQ = a*a, one gets the usual matrix of Stirling numbers of the secand. k

10 0 0 0 00
01 0 0 0 00
01 1 0 0 00
01 3 1 0 00
01 7 6 1 00 (11)
01 15 25 10 1 0
0 1 31 90 65 15 1
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ForQ = ataa™t, we have

1 0 0 0 0
1 1 0 0 0
2 4 1 0 0
6 18 9 1 0

Y= OO O OO
_ o0 OO0 o oo

24 96 72 16 1 (12)
120 600 600 200 25
720 4320 5400 2400 450 3
ForQ) = ataaa™a™, one gets
! 0 0 0 0 0 0 0 0
2 4 1 0 0 0 0 0 0
12 60 54 14 1 0 0 0 0
144 1296 2232 1296 306 30 1 00 (13)
6 52 1

2880 40320 109440 105120 45000 9504 101

In any case, the matri§S(n, k)). xen has all its rowsS(n, k))ren finitely supported. We call these
matrices “row-finite” [19, 29].

We will see in the next paragraph that the “row-finite” maggdorm a very important algebra which
we denote byRF(N; C) in the sequel.
3.2 An excursion to topology: transformation of sequences

Letd = (d,,)nen be a set of non-zero complex denominators. To each row-fimateix (M [n, k) ken.

one can associate an operaday; € End(C[[x]]) such that the image of = >, _ ak% € Cl[x]] is
defined by

x"
Qp(f) = b"cTn’ with b, = Y~ M[n, klay, . (14)
keN
Note that if we endowC|[[x]] with the Féchet topology of simple convergence of the coefficientss (th
structure is sometimes called the “Treves topology”, sd@) [[E., defined by the seminorms
Pu(f) = lan]; with f =" axx” (15)
keN

with each®,, continuous; then the following proposition states thatdtie no other case:

Proposition 1 The correspondenck — ®,, fromRF(N; C) to L(C[[x]]) (continuous endomorphisms)
is one-to-one and linear. Moreovér;y = ®,; o P .
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Proof: The proof of this proposition is not difficult and left to theader. O

As an application of the preceding, one can remark thatutfiradhe Bargmann-Fock representation
pBF, the one parameter grom_ﬁ)Q always makes sense for homogeneous operators (as defingd(@)E
since the matrixy~ ! (ppr(Q))M is

e strictly upper-triangular whea < 0
e diagonal where = 0

o strictly lower-triangular wher > 0 .
Thene?* is meaningful as (a group of) operators on appropriate space

3.3 One-parameter groups and Stirling matrices

In this paragraph we focus on the combinatorics of operatonsaining at most one annihilator (in this
contextd/dx) so thatp () is of the form

o)+ o) 1)

(sum of a scalar field and a true vector field). One-parametems generated by these operators can, of
course, be integrated using PDE [15] but, here we give a ‘egagy trick” which aims at proving that an
operator of the type (16) is conjugated to the vector figld) %.

So, to compute*(@(@) & +0(=))[ ], one can use the following procedureandv are supposed to be at
least continuous). We first take= 0 (vector field case)

e if ¢ =0 (andv = 0) thene*?5r ([ f] = f (trivial action) ;
e if ¢ £ 0 then choose an open intendal~ () in which ¢ never vanishes and € T ;

and set/ = F(I) (open interval). Thed' : I — J is one-to-one (a#' is strictly monotonic) ;

o forx ¢ I set

o for suitable(z, A), set
sa(x) = FYF(z) 4+ ). (18)

sy is a deformation of the identity singe, \) — s, () is continuous (and even of claég) on its
domain andtsy(z) = = ;

o for small values of\ , e*(4(®)d5) coincides with the substitutiofi — f o sy. To see this, it is
sufficient to remark that the exponential of a derivatiorc(sas)\(q(x)%)) is an automorphism,
which means a substitution in the (test) function spacesuoehsideration.

