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1 Introduction
Combinatorics has a long history which can be traced back to the times when Greek, Chinese and Persian
mathematicians (to name but a few) began with this particular and fruitful blend of configuration and
counting.

More recently, due to the great masters of the past (Euler, Bernouilli etc ...), this “art of counting”
avoided the fate of becoming a “collections of recipes” and,under the impetus of the modern fields
of Algorithms and Computer Sciences, acquired itsLetters Patentand so pervaded many domains of
Classical Sciences, such as Mathematics and Physics.

In return, the sciences which interact with Combinatorics can transmit to the latter some of their art.
This is the case of the emerging field of “Combinatorial Physics” which has the potential of revitalizing
mathematical features that have been familiar to physicists for over a century, such as tensor calculus,
structure constants, operator calculus, infinite matrices, and so on.

In this paper we describe one aspect of this interaction; namely, how well-known concepts in quan-
tum physics such as creation and annihilation operators, and ladder operators, translate to combinatorial
”counting” ideas as exemplified by Stirling numbers, which may find their expression in terms of infinite
matrices. Such an infinite matrix is more generally to be thought of as a (linear) transformation from a
linear space to itself, that is, a linear endomorphism. Thisis also a rigorous context in which to describe
the traditionalladder operatorsof physics.

The paper is organized as follows: We start by introducing the well-known Heisenberg-Weyl associative
algebra generated by the creation and annihilation operators of second-quantized physics; this is a graded
algebra. Consideration of exponentials of elements of thisalgebra leads one to a generalization of the
classical combinatorial Stirling numbers, as well as one-parameter groups - crucial in quantum physics.
Arrays of such numbers lead us to the algebra of row-finite infinite matrices. We then consider linear
endomorphisms as a natural sequel to these matrices, and their representations. We relate these to a
generalization of the idea of ladder operators, and conclude by giving some results concerning the relation
between endomorphisms and ladder operators.
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2 The Heisenberg-Weyl algebra
2.1 Formal definition

In Quantum Physics [9, 10, 23] and more recently in Combinatorics [22, 32] and Combinatorial Physics
[5], one often encounters pairs of operators(A,B) such that

AB −BA = I (1)

whereI stands for the identity in some associative algebra. The appearance of this relation in 1925 at
once forced Born, Heisenberg and Jordan to the consideration of infinite matrices. Indeed, it can be
shown that relation (1) cannot be represented by (finite) matrices with elements in a field of characteristic
zero (simply take the trace of each side). The first choice of faithful representation for (1) is with (densely
defined) unbounded operators in a Hilbert space (traditional Fock space) or with continuous operators in
a Fŕechet space [13, 19, 34].
One can formally define the Heisenberg-Weyl algebra by

HWC = C〈b, b+〉/JHW (2)

whereC〈b, b+〉 = C [{b, b+}∗] is the algebra of the free monoid{b, b+}∗ [3, 4, 27] i. e. the algebra of
non-commutative polynomials; andJHW is the two-sided ideal generated by(bb+ − b+b− 1). Note that
this definition, together with the arrow

s : C〈b, b+〉 → HWC (3)

clears up all the ambiguities concerning normal forms (Normal ordering [31] and the so-called “double
dot” operation) which are traditional in Quantum Physics. From now on, we seta = s(b) anda+ = s(b+).
In general, by thenormal ordering[6] of a general expressionF (a†, a) we meanF (n)(a†, a) which is
obtained by moving all the annihilation operatorsa to the rightusingthe commutation relation of Eq.(1).
This procedure yields an operator whose action is equivalent to the original one,i.e. F (n)(a†, a) =
F (a†, a) as operators, although the form (which lives inC〈〈b, b+〉〉 or C〈b, b+〉 ) of the expressions in
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terms ofa anda† may be completely different. From (3), it is an easy exerciseto prove that
(
(a+)iaj

)

i,j∈N

is a basis ofHWC (basis of the normal order).
On the other hand thedouble dotoperation:F (a†, a) : consists of applying the same ordering procedure
but without taking into account the commutation relation of Eq.(1),i.e. moving all annihilation operators
a to the right as if they commuted with the creation operatorsa†. The structure constants are given in [5]
and can be obtained from the following formula(i)

(a+)i1aj1(a+)i2aj2 =
∑

k≥0

k!

(
j1
k

)(
j2
k

)
(a+)i1+i2−kaj1+j2−k . (4)

2.2 Grading of the Heisenberg-Weyl algebra

Setting, fore ∈ Z

HW
(e)
C

= spanC((a+)iaj)i−j=e (5)

one has
HWC =

⊕

e∈Z

HW
(e)
C

andHW (e1)
C

HW
(e2)
C
⊂ HW

(e1+e2)
C

(6)

for all e1, e2 ∈ Z. This natural grading makesHWC a Z-graded algebra. One often uses the following
(faithful) representationρBF by operators onC[[x]].






ρBF (a) = d
dx

ρBF (a+) = (S 7→ xS) .
(7)

This representation, known as the Bargmann-Fock representation is graded for the preceding grading as,
when restricted toC[x], ρBF (a) is of degree−1 andρBF (a+) of degree1.

In general, and more concretely, we may associate many important operators of quantum physics with
elements ofHWC. In particular, an elementΩ ∈ HWC being given, one would like to consider the
evolution group [15] (

eλΩ
)

λ∈R

.

For example, such one-parameter groups are important in quantum dynamics, where the parameterλ is
the timet; or in quantum statistical mechanics, whereλ is the negative inverse temperature.

Some questions which arise are

Q1) Is this group well defined ? through which representation? what is the domain ?
Q2) Which combinatorial methods may be extracted from knowledge of this group ?

Our first task is to get the normal order of the powersΩn.

