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Statistics on Graphs, Exponential Formula and
Combinatorial Physics

Gérard H. E. Duchamp, Laurent Poinsot, Silvia Goodenough and Karol A. Penson

Abstract—This paper concerns a famous combinatorial for-
mula known as the “exponential formula” which occurs quite
naturally in many physical contexts. Its meaning is the following:
the exponential generating function of a whole structure is equal
to the exponential of those of connected substructures. Keeping
this descriptive statement as a guideline, we develop a general
framework to handle many different situations in which the
exponential formula can be applied.

Index Terms—Combinatorial physics, Exponential generating
function, Partial semigroup, Experimental mathematics.

I. INTRODUCTION

Applying the exponential paradigm one can feel sometimes
incomfortable wondering whether “one has the right” to do so
(as for example for coloured structures). The following paper
is aimed at giving a rather large framework where this formula
holds.

Exponential formula can be traced back to works by
Touchard and Ridell & Uhlenbeck [16], [13]. For an other
exposition, see for example [2], [4], [7], [15].

We are interested to compute various examples of EGF
for combinatorial objects having (a finite set of) nodes (i.e.
their set-theoretical support) so we use as central concept the
mapping σ which associates to every structure, its set of (labels
of its) nodes.
We need to draw what could be called “square-free decom-
posable objects” (SFD). This version is suited to our needs
for the “exponential formula” and it is sufficiently general to
contain, as a particular case, the case of multivariate series.

II. PARTIAL SEMIGROUPS

Let us call partial semigroup a semigroup with a partially
defined associative law (see for instance [3] for usual semi-
groups and [1], [11], [14] for more details on structures with
a partially defined binary operation). More precisely, a partial
semigroup is a pair (S, ∗) where S is a set and ∗ is a (partially
defined) function S×S → S such that the two (again partially
defined) functions S × S × S → S

(x, y, z) 7→ (x ∗ y) ∗ z and (x, y, z) 7→ x ∗ (y ∗ z) (1)

Manuscript received April 06, 2009. This work was supported by the French
Ministry of Science and Higher Education under Grant ANR PhysComb.

G. H. E. Duchamp, L. Poinsot and S. Goodenough are affiliated to
Laboratoire d’Informatique Paris Nord, Université Paris-Nord 13, CNRS
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coincide (same domain and values). Using this requirement
one can see that the values of the (partially defined) functions
Sn → S

(x1, · · · , xn) 7→ ET (x1, · · · , xn) (2)

obtained by evaluating the expression formed by labelling by
xi (from left to right) the ith leaf of a binary tree T with n
nodes and by ∗ its internal nodes, is independant of T . We
will denote x1 ∗ · · · ∗ xn their common value. In this paper
we restrict our attention to commutative semigroups. By this
we mean that the value x1 ∗ · · · ∗ xn does not depend on the
relative order of the xi. A nonempty partial semigroup (S, ∗)
has a (two-sided and total) unit ε ∈ S if, and only if, for every
ω ∈ S, ω ∗ ε = ω = ε ∗ ω. Using associativity of ∗, it can be
easily checked that if S has a unit, then it is unique.

Example 2.1: Let F be a set of sets (resp. which contains
∅ as an element) and which is closed under the disjoint sum
t, i.e., if A,B ∈ F such that A ∩ B = ∅, then A ∪ B(=
AtB) ∈ F . Then (F,t) is a partial semigroup (resp. partial
semigroup with unit).

III. SQUARE-FREE DECOMPOSABLE PARTIAL SEMIGROUPS

Let 2(N+) be the set of all finite subsets of the positive
integers N+ and (S,⊕) be a partial semigroup with unit
equipped with a mapping σ : S → 2(N+), called the (set-
theoretic) support mapping. Let D be the domain of the ⊕.
The triple (S,⊕, σ) is called square-free decomposable (SFD)
if, and only if, it fulfills the two following conditions.
• Direct sum (DS):

1) σ(ω) = ∅ iff ω = ε;
2) D = {(ω1, ω2) ∈ S2 : σ(ω1) ∩ σ(ω2) = ∅};
3) For all ω1, ω2 ∈ S, if (ω1, ω2) ∈ D then σ(ω1 ⊕

ω2) = σ(ω1) ∪ σ(ω2).
• Levi’s property (LP): For every ω1, ω2, ω

1, ω2 ∈ S such
that (ω1, ω2), (ω1, ω2) ∈ D and ω1 ⊕ ω2 = ω1 ⊕ ω2,
there are ωji ∈ S for i = 1, 2, j = 1, 2 such that
(ω1
i , ω

2
i ), (ωj1, ω

j
2) ∈ D, ωi = ω1

i ⊕ω2
i and ωj = ωj1⊕ω

j
2

for i = 1, 2 and j = 1, 2.
Note 3.1: The second and third conditions of (DS) imply

that σ(ω1 ⊕ ω2) = σ(ω1) t σ(ω2) whenever (ω1, ω2) ∈ D
(which means that σ(ω1) ∩ σ(ω2) = ∅), where t denotes the
disjoint sum.