() These matrices are different from the “Generalized Stirirarices” defined by Eq. (10). Their non-zro elements are stiggpo
by a line parallel to the diagonal.
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Now, one can indicate how to integrate the one-parametepgr?(@) @ +v() for generab. (I, F, s,
are as above).

e Onl, set
z wv(t)

u(z) = e‘fio a(o 9 : (29)

e one checks easily that

1 d

pr(©) = (a(a) - + () = ~(a(x) - Ju (20)

in the sense that, on each function in its domain- () operates as the composition of

— multiplication of f by u
— action of the vector fieldg(z) %) (now onuf)
— division by ;

e then, using the fact that exponentiation commutes withugmemgy, the exponential reads

eMa(@) gE+o(x) _ =1 Ma(z)45),, (21)

Using the preceding definitions, the action now takes the for

Ul7r) = OO 7)) = MDD g, . 2

One can chech posteriorithe validity of this procedure, using a tangent vector témpla as follows

e check that, for small values of 6, one has

UrxoUp=Uxyo; (23)
e check that ; ;
Do PA@) = (a(@) 7+ v(@) f(2) (24)
Remark 1 Transformations of type
f=g(fos) (25)

are calledsubstitutions with prefunctiongn combinatorial physics[19]. It can be shown that underenic
conditions ¢, s analytic in a neighbourhood of the origig,(0) = 1,s = x + ---) these transforma-
tions form a (compositional) Lie group (infinite dimensibofFréchet type, see [19]). The infinitesimal
generators of these transformations are precisely of th@ fg(z) - + v(x).

We now give an example of integration of the one-parametaume*»=+ (2 for

Q= (a)?aa’ +atala™)?. (26)
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Example 1 One has the conjugated form
pBr(Q) sz%x—l—x%xQ :x_%(2x3%)x% . (27)
Using the procedure described above, one obtains the oraayger group of transformatioris,

Ualf](z) = ﬁm Xf(\ll_xij)\xg)- (28)

The reader is invited to check that, for suitably small valoéthe parameters
(i.e. |\ 4 0] < £z < +00), Ux 0 Uy = Uy by direct computation.

Once integrated, the one-parameter gréiypreveals the Generalized Stirling matrix as expressed by
the following result.

Proposition 2 With the definitions introduced ard> 0, the two following conditions are equivalent
(wheref — U, [f] is the one-parameter grouxp(Appr(£2)).

i)
>~ Saln,k)=ry" = gla)er?) (29)
n,k>0 ’
i)
Ur[f](z) = g(Az®) f(z(1 + ¢(Az?))) (30)

Proof: One first has the following equality between continuous afes

d

%)k. (31)

)\TL
Uy = Z Sg(n,k)—':c"exk(
n,k>0 "

Assuming (i), let us check (i) fof a monomial (i. e. choose the test functighs- =7, for j = 0,1, ---)

Un(2?) = ZZSQ(n,k)(Axe)n ! 'xj:

S n! (j—k)!

iy parba) 3t _
z ;}(mm ) L =

= g(Az)a’ Ej: (’;) p(Ax)F = g()\xe)(x(l + (b()\xe)))j . (32)

k=0

Now as the two members of (30) are continuous and linegrand the set of monomials is total [13] in
the space of formal power series endowed with the Treveddgp® , we have (ii).
Conversely, if one assumes (ii), one has

Uy (e¥") = g(Az®)evr(1He(Az%)) (33)

(i) The usual - ultrametric - topology would not be enoughdet 0.
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and, from (32), one gets

> Sa(n,k) W,) (zy)* = g(Az©)evroe). (34)
n,k>0 m
A legitimate change of variables ¢ — z ; xy — y) gives (i). a

Example 1 continued
WithQ = (a*)?aat + ata(a™)?, one has the one-parameter group

U[f(z) = § m x f(y/ 1_I742)\$2) : (35)

Then, applying the preceding correspondence, one gets

ﬁ kE_ 4 1 y(\/ﬁ—l) a4 1 Yy(> p>1 Cnz™)
n%;osg(n, Ry = ,/7(1_4@3 e ={a=wp ¢ (36)

wherec,, = (i?) are the central binomial coefficients.

4 Representation of endomorphisms in more general spaces

4.1 Notation

ConsiderK a (commutative) field an&|[x] the K-vector space of polynomials in the indeterminate
Denote byEnd(V) the algebra of linear endomorphisms of dfyector spacéd’. If ¢ andy are both

elements oEnd(V), then with¢vy denoting the usual compositiog 6 ¢” of linear mappings, we have
for any integem

|C|V if ’17,:0,

" =4 ¢po---0o¢p if n>0 (37)

——
n times

whereldy is the identity mapping oV. Lete := (e;);cr be a basis of/ (V which we assume does not
reduce ta0)). We denote the decomposition of any veaias V' with respect te by