(i) This formula can also easily be derived from the “rook” equivalent of Wick’s theorem [35]. Note that the summation indexk

ranges in the interval[0..min(j1, i2)].
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3 Combinatorics of infinite matrices

3.1 Homogeneous operators and generalized Stirling numbers

Before defining representations (or realizations) of the one-parameter group
(
eλΩ
)

λ∈R

, one can consider

the problem of normal ordering the powers ofΩ

N (Ωn) =
∑

i,j∈N

α(n, i, j)(a+)iaj . (8)

In general this is a three-parameter problem but, taking advantage of the preceding gradation, one can
start with a homogeneous operator of degree (or excess)e

Ω =
∑

i−j=e

α(i, j)(a+)iaj (9)

and remark that

N (Ωn) =






(a+)ne
∑∞

k=0 SΩ(n, k)(a+)kak ; if e ≥ 0

(∑∞
k=0 SΩ(n, k)(a+)kak

)
an|e| ; if e < 0

(10)

which was used as the definition of “Generalized Stirling Numbers” as introduced in [7, 8] for strings
and generalized to homogeneous operators in [19] (see also [28]). These numbers recently attracted the
attention of Combinatorialists [20] who found it a nontrivial generalization of numbers known for some
200 years [2].
The reason for the nameStirling Numberslies in the first example below, following which we give two
more examples.

ForΩ = a+a, one gets the usual matrix of Stirling numbers of the second kind.





1 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 · · ·
0 1 1 0 0 0 0 · · ·
0 1 3 1 0 0 0 · · ·
0 1 7 6 1 0 0 · · ·
0 1 15 25 10 1 0 · · ·
0 1 31 90 65 15 1 · · ·
...

...
...

...
...

...
...

. . .

(11)
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ForΩ = a+aa+, we have





1 0 0 0 0 0 0 · · ·
1 1 0 0 0 0 0 · · ·
2 4 1 0 0 0 0 · · ·
6 18 9 1 0 0 0 · · ·

24 96 72 16 1 0 0 · · ·
120 600 600 200 25 1 0 · · ·
720 4320 5400 2400 450 36 1 · · ·

...
...

...
...

...
...

...
.. .

(12)

ForΩ = a+aaa+a+, one gets





1 0 0 0 0 0 0 0 0 · · ·
2 4 1 0 0 0 0 0 0 · · ·

12 60 54 14 1 0 0 0 0 · · ·
144 1296 2232 1296 306 30 1 0 0 · · ·

2880 40320 109440 105120 45000 9504 1016 52 1 · · ·
...

...
...

...
...

...
...

...
...

. . .

(13)

In any case, the matrix(S(n, k))n,k∈N has all its rows(S(n, k))k∈N finitely supported. We call these
matrices “row-finite” [19, 29].

We will see in the next paragraph that the “row-finite” matrices form a very important algebra which
we denote byRF(N; C) in the sequel.

3.2 An excursion to topology: transformation of sequences

Let d = (dn)n∈N be a set of non-zero complex denominators. To each row-finitematrix (M [n, k])n,k∈N,

one can associate an operatorΦM ∈ End(C[[x]]) such that the image off =
∑

k∈N
ak

x
k

dk
∈ C[[x]] is

defined by

ΦM (f) =
∑

n∈N

bn
x

n

dn

; with bn =
∑

k∈N

M [n, k]ak . (14)

Note that if we endowC[[x]] with the Fŕechet topology of simple convergence of the coefficients (this
structure is sometimes called the “Treves topology”, see [34]) i.e., defined by the seminorms

pn(f) := |an|; with f =
∑

k∈N

akx
k (15)

with eachΦM continuous; then the following proposition states that there is no other case:

Proposition 1 The correspondenceM → ΦM fromRF(N; C) toL(C[[x]]) (continuous endomorphisms)
is one-to-one and linear. MoreoverΦMN = ΦM ◦ ΦN .
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Proof: The proof of this proposition is not difficult and left to the reader. 2

As an application of the preceding, one can remark that, through the Bargmann-Fock representation
ρBF , the one parameter groupeλΩ always makes sense for homogeneous operators (as defined in Eq. (9))
since the matrixφ−1(ρBF (Ω))(ii) is

• strictly upper-triangular whene < 0

• diagonal whene = 0

• strictly lower-triangular whene > 0 .

TheneλΩ is meaningful as (a group of) operators on appropriate spaces.

3.3 One-parameter groups and Stirling matrices
In this paragraph we focus on the combinatorics of operatorscontaining at most one annihilator (in this
contextd/dx) so thatρBF (Ω) is of the form

q(x)
d

dx
+ v(x) (16)

(sum of a scalar field and a true vector field). One-parameter groups generated by these operators can, of
course, be integrated using PDE [15] but, here we give a “congugacy trick” which aims at proving that an
operator of the type (16) is conjugated to the vector fieldq(x) d

dx
.

So, to computeeλ(q(x) d
dx

+v(x))[f ], one can use the following procedure (q andv are supposed to be at
least continuous). We first takev ≡ 0 (vector field case)

• if q ≡ 0 (andv ≡ 0) theneλρBF (Ω)[f ] = f (trivial action) ;

• if q 6≡ 0 then choose an open intervalI 6= ∅ in which q never vanishes andx0 ∈ I ;

• for x ∈ I set

F (x) =

∫ x

x0

dt

q(t)
(17)

and setJ = F (I) (open interval). ThenF : I → J is one-to-one (asF is strictly monotonic) ;

• for suitable(x, λ), set
sλ(x) = F−1(F (x) + λ). (18)

sλ is a deformation of the identity since(x, λ) 7→ sλ(x) is continuous (and even of classC1) on its
domain ands0(x) = x ;

• for small values ofλ , eλ(q(x) d
dx

) coincides with the substitutionf 7→ f ◦ sλ. To see this, it is
sufficient to remark that the exponential of a derivation (such asλ(q(x) d

dx
)) is an automorphism,

which means a substitution in the (test) function spaces under consideration.

(ii) These matrices are different from the “Generalized Stirlingmatrices” defined by Eq. (10). Their non-zro elements are supported
by a line parallel to the diagonal.
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Now, one can indicate how to integrate the one-parameter groupeλ(q(x) d
dx

+v(x)) for generalv. (I, F, sλ

are as above).