Example 3.2: As example of this setting we have:

1) The positive square-free integers, σ(n) being the set
of primes which divide n, the atoms being the prime
numbers.



2) All the positive integeres (S = N+), under the usual
integer multiplication, σ(n) being the set of primes
which divides n.

3) Graphs, hypergraphs, (finitely) coloured, weighted
graphs, with nodes in N+, σ(G) being the set of nodes
and ⊕ the juxtaposition (direct sum) when the set of
nodes are mutually disjoint.

4) The set of endofunctions f : F → F where F is a finite
subset of N+.

5) The (multivariate) polynomials in N[X], X = {xi : i ∈
I}, with I ⊆ N+, being a nonempty set of (commuting
or not) variables, with σ(P ) = Alph(P ) the set of
indices of variables that occur in a polynomial P , and
⊕ = +.

6) For a given finite or denumerable field, the set of
irreducible monic polynomials is denumerable. Arrange
them in a sequence (Pn)n∈N+ , then the square-free
monic (for a given order on the variables) polynomials
is SFD, σ(P ) := {n ∈ N+ : Pn divides P} and ⊕
being the multiplication.

7) Rational complex algebraic curves; σ(V ) being the set
of monic irreducible bivariate polynomials vanishing on
V .

In what follows we write ⊕ni=1ωi instead of ω1 ⊕ · · · ⊕ ωn
(if n = 0, then ⊕ni=1ωi = ε) and we suppose that (S,⊕, σ) is
SFD for the two following easy lemmas.

Lemma 3.3: Let ω1, . . . , ωn ∈ S such that ⊕ni=1ωi is
defined. Then for every i, j ∈ {1, . . . , n} such that i 6= j,
it holds that σ(ωi) ∩ σ(ωj) = ∅. In particular, if none ωk is
equal to ε, then ωi 6= ωj for every i, j ∈ {1, . . . , n} such that

i 6= j. Moreover σ(⊕ni=1ωi) =
n⊔
i=1

σ(ωi).

Lemma 3.4: Let (ωi)ni=1 be a finite family of elements of S
with pairwise disjoint supports. Suppose that for i = 1, · · · , n,
ωi = ⊕ni

k=1ω
k
i , where (ωki )ni

k=1 is a finite family of elements
of S. Then ⊕ni=1ωi = ⊕ni=1

(
⊕ni

k=1ω
k
i

)
.

These lemmas are useful to define the sum of two or more
elements of S using respective sum decompositions.

Now, an atom in a partial semigroup with unit S is any
object ω 6= ε which cannot be split, formally

ω = ω1 ⊕ ω2 =⇒ ε ∈ {ω1, ω2} . (3)

The set of all atoms is denoted by atoms(S). Whenever
the square-free decomposable semigroup S is not trivial, i.e.,
reduced to {ε}, atoms(S) is not empty.

Example 3.5: The atoms obtained from examples 3.2:
1) The atoms of 3.2.2 are the primes.
2) The atoms of 3.2.3 are connected graphs.
3) The atoms of 3.2.4 are the endofunctions for which the

domain is a singleton.
4) The atoms of 3.2.5 are the monomials.
The prescriptions (DS,LP) imply that decomposition of

objects into atoms always exists and is unique.
Proposition 3.6: Let (S,⊕, σ) be SFD. For each ω ∈ S

there is one and only one finite set of atoms A = {ω1, · · · , ωn}
such that ω = ⊕ni=1ωi. One has A = ∅ iff ω = ε.

IV. EXPONENTIAL FORMULA

In this section we consider (S,⊕, σ) as a square-free
decomposable partial semigroup with unit.

In the set S, objects are conceived to be “measured” by
different parameters (data in statistical language). So, to get a
general purpose tool, we suppose that the statistics takes its
values in a (unitary) ring R of characteristic zero that is to say
which contains Q (as, to write exponential generating series
it is convenient to have no trouble with the fractions 1

n! ). Let
then c : S → R be the given statistics. For F a finite set and
each X ⊆ S, we define

XF := {ω ∈ X : σ(ω) = F} . (4)

In order to write generating series, we need
1) that the sums c(XF ) :=

∑
ω∈XF

c(ω) exist for every finite

set F of N+ and every X ⊆ S;
2) that F → c(XF ) would depend only of the cardinality

of the finite set F of N+, for each fixed X ⊆ S;
3) that c(ω1 ⊕ ω2) = c(ω1).c(ω2).