Z<U, €i>ei (38)
iel

wherdY) (v, e;) is the coefficient of the projection af onto the subspacKe; generated by; in V.
Obviously, all but a finite number of the coefficients, e;) are equal to zero. Ifl,<) is a linearly
ordered (nonempty) set bounded from below (vﬁtr’ms its minimurf¥)), and, ifv # 0, then thedegreeof
v (with respect te) is defined by

degg(v) :==max{i € I : (v,e;) # 0} (39)

™) The notation {v, w)” is commonly referred to as a “Dirac bracket”. It was succesfised (for the same reason of duality) by
Schitzenberger to develop his theory of automata [3, 4, 21].
) We follow the notation of [33] for the lowest element.
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and
deg,(0) := —oc0 (40)

where—co ¢ I, and the relation-co < i for eachi € I extends the order afto I := I U {—oo}. If
v # 0, then the nonempty finite s¢i € I : (v,e;) # 0} admits a greatest element, sintés totally
ordered, so thateg, (v) is well-defined. Thus, the following equality holds (for any 0)

v = Z (v, ei)ei (41)

0<i<deg,(v)

With (v, eqeg_(v)) 7 0. In particular, takings := (x"),>o as a basis oK[x], any nonzero polynomiaP
may be written as the sum
deg(P)
P= )Y (Px")x" (42)

n=0

wheredeg(P) is the usual degree df.

4.2 Review of the classical result

It has been known since the paper of Pincherle and Amalditfgd] for a fieldK of characteristic zero,
any linear endomorphism € End(K[x]) may be expressed as the sum of a converging series in the
operatorX of multiplication by the variabl& and in the (formal) derivative (of polynomialg). In [26]

(see also [16] for some generalizations) Kurbanov and Madgigive an explicit formula - recalled below

- for this sum.

Theorem 1 ([26]) Suppose thaK is a field of characteristic zero. Let € End(K[x]). Theng is the
sum of the summable series (in the topology of simple coemeegonEnd(K[x]) with K[x] discrete)

+oo
Z P.(X)D* where (P, (x))ren is a sequence of polynomials which satisfies the followigrsion
k=0

equation:
Rx) = o),
Xn+1 n Xn+1—k (43)
P, = —) - P (x)————— .
In what follows, we generalize this result to ayvector space with a countable basis using a pair of
rather general ladder operators instead of the usual oag®lypX andD. The basic idea is to use only
those operator properties which make possible an expassidlar to the classical case.

4.3 Endomorphism expansion in terms of ladder operators

From now on, except for Example 2, the fiddds not assumed to be of characteristic zero. Let us consider
aK-vector spacd” of countable dimension. Let := (e, ),cn be an algebraic basis for this space. We
can define two kinds dfidder operatorswith respect tae, namely, dowering operatorL, € End(V),

by
{ Leeo = 0 , (44)

Leen+1 = €n
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and, araising operatorR, € End(V), by
Reep, = €nt1 - (45)

Such operators were discussed by Katriel and Duchamp [2&f#d4sas Dubin, Hennings and Solomon
[17, 18] in a more general context, and are similar to thetmeand annihilation operators acting on an
interacting Fock space of Accardi and&gko [1]. The operator, and R, may also be regarded as the
operatorsD andU described by Fomin in [22], associated with the orientedigdagraphey <« e; «—

€ — - and€0—>€1 — g —> -,

Definition 1 Let P € K[x] andu := (u,)nen be a sequence of elementsafWe defineg?(u) € V by

deg(P)
P(u) := Z(P, U, = Z (P, x™ Yy, . (46)
n>0 n=0

Lemmal Lete = (e, )nen be a basis o¥/. The mapping

P.: Kx] — V (47)

is a linear isomorphism.

Proof: Straightforward. |

Lemma 2 Lete = (e,)nen be a basis oV and R, be the raising operator associated wigh For any
polynomialP € K[x] we can define the operat@(R.) := Z(P, x")Rg. Then we have

n>0
P(Re)eg = P(e), (48)

thus
Riey =en . (49)
Proof: Omitted. O

Now suppose that is discrete (as i&) andEnd(V'), as a subspace &f", is endowed with the topol-
ogy of compact convergence; that is, in this case, the tgyadd simple convergence (since the compact
subsets of discrefg are its finite subsets). As a resiliyd(V') becomes a complete topologid&vector
space (and even a complete topologi€ahlgebra). Using this topology we may consider summable fam
ilies of operators orv.