• On I, set

u(x) = e
∫

x

x0

v(t)
q(t)

dt
; (19)

• one checks easily that

ρBF (Ω) = (q(x)
d

dx
+ v(x)) =

1

u
(q(x)

d

dx
)u (20)

in the sense that, on each function in its domainρBF (Ω) operates as the composition of

– multiplication off by u

– action of the vector field(q(x) d
dx

) (now onuf )

– division byu ;

• then, using the fact that exponentiation commutes with conjugacy, the exponential reads

eλ(q(x) d
dx

+v(x)) = u−1eλ(q(x) d
dx

)u . (21)

Using the preceding definitions, the action now takes the form

Uλ[f ](x) = eλ(q(x) d
dx

+v(x))[f ](x) =
u(sλ(x))

u(x)
f(sλ(x)) . (22)

One can checka posteriorithe validity of this procedure, using a tangent vector technique as follows

• check that, for small values ofλ, θ, one has

Uλ ◦ Uθ = Uλ+θ ; (23)

• check that
d

dλ

∣∣∣
λ=0

Uλ[f ](x) = (q(x)
d

dx
+ v(x))f(x) . (24)

Remark 1 Transformations of type
f → g.(f ◦ s) (25)

are calledsubstitutions with prefunctionsin combinatorial physics[19]. It can be shown that under nice
conditions (g, s analytic in a neighbourhood of the origin,g(0) = 1, s = x + · · · ) these transforma-
tions form a (compositional) Lie group (infinite dimensional of Fréchet type, see [19]). The infinitesimal
generators of these transformations are precisely of the form q(x) d

dx
+ v(x).

We now give an example of integration of the one-parameter groupeλρBF (Ω) for

Ω = (a+)2aa+ + a+a(a+)2. (26)
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Example 1 One has the conjugated form

ρBF (Ω) = x2 d

dx
x+ x

d

dx
x2 = x−

3
2 (2x3 d

dx
)x

3
2 . (27)

Using the procedure described above, one obtains the one-parameter group of transformationsUλ

Uλ[f ](x) = 4

√
1

(1− 4λx2)3
× f(

√
x2

1− 4λx2
) . (28)

The reader is invited to check that, for suitably small values of the parameters
(i.e. |λ|+ |θ| < 1

4x2 ≤ +∞), Uλ ◦ Uθ = Uλ+θ by direct computation.

Once integrated, the one-parameter groupUλ reveals the Generalized Stirling matrix as expressed by
the following result.

Proposition 2 With the definitions introduced ande ≥ 0, the two following conditions are equivalent
(wheref → Uλ[f ] is the one-parameter groupexp(λρBF (Ω)).
i) ∑

n,k≥0

SΩ(n, k)
xn

n!
yk = g(x)eyφ(x) (29)

ii)
Uλ[f ](x) = g(λxe)f(x(1 + φ(λxe))) (30)

Proof: One first has the following equality between continuous operators

Uλ =
∑

n,k≥0

SΩ(n, k)
λn

n!
xnexk(

d

dx
)k. (31)

Assuming (i), let us check (ii) forf a monomial (i. e. choose the test functionsf = xj , for j = 0, 1, · · · )

Uλ(xj) =
∑

n≥0

j∑

k=0

SΩ(n, k)
(λxe)n

n!

j!

(j − k)!
xj =

= xj

j∑

k=0

(
[yk]g(λxe)eyφ(λxe)

) j!

(j − k)!
=

= g(λxe)xj

j∑

k=0

(
k
j

)
φ(λxe)k = g(λxe)

(
x
(
1 + φ(λxe)

))j

. (32)

Now as the two members of (30) are continuous and linear inf and the set of monomials is total [13] in
the space of formal power series endowed with the Treves topology(iii) , we have (ii).
Conversely, if one assumes (ii), one has

Uλ(eyx) = g(λxe)eyx(1+φ(λxe)) (33)

(iii) The usual - ultrametric - topology would not be enough fore = 0.
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and, from (32), one gets

∑

n,k≥0

SΩ(n, k)
(λxe)n

n!
(xy)k = g(λxe)eyxφ(λxe). (34)

A legitimate change of variables (λxe → x ; xy → y) gives (i). 2

Example 1 continued
WithΩ = (a+)2aa+ + a+a(a+)2, one has the one-parameter group

Uλ[f ](x) = 4

√
1

(1− 4λx2)3
× f(

√
x2

1− 4λx2
) . (35)

Then, applying the preceding correspondence, one gets

∑

n,k≥0

SΩ(n, k)
xn

n!
yk = 4

√
1

(1− 4x)3
e
y(
√

1
(1−4x)

−1)
= 4

√
1

(1− 4x)3
ey(

∑
n≥1 cnxn) (36)

wherecn =

(
2n
n

)
are the central binomial coefficients.

4 Representation of endomorphisms in more general spaces
4.1 Notation
ConsiderK a (commutative) field andK[x] the K-vector space of polynomials in the indeterminatex.
Denote byEnd(V ) the algebra of linear endomorphisms of anyK-vector spaceV . If φ andψ are both
elements ofEnd(V ), then withφψ denoting the usual composition “φ ◦ ψ” of linear mappings, we have
for any integern

φn :=






IdV if n = 0 ,
φ ◦ · · · ◦ φ︸ ︷︷ ︸

n times

if n > 0 (37)

whereIdV is the identity mapping ofV . Let e := (ei)i∈I be a basis ofV (V which we assume does not
reduce to(0)). We denote the decomposition of any vectorv ∈ V with respect toe by

∑

i∈I

〈v, ei〉ei (38)

where(iv) 〈v, ei〉 is the coefficient of the projection ofv onto the subspaceKei generated byei in V .
Obviously, all but a finite number of the coefficients〈v, ei〉 are equal to zero. If(I,≤) is a linearly
ordered (nonempty) set bounded from below (with0̂ as its minimum(v)), and, ifv 6= 0, then thedegreeof
v (with respect toe) is defined by

deg
e
(v) := max{i ∈ I : 〈v, ei〉 6= 0} (39)

(iv) The notation “〈v, w〉” is commonly referred to as a “Dirac bracket”. It was successfully used (for the same reason of duality) by
Scḧutzenberger to develop his theory of automata [3, 4, 21].