We formalize it in

(LF) Local finiteness. — For each finite set F of N+, the
subset SF of S is a finite set.
(Eq) Equivariance. —

card(F1) = card(F2) =⇒ c(atoms(S)F1) = c(atoms(S)F2) .
(5)

(Mu) Multiplicativity. —

c(ω1 ⊕ ω2) = c(ω1).c(ω2) . (6)

Note 4.1: a) In fact, (LF) is a property of the set S, while
(Eq) is a property of the statistics. In practice, we choose
S which is locally finite and choose equivariant statistics for
instance

c(ω) = x(number of cycles)y(number of fixed points)

for some variables x, y.

b) More generally, it is typical to take integer-valued
partial (additive) statistics c1, · · · ci, · · · , cr (for every ω ∈ S,
ci(ω) ∈ N) and set c(ω) = x

c1(ω)
1 x

c2(ω)
2 · · ·xcr(ω)

r .

c) The set of example 3.2.2 is not locally finite, but other
examples satisfy (LF): for instance 3.2.3 if one asks that the
number of arrows and weight is finite, 3.2.1.

A multiplicative statistics is called proper if c(ε) 6= 0. It is
called improper if c(ε) = 0. In this case, for every ω ∈ S,
c(ω) = 0. Indeed c(ω) = c(ω ⊕ ε) = c(ω)c(ε) = 0.

If R is a integral domain and if c is proper,
then c(ε) = 1 because c(ε) = c(ε ⊕ ε) = c(ε)2,
therefore 1 = c(ε). Note that for each X ⊆ S,

c(X∅) =
∑
ω∈X∅

c(ω) =
{
c(ε) if ε ∈ X
0 if ε 6∈ X . For every

finite subset X of S, we also define c(X) :=
∑
ω∈X

c(ω), then



we have in particular c(∅) = 0 (different from c(S∅) = c({ε})
if c is proper). The requirement (LF) implies that for every
X ⊆ S and every finite set F of N+, c(XF ) is defined as
a sum of a finite number of terms because XF ⊆ SF , and
therefore XF is finite.

Now, we are in position to state the exponential formula as
it will be used throughout the paper. Let us recall the usual
exponential formula for formal power series in R[[z]] (see [10],
[15] for more details on formal power series). Let f(z) =∑
n≥1

fnz
n. Then we have

ef =
∑
n≥0

an
zn

n!
(7)

where
an =

∑
π∈Πn

∏
p∈π

fcard(p) (8)

with Πn being the set of all partitions of [1..n] (in particular

for n = 0, a0 = 1) and ez =
∑
n≥0

zn

n!
∈ R[[z]].

In what follows [1..n] denotes the interval {j ∈ N+ : 1 ≤ j ≤
n}, reduced to ∅ when n = 0. Let (S,⊕, σ) be locally finite
SFD and c be a multiplicative equivariant statistics. For every
subset X of S one sets the following exponential generating
series

EGF(X; z) =
∞∑
n=0

c(X[1..n])
zn

n!
. (9)

Theorem 4.2 (exponential formula): Let S be a locally fi-
nite SFD and c be a multiplicative equivariant statistics. We
have

EGF(S; z) = c(ε)− 1 + eEGF(atoms(S);z) . (10)

In particular if c(ε) = 1 (for instance if c is proper and R is
an integral domain),

EGF(S; z) = eEGF(atoms(S);z) . (11)

Proof — Let n = 0. Then the unique element of S∅ is ε.
Therefore c(S∅) = c(ε). Now suppose that n > 0 and let ω ∈
S[1..n]. According to proposition 3.6, there is a unique finite
set {α1, . . . , αk} ⊆ atoms(S) such that ω = ⊕ki=1αi. By
lemma 3.3, {σ(αi) : 1 ≤ i ≤ k} is a partition of [1..n] into k
blocks. Therefore ω ∈ atoms(S)P1

⊕· · ·⊕atoms(S)Pk
where

Pi = σ(αi) for i = 1, . . . , k. We can remark that α1⊕· · ·⊕αk
is well-defined for each (α1, . . . , αk) ∈ atoms(S)P1

× · · · ×
atoms(S)Pk

since the supports are disjoint. Now, one has,
thanks to the partitions of [1..n]

S[1..n] =
⊔
π∈Πn

⊕
p∈π

atoms(S)p (12)

c(S[1..n]) =
∑
π∈Πn

∏
p∈π

c(atoms(S)p) (13)

as, for disjoint (finite) sets F and G of N+, it is easy to
check that c(XF ⊕ XG) = c(XF )c(XG) for every X ⊆ S
and because the disjoint union as only a finite number of

factors. Therefore due to equivariance of c on sets of the form
atoms(S)F , one has

c(S[1..n]) =
∑
π∈Πn

∏
p∈π

c(atoms(S)[1..card(p)]) . (14)

But c(atoms(S)[1..card(p)]) is the card(p)th coefficient of the
series EGF(atoms(S); z). Therefore due to the usual expo-
nential formula, EGF(S; z) = c(ε) − 1 + eEGF(atoms(S);z).
Now if c(ε) = 1, then we obtain EGF(S; z) =
eEGF(atoms(S);z).