We recall here some basics about summability in a genetalget et G be a Hausdorff commutative
group,(g;)icr a family of elements of7. An elementy € G is thesumof (g;),¢; if, and only if, for each
neighbourhoodV of g there exists a finite subsét, of I such that

Sgew (50)

jeJ
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for every finite subsef C I containingJy, . The sumg of a summable familyg;);c; of elements of7
is usually denoted by
> i (51)

i€l
It is well-known that if (g;);c; is @ summable family with sum, then for any permutation of I, ¢
is also the sum ofg,(;))icr. WhenG is complete, the following condition (Cauchy) is equivalém
summability. A family(g;);c; of G satisfiesCauchy’s conditionf, and only if, for every neighbourhood
W of zero there is a finite subsét, of I such that

dogkeWw (52)

keK
for every finite subsek of A disjoint from Jy,. Many other properties and results about summable fam-
ilies may be found in [11].

For instance, le¢ = (e,,),en be a basis of/. Then for any sequend®,, )5, € End(K[x])" of ele-
ments ofEnd(V), the family (¢, L2 ),en is easily shown to be summable. Due to the choice of topology,
the fact thak is a basis oV, and by general properties of summability, it is sufficienptove that, for
eachk € N, the family ((¢,, LZ)(ex))nen is sSummable i/, SinceV is discrete and therefore complete,
it is sufficient to check that Cauchy’s condition is satisfiéée may takdV := {0} as a neighborhood of
zeroinV. LetJy := {0,---,k}. Because for every > k, LZ(e;) = 0, thenz (pnLlg)(ex)) =0

neJ
whenever/ is a finite subset of such that/ N Jy = 0. In what follows, the sum of a familyp,, L") ,en

is the element oEnd (V') denoted byz on Ly where for every nonzero e V,

neN
degg(v)
(Z (Z)nLZ) (U) = Z ¢7L(LZ(U)) . (53)
neN n=0

We are now in a position to establish the main result conngrttie expansion of any operator Bnin
terms of ladder operators.
Theorem 2 (Endomorphism expansion in ladder operators)Leta = (a,)neny @andb = (b,)nen be
two bases oV such that, € Kay; that is, there exists a nonzero scalar= (bg, ag) such that\ay = by.
Then eachp € End(V) is the sum of the summable family,, (Ra) LY ),en Where(P,) ey € Kx]V is a
sequence of polynomials that satisfies the following recarequation

APy(a) = ¢(bo) ,
APoii(@) = @lbar1) = 3 Pr(Ra)busis (>4)
k=0
(Note that due to Lemma 1, for eaghe N, P, (a) uniquely define®, € K[x].)
Proof: Sinceb is a basis, it is sufficient to prove that for eacke N,
$(by) = <Z Pk(Ra)L{“)) (bn) - (55)
keN
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1. Caser = 0:

(ZPk(Ra)LIﬁ> (bo) = Po(Ra)(bo)

keN
= APy(Ra)(ao) (56)
APy (a) (according to Lemma)2
= ¢(by) (by assumptiop.

2. Casen+1,neN:

n+1
(Z Pk(Ra)Lllz> (bn—l-l) = Z Pk(Ra)bn+1—k

keN k=0

= Pupa(Ra)(b0) + Y Pe(Ra)bni1 s
k=0

& 57
= >\Pn+1(Ra)(a0) + Z Pk(Ra)bnlefk ( )
k=0
= >\Pn+1(a) + Z Pk(Ra)bn-i-l—k
k=0
= ¢(b7L+1) .
O

Example 2 Suppose thaK is a field of characteristic zefd. ConsiderV := K[x], a,, := x" and

by, = ’;—”, ThereforeR, = X, the operator of multiplication by; and, L, = D, the formal derivative of
polynomials, which are the data of the classical result techin subsect. 4.2. In Example 2, we consider
the functionak: K[x] — K C K[x] that maps a polynomial to the sum of its coefficients. Fronofiém 2,
we know that = ) ~ P,,(X)D" and that

n>0

1 n Xn-i—l—k

Pria(x) = CES I;)Pk(x)m . (58)

. . . . 1
We can show by induction th&, (x) = (1 — x)", and then easily verify that= E (1 -=X)"D"
: n:
n>0
on the basigx"}. Alternatively, we see that this operatoreis= e¥”|,_1_: x™ — (x + y)"|y=1_x.