(v) We follow the notation of [33] for the lowest element.
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and
deg

e
(0) := −∞ (40)

where−∞ 6∈ I, and the relation−∞ < i for eachi ∈ I extends the order ofI to I := I ∪ {−∞}. If
v 6= 0, then the nonempty finite set{i ∈ I : 〈v, ei〉 6= 0} admits a greatest element, sinceI is totally
ordered, so thatdeg

e
(v) is well-defined. Thus, the following equality holds (for anyv 6= 0)

v =
∑

0̂≤i≤deg
e
(v)

〈v, ei〉ei (41)

with 〈v, edeg
e
(v)〉 6= 0. In particular, takingx := (xn)n≥0 as a basis ofK[x], any nonzero polynomialP

may be written as the sum

P =

deg(P )∑

n=0

〈P, xn〉xn (42)

wheredeg(P ) is the usual degree ofP .

4.2 Review of the classical result
It has been known since the paper of Pincherle and Amaldi [30]that, for a fieldK of characteristic zero,
any linear endomorphismφ ∈ End(K[x]) may be expressed as the sum of a converging series in the
operatorX of multiplication by the variablex and in the (formal) derivative (of polynomials)D. In [26]
(see also [16] for some generalizations) Kurbanov and Maksimov give an explicit formula - recalled below
- for this sum.

Theorem 1 ([26]) Suppose thatK is a field of characteristic zero. Letφ ∈ End(K[x]). Thenφ is the
sum of the summable series (in the topology of simple convergence onEnd(K[x]) with K[x] discrete)
+∞∑

k=0

Pk(X)Dk where(Pk(x))k∈N is a sequence of polynomials which satisfies the following recursion

equation:
P0(x) = φ(1) ,

Pn+1(x) = φ(
x

n+1

(n+ 1)!
)−

n∑

k=0

Pk(x)
x

n+1−k

(n+ 1− k)!
.

(43)

In what follows, we generalize this result to anyK-vector space with a countable basis using a pair of
rather general ladder operators instead of the usual ones, namelyX andD. The basic idea is to use only
those operator properties which make possible an expansionsimilar to the classical case.

4.3 Endomorphism expansion in terms of ladder operators
From now on, except for Example 2, the fieldK is not assumed to be of characteristic zero. Let us consider
a K-vector spaceV of countable dimension. Lete := (en)n∈N be an algebraic basis for this space. We
can define two kinds ofladder operatorswith respect toe, namely, alowering operatorLe ∈ End(V ),
by {

Lee0 = 0 ,
Leen+1 = en

(44)
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and, araising operatorRe ∈ End(V ), by

Reen = en+1 . (45)

Such operators were discussed by Katriel and Duchamp [25] aswell as Dubin, Hennings and Solomon
[17, 18] in a more general context, and are similar to the creation and annihilation operators acting on an
interacting Fock space of Accardi and Bożejko [1]. The operatorsLe andRe may also be regarded as the
operatorsD andU described by Fomin in [22], associated with the oriented graded graphe0 ← e1 ←
e2 ← · · · ande0 → e1 → e2 → · · · .

Definition 1 LetP ∈ K[x] andu := (un)n∈N be a sequence of elements ofV . We defineP (u) ∈ V by

P (u) :=
∑

n≥0

〈P, xn〉un =

deg(P )∑

n=0

〈P, xn〉un . (46)

Lemma 1 Lete = (en)n∈N be a basis ofV . The mapping

Φe : K[x] → V
P 7→ P (e)

(47)

is a linear isomorphism.

Proof: Straightforward. 2

Lemma 2 Let e = (en)n∈N be a basis ofV andRe be the raising operator associated withe. For any

polynomialP ∈ K[x] we can define the operatorP (Re) :=
∑

n≥0

〈P, xn〉Rn
e
. Then we have

P (Re)e0 = P (e) , (48)

thus
Rn

e
e0 = en . (49)

Proof: Omitted. 2

Now suppose thatV is discrete (as isK) andEnd(V ), as a subspace ofV V , is endowed with the topol-
ogy of compact convergence; that is, in this case, the topology of simple convergence (since the compact
subsets of discreteV are its finite subsets). As a result,End(V ) becomes a complete topologicalK-vector
space (and even a complete topologicalK-algebra). Using this topology we may consider summable fam-
ilies of operators onV .

We recall here some basics about summability in a general setting. LetG be a Hausdorff commutative
group,(gi)i∈I a family of elements ofG. An elementg ∈ G is thesumof (gi)i∈I if, and only if, for each
neighbourhoodW of g there exists a finite subsetJW of I such that

∑

j∈J

gj ∈W (50)
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for every finite subsetJ ⊂ I containingJW . The sumg of a summable family(gi)i∈I of elements ofG
is usually denoted by ∑

i∈I

gi . (51)

It is well-known that if (gi)i∈I is a summable family with sumg, then for any permutationσ of I, g
is also the sum of(gσ(i))i∈I . WhenG is complete, the following condition (Cauchy) is equivalent to
summability. A family(gi)i∈I of G satisfiesCauchy’s conditionif, and only if, for every neighbourhood
W of zero there is a finite subsetJW of I such that

∑

k∈K

gk ∈W (52)

for every finite subsetK of A disjoint fromJW . Many other properties and results about summable fam-
ilies may be found in [11].

For instance, lete = (en)n∈N be a basis ofV . Then for any sequence(φn)∞n=0 ∈ End(K[x])N of ele-
ments ofEnd(V ), the family(φnL

n
e
)n∈N is easily shown to be summable. Due to the choice of topology,

the fact thate is a basis ofV , and by general properties of summability, it is sufficient to prove that, for
eachk ∈ N, the family((φnL

n
e
)(ek))n∈N is summable inV . SinceV is discrete and therefore complete,

it is sufficient to check that Cauchy’s condition is satisfied. We may takeW := {0} as a neighborhood of

zero inV . Let JW := {0, · · · , k}. Because for everyn > k, Ln
e
(ek) = 0, then

∑

n∈J

(φnL
n
e
)(ek)) = 0

wheneverJ is a finite subset ofI such thatJ ∩JW = ∅. In what follows, the sum of a family(φnL
n
e
)n∈N

is the element ofEnd(V ) denoted by
∑

n∈N

φnL
n
e

where for every nonzerov ∈ V ,

(
∑

n∈N

φnL
n
e

)
(v) =

deg
e
(v)∑

n=0

φn(Ln
e
(v)) . (53)

We are now in a position to establish the main result concerning the expansion of any operator onV in
terms of ladder operators.