V. TWO EXAMPLES

The examples provided here pertain to the class of la-
belled graphs where the “classic” exponential formula applies,
namely Burnside’s Classes1 Burna,b, defined, for 0 ≤ a < b
two integers, as the class of graphs of numeric endofunctions
f such that

fa = f b (15)

where fn denotes the nth power with respect to functional
composition. Despite of its simplicity, there are still
(enumerative combinatorial) open problems for this class and
only B1,`+1 gives rise to an elegant formula [5], [15] (see
also [8], for the idempotent case: ` = 1 and compare to exact
but non-easily tractable formulas in [2] for the general case in
the symmetric semigroup, and in [9] for their generalization
to the wreath product of the symmetric semigroup and a finite
group).

The second example: the class of finite partitions which
can be (and should here) identified as graphs of equiva-
lence relations on finite subsets F ⊆ N+. Call this class
“Stirling class” as the number of such graphs with support
[1..n] and k connected components is exactly the Stirling
number of the second kind S2(n, k) and, using the statistics
x(number of points)y(number of connected components), one ob-
tains ∑

n,k≥0

S2(n, k)
xn

n!
yk = ey(ex−1) . (16)

Examples of this kind bring us to the conclusion that bivari-
ate stastistics like Burna,b(n, k), S2(n, k) or S1(n, k) (Stirling
numbers of the second and first kind) are better understood
through the notion of one-parameter group, conversely such
groups naturally arinsing in Combinatorial Physics lead to
such statistics and new ones some of which can be interpreted
combinatorially.

VI. GENERALIZED STIRLING NUMBERS IN
COMBINATORIAL PHYSICS

Many tools of Quantum Mechanics bail down to the con-
sideration of creation and annihilation operators which will be

1The name is related to the notion of free Burnside semigroups, namely
the quotient of the free semigroup A+, where A is a finite alphabet, by the
the smallest congruence that contains the relators ωn+m = ωn, ω ∈ A+.
For more details see [12].



here denoted respectively a† and a. These two symbols do not
commute and are subject to the unique relation

[a, a†] = 1 . (17)

The complex algebra generated by these two symbols and
this unique relation, the Heisenberg-Weyl algebra, will be
here denoted by HWC. The consideration of evolution (one-
parameter) groups eλΩ where Ω =

∑
ω∈HWC

α(ω)ω is an

element of HWC, with all - but a finite number of them -
the complex numbers α(ω) equal to 0, and ω a word on the
alphabet {a, a†} leads to the necessity of solving the Normal
Ordering Problem, i.e., the reduction of the powers of Ω to
the form

Ωn =
∑

βi,j(a†)iaj . (18)

In the sequel, Normal(Ωn) denotes such a sum. This problem
can be performed with three indices in general and two in the
case of homogeneous operators that is operators for which the
“excess” e = i − j is constant along the monomials (a†)iaj

of the support (for which βi,j 6= 0). Thus, for

Ω =
∑
i−j=e

βi,j(a†)iaj (19)

one has, for all n ∈ N,

Normal(Ωn) = (a†)ne
∞∑
k=0

SΩ(n, k)(a†)kak (20)

when e ≥ 0, and

Normal(Ωn) =

( ∞∑
k=0

SΩ(n, k)(a†)kak
)
an|e| (21)

otherwise. It turns out that, when there is only one annihilation,
one gets a formula of the type (x, y are formal commutative
variables)∑

n,k≥0

SΩ(n, k)
xn

n!
yk = g(x)ey

∑
n≥1

SΩ(n,1) xn

n! (22)

which is a generalization of formula (16). A complete study
of such a procedure and the details to perform the solution of
the normal ordering problem may be found in [6].

VII. CONCLUSION

In this paper, we have broadened the domain of application
of the exponential formula, a tool originated from statistical
physics. This broadening reveals us together with the essence
of “why this formula works” a possibility of extension to
denominators other than the factorial and also a link with one-
parameter groups whose infinitesimal generators are (formal)
vector fields on the line. The general combinatorial theory of
the correspondence (vector fields↔ bivariate ststistics) is still
to be done despite the fact that we have already a wealth of
results in this direction.
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