Leta = (ay)neny @andb = (b, )nen be two bases of . Let us consider the following operators

0 if n=0,
hm“‘{ﬂmwlw >0, (59)

M) The assumption on the characteristidkofs needed here because we consider denominators of thexform
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and
Ra7aan = Opanp+1 (60)

where := (B.)nen, With Gy := 1, anda := (o, )nen are sequences of nonzero scalars. These
operators, which we may call respectivéiyrelative lowering operator with coefficient sequergand
a-relative raising operator with coefficient sequengeseem to be straightforward generalizations of the
ladder operators as previously introduced; however, shiet entirely the case. Actuallyiy, 3 andRa «
are respectively equal to some “usual” ladder operafgys:., and Rq.a whereg™! - b := (0 ) nen

n -1 n—1

with b/, = (H ﬁi> by, (resp.a - a = (al,)neny Wherea!, = (H ai)an forn > 0, andaj, = ag).
1=0 1=0

If b € Kay (or, equivalently, ifby € Kag, becausé| = % = by andaj, = ag), then we can apply

Theorem 2 with the operators, s and R, «, just by replacing by o - a, b by B! b. Whena = b,
we say thatl, g andR, . area-relative ladder operatorsvith coefficientsd anda respectively. Such a
pair of operators - used in the following subsection - satilsé rather general commutation rule

Da,,@,a = [La,67 Ra,a] = La,,BRa,a - Ra,aLa,ﬂ (61)
whereD, g . is the operator defined by

D a, = (oo B1)ao if n=0,
2,8,00n (anﬁn+1 - anflﬁn)an it n>0,

which we call thediagonal operatorassociated witl., g and R, .

Note 1 It is possible to define a similaby, o, € End(V') associated with any ladder operatofs, and
R, by Dy, o := [Ly, Ra], Which defines the commutation relation betwégnand R,. (In particular,
Dapga = Dg-1.44.2-) Furthermore, when the two basasand b are related byb, € Kag as in
Theorem 2, then, as an operator &M Dy, 5 is the sum of a summable family,,(Ra)L}.)nen, and
therefore the commutation relation is given by

LnRa=RaLn+ Y Pu(Ra)Lp . (63)
neN

4.4 Extension to formal infinite linear combinations

4.4.1 Preliminaries: topology and duality

Let K be a field (of any characteristic). L&t be a countable-dimension&l-vector space, and :=

(en)nen be a basis oV. The vector spac& can be considered as tiegraded vector spack, :=

@ Ke,. There exists a natural decreasing filtration associatél tvis grading which is defined by

neN

V=V,= U F, (Vo) whereF,(V,) := @Kek. This filtration is separated.e., ﬂ F, (V) = (0).
neN k>n neN

Now suppose thaK has the discrete topology. The subseigV,) define a fundamental system of

neighbourhoods of zero of a HausdoKfvector topology onl’ = V, (see [12]). This (metrizable)

topology may be equivalently described in terms of an ordection. Definev, : Ve — N U {+o0} by

we@):{ T:;{neN;<v,en>¢0} :; Ziﬁ’ (64)

(62)
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forv € V. The completiori[A/e of V for this topology is canonically identified with tH&-vector space

H Ke,, - that is, the set of all familieév,, ),en With v, € Ke,, for each integer - equipped with the

neN

product topology of discrete topologies on each faiiey,. Each elemen$ of Ve may be uniquely seen

as a formal infinite linear combinatio$ = Z(S, en)en, Where(S, e, )e, = v, andS = (v, )nen (itis
neN

not difficult to prove that the family(S, e,, )e, )nen is actually summable). The topology induced\ﬁy

onV, is the same as the topology defined by the filtration. The drudwtion is extended t¥, by

i { e 200 570

for $ € V., and may be used to describe the topology of the completian. ifsStance, a sequence
(Sn)nen of formal infinite linear combinations converges to zeraiid only if'nhf;o we(Sn) = +o0sin
other terms, for every, € N there are only finitely man§ € N such that{Sy, e,) # 0. This topology
is sometimes referred to s thamal topology(see [14, 24]), and/, is then theformal completiorof the
N-graded vector spadé, := @ Ke,,.

neN

Note 2 If a := (a,)nen @andb := (b,),en are two bases of, then the isomorphisr of V' that maps
a, to b, for eachn € N is also a homeomorphism froi}, to V3, considered as spaces eqLuippeAd with
their respective filtrations. It turns out thdt may be extended to a homeomorphigrirom V, to V.
Although the two spaces are homeomorphic, we cannot caalbnidentify them. Indeed, let us consider

the sequenchk := (b, ),en defined by, := Z ax, wherea := (a,)nen IS another basis. Theh is a
k=0

basis ofl’: suppose that for some € N, we have) _ a;b; = Owitha; € K. Then) _ o; <Z ak> =0
=0 =0 k=0

which is equivalent tcjz a;)by + (Z ai)by + -+ (ap—1 + ap)an—1 + ana, = 0. Thena; = 0
1=0 =1

for everyi = 0,---,n, and{b; : ¢ = 0,--- ,n} is linearly independent. Using the classicabMus

inversion, we obtain

o b() if TLZO,
a"—{ by —by1 if n>0 (66)

which proves that’ is generated byp. Now we havelim b,, = 0 in the topology of}, , but lim b,, =