Theorem 2 (Endomorphism expansion in ladder operators)Let a = (an)n∈N andb = (bn)n∈N be
two bases ofV such thatb0 ∈ Ka0; that is, there exists a nonzero scalarλ := 〈b0, a0〉 such thatλa0 = b0.
Then eachφ ∈ End(V ) is the sum of the summable family(Pn(Ra)L

n
b
)n∈N where(Pn)n∈N ∈ K[x]N is a

sequence of polynomials that satisfies the following recursion equation





λP0(a) = φ(b0) ,

λPn+1(a) = φ(bn+1)−
n∑

k=0

Pk(Ra)bn+1−k .
(54)

(Note that due to Lemma 1 , for eachn ∈ N, Pn(a) uniquely definesPn ∈ K[x].)

Proof: Sinceb is a basis, it is sufficient to prove that for eachn ∈ N,

φ(bn) =

(
∑

k∈N

Pk(Ra)L
k
b

)
(bn) . (55)
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1. Casen = 0:
(
∑

k∈N

Pk(Ra)L
k
b

)
(b0) = P0(Ra)(b0)

= λP0(Ra)(a0)
= λP0(a) (according to Lemma 2)
= φ(b0) (by assumption) .

(56)

2. Casen+ 1, n ∈ N:
(
∑

k∈N

Pk(Ra)L
k
b

)
(bn+1) =

n+1∑

k=0

Pk(Ra)bn+1−k

= Pn+1(Ra)(b0) +

n∑

k=0

Pk(Ra)bn+1−k

= λPn+1(Ra)(a0) +

n∑

k=0

Pk(Ra)bn+1−k

= λPn+1(a) +

n∑

k=0

Pk(Ra)bn+1−k

= φ(bn+1) .

(57)

2

Example 2 Suppose thatK is a field of characteristic zero(vi) . ConsiderV := K[x], an := x
n and

bn := x
n

n! . ThereforeRa = X, the operator of multiplication byx; and,Lb = D, the formal derivative of
polynomials, which are the data of the classical result recalled in subsect. 4.2. In Example 2, we consider
the functionalǫ : K[x]→ K ⊆ K[x] that maps a polynomial to the sum of its coefficients. From Theorem 2,

we know thatǫ =
∑

n≥0

Pn(X)Dn and that

Pn+1(x) =
1

(n+ 1)!
−

n∑

k=0

Pk(x)
x

n+1−k

(n+ 1− k)!
. (58)

We can show by induction thatPn(x) = 1
n! (1− x)n, and then easily verify thatǫ =

∑

n≥0

1

n!
(1−X)nDn

on the basis{xk}k. Alternatively, we see that this operator isǫ = eyD|y=1−x : xn 7→ (x + y)n|y=1−x.

Let a = (an)n∈N andb = (bn)n∈N be two bases ofV . Let us consider the following operators

Lb,βbn =

{
0 if n = 0 ,
βnbn−1 if n > 0 ,

(59)

(vi) The assumption on the characteristic ofK is needed here because we consider denominators of the formn!.



Ladder Operators and Endomorphisms in Combinatorial Physics 15

and
Ra,αan = αnan+1 (60)

whereβ := (βn)n∈N, with β0 := 1, andα := (αn)n∈N are sequences of nonzero scalars. These
operators, which we may call respectivelyb-relative lowering operator with coefficient sequenceβ and
a-relative raising operator with coefficient sequenceα, seem to be straightforward generalizations of the
ladder operators as previously introduced; however, this is not entirely the case. Actually,Lb,β andRa,α

are respectively equal to some “usual” ladder operatorsLβ−1·b andRα·a whereβ−1 · b := (b′n)n∈N

with b′n =

(
n∏

i=0

βi

)−1

bn (resp. α · a = (a′n)n∈N wherea′n = (
n−1∏

i=0

αi)an for n > 0, anda′0 = a0).

If b′0 ∈ Ka′0 (or, equivalently, ifb0 ∈ Ka0, becauseb′0 = b0
β0

= b0 anda′0 = a0), then we can apply

Theorem 2 with the operatorsLb,β andRa,α, just by replacinga by α · a, b by β−1 · b. Whena = b,
we say thatLa,β andRa,α area-relative ladder operatorswith coefficientsβ andα respectively. Such a
pair of operators - used in the following subsection - satisfy the rather general commutation rule

Da,β,α := [La,β, Ra,α] = La,βRa,α −Ra,αLa,β (61)

whereDa,β,α is the operator defined by

Da,β,αan =

{
(α0β1)a0 if n = 0 ,
(αnβn+1 − αn−1βn)an if n > 0 ,

(62)

which we call thediagonal operatorassociated withLa,β andRa,α.

Note 1 It is possible to define a similarDb,a ∈ End(V ) associated with any ladder operatorsLb and
Ra byDb,a := [Lb, Ra], which defines the commutation relation betweenLb andRa. (In particular,
Da,β,α = Dβ−1·a,α·a.) Furthermore, when the two basesa and b are related byb0 ∈ Ka0 as in
Theorem 2, then, as an operator onV , Db,a is the sum of a summable family(Pn(Ra)L

n
b
)n∈N, and

therefore the commutation relation is given by

LbRa = RaLb +
∑

n∈N

Pn(Ra)L
n
b
. (63)

4.4 Extension to formal infinite linear combinations

4.4.1 Preliminaries: topology and duality
Let K be a field (of any characteristic). LetV be a countable-dimensionalK-vector space, ande :=
(en)n∈N be a basis ofV . The vector spaceV can be considered as theN-graded vector spaceVe :=⊕

n∈N

Ken. There exists a natural decreasing filtration associated with this grading which is defined by

V = Ve =
⋃

n∈N

Fn(Ve) whereFn(Ve) :=
⊕

k≥n

Kek. This filtration is separated,i.e.,
⋂

n∈N

Fn(Ve) = (0).

