Drawing approximated solution curve of differential equation

Farida Benmakrouha, Christiane Hespel, Edouard Monnier

IRISA/INSA de Rennes, 20, av. des Buttes de Coësmes, CS 14315, 35043, Rennes Cedex, FRANCE

Abstract

We develop a method for drawing approximated solution curves of differential equations. This method is based on the juxtaposition of local approximating curves on successive intervals $[t_i, t_{i+1}]_{0 \le i \le n-1}$.

The differential equation, considered as a dynamical system, is described by its state equations and its initial value at $t = t_0$.

A generic expression of its generating series G_t truncated at any order k, of the output and its derivatives $y^{(j)}(t)$ expanded at any order k, can be calculated. These expressions are obtained from the vector fields, from the observation of the state at time t, in the state equations [2, 3].

More precisely, the coefficients of G_t are expressed in terms of the vector fields and the observation. The output and its derivatives $y^{(j)}(t)$ are expressed in terms of the coefficients of the series G_t and of the Chen series [1].

At every initial point of the present interval, we specify the previous expressions of G_t and $y^{(j)}(t)$ for $t = t_i$. Then we obtain an approximated output y(t) at order k in every interval $[t_i, t_{i+1}]_{0 \le i \le n-1}$.

By using Maple system, we have developed a package corresponding to the creation of the generic expression of G_t and $y^{(j)}(t)$ at order k and to the drawing of the local curves on every interval $[t_i, t_{i+1}]_{0 \le i \le n-1}$, by iterations on the initial points $t = (t_i)_{0 \le i \le n-1}$.

References

- [1] Chen K.T., Iterated path integrals, Bull. Amer. Math. Soc. 83, pp. 831-879, 1977.
- Fliess M., Fonctionnelles causales non linéaires et indéterminés non commutatives, Bull. Soc. Math. France 109, pp. 3-40, 1981.
- [3] Hespel C., Une étude des séries formelles non commutatives pour l'Approximation et l'Identification des systèmes dynamiques, Thèse d'état, Université de Lille 1, 1998.