> a, in Va. (Note however thalim a,, = 0 also inV4, becausevs (a,,) = n— 1 for everyn € N\ {0},

n=0 e
and then lim wy(a,) = 4+00.) The problem is due to the fact that the order function degesn the
choice of the basis.
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deg, (P)
We now introduce théduality) pairing(.|.) : Ve x Ve — K defined by(P|S) := Z (P, en)(S,en),
n=0

for P € V, andS € V,. This pairing, also considered in [32], satisfies in patticu

. e _JOoif i#g,
(e = e =di; ={ | it 17 (67
for eachi, j € N, and more generallyP|e;) = (P, e;), (e;|S) = (S, e;) foreveryP € Vg, S € Ve.

The algebraic dual spaé&‘ of 1, is isomorphictdA/e. Indeed le? € V. and define5, := Z Len)en, €

neN

Ve. Then{(P) = (P|S¢). The linear mapping — S, is clearly one-to-one. It is also onto because for
eachS € V,, P — (P, S) is easily seen as a linear form ovér.

The topological dual spacg! of V, is isomorphic toV,. Indeed let us consider a linear continuous
form ¢ of V. Since/ is continous, for every € V, 0S) = Z(S, en)l(ey,) and the sum is convergent

n>0

in K discrete. Therefore there is an integéisuch that for every. > N, (S, e,,)¢(e,,) = 0. If we choose
S = Z en, then it means that for large enough{(e,,) = 0. ThenP, = Zf(en)e” is actually an

n>0 n>0
element ofi/, which satisfieg P,|.S) = ¢(S) for every formal infinite linear combinatiafi. Now suppose
thatP, = 0for ¢ ‘7.3/ Then for everyn € N, {(e,,) = (Pile,,) = (Py,e,) = 0. The linear form is null
on the dense subs® of 176, and, by continuityf is also equal to zero on the closure. L€ V. Then
£:= 8 — (P|S)is alinear form ori/, such that?, = P. Moreover/ is clearly continuous. In summary,
the pairing performs the following isomorphisms.

AR
/\e e 68
vV, = V. (68)
The respective isomorphisms are given by
VS — Ve (69)
and R
UV, -V, (70)
such that for everny? € V,,, S € IA/e, if £ € VS, then
(P|2(0)) = £(P) (71)
while
o~1(S)(P) = (P|S) (72)
andif¢ € V/, then
(W(O)|S) = £(S) (73)

and
U (P)(S) = (P|S) . (74)
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We may use these isomorphisms to define the natural notitraigposein this setting. Theranspose
of ¢ € End(Ve) is ¢! € End(V) such that for evenP € V. and everyS € Ve, (¢P|S) = (P|¢!S).
Actually, ¢! is defined as

ot Vo — Ve
S = ®@1(9)o9) (75)
Indeed, for everyP € V, the following holds.
(Plg'(S)) = (P|®(2(S5)0¢)
= (271(9)(e(P)) (76)
= (a(P)IS)

By duality, it is also pOSSIb|e to define a transposedos End( =) but continuity has to be taken into
account. Indeed, let € End( =) be a continuous endomorphism. We can define End(Ve) by

'p(P) :=W(U(P) o) 77)

for every P € V,. Note that since is continuous (and lineary =1 (P)o¢ € XA/e’. Then, for everyP € V,
andS € V,, we have

(Plo(9)) = ("¢(P)IS) - (78)

Indeed,

{fo(P)IS) = (w(v~ '(P)o¢)|S)
(T=1(P))(4(9)) (79)
= (P[¢(9)) -

Lemma 3 For each¢ € End(V4), ¢! is a continous endomorphism Bf. Moreover, = *(¢*). Dually,
for every continuous endomorphisiof V5, ¢ = (t¢)*.