Now suppose thatK has the discrete topology. The subsetsFn(Ve) define a fundamental system of
neighbourhoods of zero of a HausdorffK-vector topology onV = Ve (see [12]). This (metrizable)
topology may be equivalently described in terms of an order function. Defineωe : Ve → N ∪ {+∞} by

ωe(v) =

{
min{n ∈ N : 〈v, en〉 6= 0} if v 6= 0 ,
+∞ if v = 0

(64)
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for v ∈ V . The completion̂Ve of Ve for this topology is canonically identified with theK-vector space∏

n∈N

Ken - that is, the set of all families(vn)n∈N with vn ∈ Ken for each integern - equipped with the

product topology of discrete topologies on each factorKen. Each elementS of V̂e may be uniquely seen
as a formal infinite linear combinationS =

∑

n∈N

〈S, en〉en, where〈S, en〉en = vn andS = (vn)n∈N (it is

not difficult to prove that the family(〈S, en〉en)n∈N is actually summable). The topology induced byV̂e

onVe is the same as the topology defined by the filtration. The orderfunction is extended tôVe by

ωe(S) =

{
min{n ∈ N : 〈S, en〉 6= 0} if S 6= 0 ,
+∞ if S = 0

(65)

for S ∈ V̂e, and may be used to describe the topology of the completion. For instance, a sequence
(Sn)n∈N of formal infinite linear combinations converges to zero if,and only if, lim

n→∞
ωe(Sn) = +∞;in

other terms, for everyn ∈ N there are only finitely manyk ∈ N such that〈Sk, en〉 6= 0. This topology
is sometimes referred to s theformal topology(see [14, 24]), and,̂Ve is then theformal completionof the
N-graded vector spaceVe :=

⊕

n∈N

Ken.

Note 2 If a := (an)n∈N andb := (bn)n∈N are two bases ofV , then the isomorphismΦ of V that maps
an to bn for eachn ∈ N is also a homeomorphism fromVa to Vb considered as spaces equipped with
their respective filtrations. It turns out thatΦ may be extended to a homeomorphismΦ̂ from V̂a to V̂b.
Although the two spaces are homeomorphic, we cannot canonically identify them. Indeed, let us consider

the sequenceb := (bn)n∈N defined bybn :=

n∑

k=0

ak, wherea := (an)n∈N is another basis. Thenb is a

basis ofV : suppose that for somen ∈ N, we have
n∑

i=0

αibi = 0 withαi ∈ K. Then
n∑

i=0

αi

(
i∑

k=0

ak

)
= 0

which is equivalent to(
n∑

i=0

αi)b0 + (

n∑

i=1

αi)b1 + · · · + (αn−1 + αn)an−1 + αnan = 0. Thenαi = 0

for everyi = 0, · · · , n, and{bi : i = 0, · · · , n} is linearly independent. Using the classical Möbius
inversion, we obtain

an =

{
b0 if n = 0 ,
bn − bn−1 if n > 0

(66)

which proves thatV is generated byb. Now we havelim
n→∞

bn = 0 in the topology ofVb , but lim
n→∞

bn =
∞∑

n=0

an in V̂a. (Note however thatlim
n→∞

an = 0 also inVb becauseωb(an) = n−1 for everyn ∈ N\{0},

and then lim
n→∞

ωb(an) = +∞.) The problem is due to the fact that the order function depends on the

choice of the basis.
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We now introduce the(duality) pairing〈.|.〉 : Ve×V̂e → K defined by〈P |S〉 :=

deg
e
(P )∑

n=0

〈P, en〉〈S, en〉,

for P ∈ Ve andS ∈ V̂e. This pairing, also considered in [32], satisfies in particular

〈ei|ej〉 = 〈ei, ej〉 = δi,j =

{
0 if i 6= j ,
1 if i = j

(67)

for eachi, j ∈ N, and more generally〈P |ej〉 = 〈P, ej〉, 〈ei|S〉 = 〈S, ei〉 for everyP ∈ Ve, S ∈ V̂e.

The algebraic dual spaceV ∗
e

of Ve is isomorphic tôVe. Indeed letℓ ∈ V ∗
e

and defineSℓ :=
∑

n∈N

ℓ(en)en ∈

V̂e. Thenℓ(P ) = 〈P |Sℓ〉. The linear mappingℓ 7→ Sℓ is clearly one-to-one. It is also onto because for
eachS ∈ V̂e, P 7→ 〈P, S〉 is easily seen as a linear form overVe.

The topological dual spacêV ′
e

of V̂e is isomorphic toVe. Indeed let us consider a linear continuous

form ℓ of V̂e. Sinceℓ is continous, for everyS ∈ V̂e, ℓ(S) =
∑

n≥0

〈S, en〉ℓ(en) and the sum is convergent

in K discrete. Therefore there is an integerN such that for everyn ≥ N , 〈S, en〉ℓ(en) = 0. If we choose

S =
∑

n≥0

en, then it means that forn large enough,ℓ(en) = 0. ThenPℓ =
∑

n≥0

ℓ(en)en is actually an

element ofVe which satisfies〈Pℓ|S〉 = ℓ(S) for every formal infinite linear combinationS. Now suppose
thatPℓ = 0 for ℓ ∈ V̂ ′

e
. Then for everyn ∈ N, ℓ(en) = 〈Pℓ|en〉 = 〈Pℓ, en〉 = 0. The linear form is null

on the dense subsetVe of V̂e, and, by continuity,ℓ is also equal to zero on the closure. LetP ∈ Ve. Then
ℓ := S 7→ 〈P |S〉 is a linear form on̂Ve such thatPℓ = P . Moreover,ℓ is clearly continuous. In summary,
the pairing performs the following isomorphisms.

V ∗
e
∼= V̂e ,

V̂ ′
e
∼= Ve .

(68)

The respective isomorphisms are given by

Φ : V ∗
e
→ V̂e (69)

and
Ψ : V̂ ′

e
→ Ve (70)

such that for everyP ∈ Ve, S ∈ V̂e, if ℓ ∈ V ∗
e

, then

〈P |Φ(ℓ)〉 = ℓ(P ) (71)

while
Φ−1(S)(P ) = 〈P |S〉 (72)

and if ℓ ∈ V̂ ′
e
, then

〈Ψ(ℓ)|S〉 = ℓ(S) (73)

and
Ψ−1(P )(S) = 〈P |S〉 . (74)
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We may use these isomorphisms to define the natural notion oftransposein this setting. Thetranspose
of φ ∈ End(Ve) is φt ∈ End(V̂ ∗

e
) such that for everyP ∈ Ve and everyS ∈ V̂e, 〈φP |S〉 = 〈P |φtS〉.