Proof: Let ¢ € End(V.) and{S,}, be a sequence of infinite linear combinations that converges
zero. Letk € N. By definition ot the transposég®(S,,), ex) = Z(q&(ek),ei)(Sn,ei}. SincesS,, — 0,
>0

for everyi, there isN; such that for alln > N, (S,,e;) = 0. Therefore we can fin@&v,, such that
n > Ny implies (S,,,e;) = 0 for everyi < deg,(¢(ex)), and then for such, (¢*(S,),ex) = 0, so
#'(Sn) — 0, andg’ is continuous. Now let us prove that= ?(¢"). For everyP, S, we have(¢(P)|S) =
(Plgt(9)) = (t(¢")(P)|S) (the second equality is valid singé is continuous). Therefore for evetyy,
(Blei),e5) = (plei)les) = (H(@")(ei)lej) = (*(¢")(ei), ej) which is sufficient to prove the expected
equality. Finally, let¢ be a continuous endomorphism Bf. For everyP, S, one has(P|¢(S)) =
('$(P)|S) = (P|(*$)(S)), and in particular for every, (¢(S),e.) = (el@(S)) = (eil("6)"(S)) =
((*¢)!(S), e;), which proves thab(S) = (‘¢)!(S) (by definition ofl,). O

Let a andb be two bases oV. Let Ly g (resp. Ra,) be ab-relative lowering operator (respa-
relative raising operator) with coefficient sequertte= (5,,)neny With 8o = 1 (resp. a@ = (ap)nen)-
These operators are clearly continuousign(resp. onl,), and therefore extend uniquely as continuous
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endomorphisms of the completioﬁg and 17a. Their respective extensioﬁa)ﬁ andﬁa,a are precisely
defined by

Lbp(S) = (S,bn)Ligbn = > (S,bn)Bnbn1 =Y (S,bn1)Bns1bn (80)
n>0 n>1 n>0
and R
Ra,a(s) = Z<S’ an>Ra,aan = Z<S’ an>anan+1 = Z<S’ an—1>an—1an . (81)
n>0 n>0 n>1

They correspond to the operatdpsandU of [32] associated with the graded (locally finite) podgts—
by — ébg — %bg — +-- andayp — apa; — apai1az — apaiaa3 — - -
We may use the duality pairing in order to find the transposeings of bothLy, 3 and R, .

Lemma 4 Let R, ., be thea-relative raising operator with coefficient sequenee= (o, )nen. The
transpose ofR,  is the extensiolL, - to the completiori/, of thea-relative lowering operatot., |
with coefficient sequenee |:= (v, )nen Where

1 if n=0,
n { op_1 If n>0. (82)

Proof: Letn € NandS € XA/a. According to Equation (60).Ra o n|S) = an(ant1]S) = an(S, any1) =

<an| Z(S, ak+1>akak> = <an|f/a,al> (the last equality comes from Equation 80). Multiplying ot
k>0
(leftmost and rightmost) sides witP|a,,) (for someP € V,) and summing over gives the result. O

Lemmab5 Let Ly, g be theb-relative lowering operator with coefficient sequeng@e= (5, )nen. The

transposel;, 5 of Ly, g is the extensionﬁbm to V4, of theb-relative raising operatotiy, g with coeffi-
cient sequencg 1:= (Vn)nen, Where for eactn € N, v, 1= B,41.

Proof: This proof is so similar to the proof of Lemma 4, that it can batted. O

__Itis also possible to determine the transpose of the exderwithe ladder operators to the completion
Ve. Several lemmas are given below to answer this questionfift@ne does not need a proof.

Lemma 6 Let3 = (5,)nen be any sequence of element&oduch thats, = 1. We have

B=B11l. (83)
Leta = (o )nen be any sequence of element&ofWe have

a=a |l . (84)

Lemma 7 Lete = (e,)nen be a basis oV. Let3 = (8,)nen be a sequence of nonzero scalars such
that 5, = 1, anda = (ay,)nen be any sequence of nonzero scalars. Then we have

tfeﬁ = Re,ﬁT andtﬁe,a = Le,al . (85)
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Proof: SlnceLe B andRe « are continuous endomorphsms‘@fthey admit transposes which are endo-
morphisms ofl.. According to lemmas 4 and &, 5, = = Lo Bl = Leg Then,'L, B ="(R )=

R 31 (according to lemma 3). The casetcﬂea is treated in a similar way. m

4.4.2 Extension of Theorem 2 to formal infinite linear combinations

In what follows, our intention is to generalize Theorem 2heAtase of continuous endomorphisms on
formal infinite linear combinations. To this end, we suppﬂmﬂv is equipped with thé’.-weak topol-
ogy, that is, the weakest topology for which the mappidgs (P) : S € Vo (P|S) € K, defined
for a givenP € V,, are continuous. Sinck, is isomorphic toV’ (whenV is equipped with its for-
mal topology previously introduced), it is the so-calledake topology. This topology turng, into a
Hausdorff topologlcal space (witk dlscrete) It is obvious that the duality pairifd}) is separately con-
tinuous onV, x V, whereV, is discrete and/, has theV/,-weak topology. Thus, a familyS;)cr € VI
is summable whenever for evefy € Vg, the family ({(P|S;)):cr IS summable irK, and, in this case,
(P Si) =Y (PIS)).
iel i€l

Now suppose that the vector space of continuous endommpmrﬁffe has the topology of simple
convergence. (We also suppose the samé&fdi(V,), with V, equipped with the discrete topology.) In
this particular topology, each family of continuous endophﬁsms(ﬁgﬂaqsn)neN in End(ffe)N, whereg,,
is a continuous endomorphism ot for each integen, is a summable family. In order to check this,
let P € Ve andS € V.. We have'(R? ,¢n) = "¢nL? ,, € End(Ve). The family (‘¢ L7 | Jnen is
summable irEnd(V,), and we have

dege (P)

Z d)nLgal > Z ¢7IL2 041 )|S>

neN
dege(P)

= Y (9ulia (P)IS)

n=0
deg, (P) (86)

= > (PR ,6nS)
n=0
deg,e(P)

Z R 46 S)

Moreover for everyn > deg,(P),

m

<P| Z Rg,a¢ns> = < Z ¢n eal( >|S> =0. (87)

n=deg,(P) n=deg,(P)

Therefore, we obtain a summable serieXidiscrete, and so i@g,aqbn)neN.
The generalization of Theorem 2 to the case of continuousatgrs on formal infinite linear combina-
tions is given below.
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Theorem 3 Leta = (an)nen be any sequence of nonzero scalars, ahe: (5,,).en be a sequence

of nonzero scalars wittd, = 1. Let ¢ be any continuous element Eﬁd(f/e). Then there exists a
sequence of polynomials?,).en € K[x]N such thate is equal to the sum of the summable family

(Rg,mpn(Le,al))neN-

Proof: By Theorem 2}/¢ = Z Py (Re,a)Lg g (Sum of a summable family). Then, using the duality
neN
pairing, we check thap = Z R gt P (Le,a1> (sum of a summable family). a
neN

Corollary 1 Under the same assumptions as those of Theorem 3, everpwousi endomorphism €
End(V ) is equal to the sum of the summable fam}ﬁ;g P, (Le 8))nen for some polynomials sequence

(Pn)neN € K[ ]
Proof: Apply Theorem 3 with3 := « | anda := 3 1. m]

Note 3 Without difficulty we can check that the extensfagg « Of the diagonal operatOlDe Ba =

[Le.g, Ro.o] is €qual to[Le g, Re.o]- As a continuous endomorphisi g o = Z Rg o Pn (Leg)- SO

neN
the commutation rule becomes

LepReo = Reales+ ) RioPu(Lep). (88)

5 Conclusions

The idea of the commutation relatiohB — BA = I between two operatord and B (for example
the creation and annihilation operators of second-quedittheory) is fundamental to the foundations
of quantum physics. In this paper we have shown that staftorg this basic equality, calculations of
elementary operations, such as exponentiation assodigtiedjuantum dynamics and thermodynamics,
lead us immediately to traditional combinatorial concequtsh as Stirling numbers, and generalizations
thereof, which we describe. We give explicit forms for theegrarameter groups generated by the ex-
ponentials of such operators - crucial in quantum calcwhat- in certain restricted cases; namely, those
containing one-annihilator only (corresponding to formsmcalled Sheffer-type).

In Physics, the creation and annihilation operators acpaces of numbers of particles, moving from
one state to another and so are considered as a special foaddsr operator We generalize this
concept also, by considering endomorphisms in linear spadeich mathematically correspond to these
ideas. In particular, we note that infinite-dimensionalteespace seems to be a rather natural setting to
deal with ladder operators. Any integer-indexed basis nmayige the setting in a rather obvious way for
generalized ladder operators that can be either lowerimgil{dation) or raising (creation), and without
any particular commutation rule. We prove that given twalEdoperators, one lowering, the other one
raising, associated with possibly distinct bases (witrsdmae first rank), it is possible to expand any linear
endomorphism in terms of iterates of the given ladder opesat
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