Actually,φt is defined as

φt : V̂e → V̂e

S 7→ Φ(Φ−1(S) ◦ φ) .
(75)

Indeed, for everyP ∈ Ve, the following holds.

〈P |φt(S)〉 = 〈P |Φ(Φ−1(S) ◦ φ〉
= (Φ−1(S))(φ(P ))
= 〈φ(P )|S〉 .

(76)

By duality, it is also possible to define a transpose forφ ∈ End(V̂e) but continuity has to be taken into
account. Indeed, letφ ∈ End(V̂e) be a continuous endomorphism. We can definetφ ∈ End(Ve) by

tφ(P ) := Ψ(Ψ−1(P ) ◦ φ) (77)

for everyP ∈ Ve. Note that sinceφ is continuous (and linear),Ψ−1(P )◦φ ∈ V̂ ′
e
. Then, for everyP ∈ Ve

andS ∈ V̂e, we have
〈P |φ(S)〉 = 〈tφ(P )|S〉 . (78)

Indeed,
〈tφ(P )|S〉 = 〈Ψ(Ψ−1(P ) ◦ φ)|S〉

= (Ψ−1(P ))(φ(S))
= 〈P |φ(S)〉 .

(79)

Lemma 3 For eachφ ∈ End(Ve), φt is a continous endomorphism ofV̂e. Moreover,φ = t(φt). Dually,
for every continuous endomorphismφ of V̂e, φ = (tφ)t.

Proof: Let φ ∈ End(Ve) and {Sn}n be a sequence of infinite linear combinations that convergesto

zero. Letk ∈ N. By definition ot the transpose,〈φt(Sn), ek〉 =
∑

i≥0

〈φ(ek), ei〉〈Sn, ei〉. SinceSn → 0,

for every i, there isNi such that for alln ≥ Ni, 〈Sn, ei〉 = 0. Therefore we can findNk such that
n ≥ Nk implies 〈Sn, ei〉 = 0 for every i ≤ deg

e
(φ(ek)), and then for suchn, 〈φt(Sn), ek〉 = 0, so

φt(Sn)→ 0, andφt is continuous. Now let us prove thatφ = t(φt). For everyP, S, we have〈φ(P )|S〉 =
〈P |φt(S)〉 = 〈t(φt)(P )|S〉 (the second equality is valid sinceφt is continuous). Therefore for everyi, j,
〈φ(ei), ej〉 = 〈φ(ei)|ej〉 = 〈t(φt)(ei)|ej〉 = 〈t(φt)(ei), ej〉 which is sufficient to prove the expected
equality. Finally, letφ be a continuous endomorphism ofV̂e. For everyP, S, one has〈P |φ(S)〉 =
〈tφ(P )|S〉 = 〈P |(tφ)t(S)〉, and in particular for everyi, 〈φ(S), ei〉 = 〈ei|φ(S)〉 = 〈ei|(

tφ)t(S)〉 =

〈(tφ)t(S), ei〉, which proves thatφ(S) = (tφ)t(S) (by definition ofV̂e). 2

Let a andb be two bases ofV . Let Lb,β (resp. Ra,α) be ab-relative lowering operator (resp.a-
relative raising operator) with coefficient sequenceβ = (βn)n∈N with β0 = 1 (resp. α = (αn)n∈N).
These operators are clearly continuous onVb (resp. onVa), and therefore extend uniquely as continuous
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endomorphisms of the completionŝVb andV̂a. Their respective extensionŝLb,β andR̂a,α are precisely
defined by

L̂b,β(S) =
∑

n≥0

〈S, bn〉Lb,βbn =
∑

n≥1

〈S, bn〉βnbn−1 =
∑

n≥0

〈S, bn+1〉βn+1bn (80)

and
R̂a,α(S) =

∑

n≥0

〈S, an〉Ra,αan =
∑

n≥0

〈S, an〉αnan+1 =
∑

n≥1

〈S, an−1〉αn−1an . (81)

They correspond to the operatorsD andU of [32] associated with the graded (locally finite) posetsb0 →
b1 →

1
β1
b2 →

1
β1β2

b3 → · · · anda0 → α0a1 → α0α1a2 → α0α1α2a3 → · · ·
We may use the duality pairing in order to find the transpose mappings of bothLb,β andRa,α.

Lemma 4 Let Ra,α be thea-relative raising operator with coefficient sequenceα = (αn)n∈N. The
transpose ofRa,α is the extension̂La,γ to the completion̂Va of thea-relative lowering operatorLa,α↓

with coefficient sequenceα ↓:= (γn)n∈N where

γn :=

{
1 if n = 0 ,
αn−1 if n > 0 .

(82)

Proof: Letn ∈ N andS ∈ V̂a. According to Equation (60),〈Ra,αan|S〉 = αn〈an+1|S〉 = αn〈S, an+1〉 =〈
an|
∑

k≥0

〈S, ak+1〉αkak

〉
= 〈an|L̂a,α↓〉 (the last equality comes from Equation 80). Multiplying both

(leftmost and rightmost) sides with〈P |an〉 (for someP ∈ Va) and summing overn gives the result. 2

Lemma 5 Let Lb,β be theb-relative lowering operator with coefficient sequenceβ = (βn)n∈N. The
transposeLt

b,β ofLb,β is the extension̂Rb,β↑ to V̂b of theb-relative raising operatorRb,β↑ with coeffi-
cient sequenceβ ↑:= (γn)n∈N, where for eachn ∈ N, γn := βn+1.

Proof: This proof is so similar to the proof of Lemma 4, that it can be omitted. 2

It is also possible to determine the transpose of the extension of the ladder operators to the completion
V̂e. Several lemmas are given below to answer this question. Thefirst one does not need a proof.

Lemma 6 Letβ = (βn)n∈N be any sequence of elements ofK such thatβ0 = 1. We have

β = β ↑↓ . (83)

Letα = (αn)n∈N be any sequence of elements ofK. We have

α = α ↓↑ . (84)

Lemma 7 Let e = (en)n∈N be a basis ofV . Let β = (βn)n∈N be a sequence of nonzero scalars such
thatβ0 = 1, andα = (αn)n∈N be any sequence of nonzero scalars. Then we have

tL̂e,β = Re,β↑ andtR̂e,α = Le,α↓ . (85)
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Proof: SinceL̂e,β andR̂e,α are continuous endomorphisms ofV̂e they admit transposes which are endo-
morphisms ofVe. According to lemmas 4 and 6,Rt

e,β↑ = L̂e,β↑↓ = L̂e,β. Then,tL̂e,β = t(Rt
e,β↑) =

Re,β↑ (according to lemma 3). The case oftR̂e,α is treated in a similar way. 2

4.4.2 Extension of Theorem 2 to formal infinite linear combinations
In what follows, our intention is to generalize Theorem 2 to the case of continuous endomorphisms on
formal infinite linear combinations. To this end, we supposethat V̂e is equipped with theVe-weak topol-
ogy, that is, the weakest topology for which the mappingsΨ−1(P ) : S ∈ V̂e 7→ 〈P |S〉 ∈ K, defined
for a givenP ∈ Ve, are continuous. SinceVe is isomorphic toV̂ ′

e
(when V̂e is equipped with its for-

mal topology previously introduced), it is the so-called weak-∗ topology. This topology turnŝVe into a
Hausdorff topological space (withK discrete). It is obvious that the duality pairing〈.|.〉 is separately con-
tinuous onVe × V̂e whereVe is discrete and̂Ve has theVe-weak topology. Thus, a family(Si)i∈I ∈ V̂

I
e

is summable whenever for everyP ∈ Ve, the family (〈P |Si〉)i∈I is summable inK, and, in this case,

〈P |
∑

i∈I

Si〉 =
∑

i∈I

〈P |Si〉.

Now suppose that the vector space of continuous endomorphisms of V̂e has the topology of simple
convergence. (We also suppose the same forEnd(Ve), with Ve equipped with the discrete topology.) In
this particular topology, each family of continuous endomorphisms(R̂n

e,αφn)n∈N in End(V̂e)
N, whereφn

is a continuous endomorphism of̂Ve for each integern, is a summable family. In order to check this,
let P ∈ Ve andS ∈ V̂e. We havet(R̂n

e,αφn) = tφnL
n
e,α↓ ∈ End(Ve). The family (tφnL

n
e,α↓)n∈N is

summable inEnd(Ve), and we have

〈
∑

n∈N

tφnL
n
e,α↓(P )|S〉 = 〈

deg
e
(P )∑

n=0

tφnL
n
e,α↓(P )|S〉

=

deg
e
(P )∑

n=0

〈tφnL
n
e,α↓(P )|S〉

=

deg
e
(P )∑

n=0

〈P |R̂n
e,αφnS〉

= 〈P |

deg
e
(P )∑

n=0

R̂n
e,αφnS〉 .

(86)

Moreover for everym > deg
e
(P ),

〈P |
m∑

n=deg
e
(P )

R̂n
e,αφnS〉 = 〈

m∑

n=deg
e
(P )

tφnL
n
e,α↓(P )|S〉 = 0 . (87)

Therefore, we obtain a summable series inK discrete, and so is(R̂n
e,αφn)n∈N.

The generalization of Theorem 2 to the case of continuous operators on formal infinite linear combina-
tions is given below.
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Theorem 3 Let α = (αn)n∈N be any sequence of nonzero scalars, andβ = (βn)n∈N be a sequence
of nonzero scalars withβ0 = 1. Let φ be any continuous element ofEnd(V̂e). Then there exists a
sequence of polynomials(Pn)n∈N ∈ K[x]N such thatφ is equal to the sum of the summable family
(R̂n

e,β↑Pn(L̂e,α↓))n∈N.

Proof: By Theorem 2,tφ =
∑

n∈N

Pn(Re,α)Ln
e,β (sum of a summable family). Then, using the duality

pairing, we check thatφ =
∑

n∈N

R̂n
e,β↑Pn(L̂e,α↓) (sum of a summable family). 2

Corollary 1 Under the same assumptions as those of Theorem 3, every continuous endomorphismφ ∈
End(V̂e) is equal to the sum of the summable family(R̂n

e,αPn(L̂e,β))n∈N for some polynomials sequence
(Pn)n∈N ∈ K[x]N.

Proof: Apply Theorem 3 withβ := α ↓ andα := β ↑. 2

Note 3 Without difficulty we can check that the extensionD̂e,β,α of the diagonal operatorDe,β,α =

[Le,β, Re,α] is equal to[L̂e,β, R̂e,α]. As a continuous endomorphism,D̂e,β,α =
∑

n∈N

R̂n
e,αPn(L̂e,β). So

the commutation rule becomes

L̂e,βR̂e,α = R̂e,αL̂e,β +
∑

n∈N

R̂n
e,αPn(L̂e,β) . (88)

5 Conclusions
The idea of the commutation relationAB − BA = I between two operatorsA andB (for example
the creation and annihilation operators of second-quantized theory) is fundamental to the foundations
of quantum physics. In this paper we have shown that startingfrom this basic equality, calculations of
elementary operations, such as exponentiation associatedwith quantum dynamics and thermodynamics,
lead us immediately to traditional combinatorial conceptssuch as Stirling numbers, and generalizations
thereof, which we describe. We give explicit forms for the one-parameter groups generated by the ex-
ponentials of such operators - crucial in quantum calculations - in certain restricted cases; namely, those
containing one-annihilator only (corresponding to forms of so-called Sheffer-type).

In Physics, the creation and annihilation operators act on spaces of numbers of particles, moving from
one state to another and so are considered as a special form ofladder operator. We generalize this
concept also, by considering endomorphisms in linear spaces, which mathematically correspond to these
ideas. In particular, we note that infinite-dimensional vector space seems to be a rather natural setting to
deal with ladder operators. Any integer-indexed basis may provide the setting in a rather obvious way for
generalized ladder operators that can be either lowering (annihilation) or raising (creation), and without
any particular commutation rule. We prove that given two ladder operators, one lowering, the other one
raising, associated with possibly distinct bases (with thesame first rank), it is possible to expand any linear
endomorphism in terms of iterates of the given ladder operators.
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