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Synchronization of countable cellular systems,
localization of quasi-periodic solutions of

autonomous differential systems
Laurent Gaubert

Abstract—We address the question of frequencies locking in
coupled differential systems, related to the existence of quasi-
periodic solutions of differential systems. Our tool is what we
call “cellular systems”, quite general as it deals with countable
number of coupled systems in some general Banach spaces.
Moreover, the inner dynamics of each subsystem does not have
to be specified. We reach some general results about how the
frequencies locking phenomenon is related to the structureof
the coupling map, and therefore about the localization of quasi-
periodic solutions of some differential systems that may beseen
as cellular systems. This paper gives some explanations about
how and why synchronized behaviors naturally occur it a wide
variety of complex systems.

Index Terms—coupled differential systems, synchronization,
frequencies locking.

I. I NTRODUCTION

SYNCHRONIZATION is an extremely important and in-
teresting emergent property of complex systems. The first

example found in literature goes back to the 17th century with
Christiaan Huygens’ work [11], [2]. This kind of emergent
behavior can be found in artificial systems as well as in
natural ones and at many scales (from cell to whole ecological
systems). Biology abounds with periodic and synchronized
phenomena and the work of Ilya Prigogine shows that such
behaviors arise within specific conditions: a dissipative struc-
ture generally associated to a nonlinear dynamics [20]. Bio-
logical systems are open, they evolve far from thermodynamic
equilibrium and are subject to numerous regulating processes,
leading to highly nonlinear dynamics. Therefore periodic
behaviors appear (with or without synchronization) at any
scale [21]. More generally, life itself is governed by circadian
rhythms [9]. Those phenomena are as much attractive as they
are often spectacular: from cicada populations that appear
spontaneously every ten or thirteen years [10] or networks
of heart cells that beat together [17] to huge swarms in
which fireflies, gathered in a same tree, flash simultaneously
[3]. This synchronization phenomenon occupies a privileged
position among emergent collective phenomena because of its
various applications in neuroscience, ecology, earth Science,
for instance [27], [25], [16], as well as in the field of coupled
dynamical systems, especially through the notion of chaotic
systems’ synchronization [18], [7] and the study of coupled-
oscillators [13]. This wide source of examples leads the field
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of research to be highly interdisciplinary, from pure theory to
concrete applications and experimentations.

The classical concept of synchronization is related to the
locking of the basic frequencies and instantaneous phases of
regular oscillations. One of the most successful attempts to
explore this emergent property is due to Kuramoto [14], [15].
As in Kuramoto’s work, those questions are usually addressed
by studying specific kinds of coupled systems (see for instance
[5], [22], [8]). Using all the classical methods available in
the field of dynamical systems, researchers study specific
trajectories of those systems in order to get information on
possible attracting synchronized state [28], [13], [22], [19],
[8], [12].

The starting point of this work was the following question :
“Why synchronization is such a widely present phenomena ?”
In order to give some mathematical answer to this question,
the first step is to build a model of coupled systems that
is biologically inspired. This is what is done in the second
section, after having described some basic material, we define
what we call cellular systems and cellular coupler. If one
would summarize the specificities of cellular system, one could
say that each cell (subsystem) of a cellular system receives
information from the whole population (the coupled system)
according to some constraints:

• a cell has access to linear transformations of all the others
cell’s states

• the way this information is gathered depends (not lin-
early) on the cell’s state itself

In other words, a cell interprets its own environment via the
states of the whole population and according to its own state.

It’s a bit surprising that despite this model arising very
naturally, it gives a good framework to address the main
question. Indeed, in the third section we expose a localization
result concerning periodic trajectories of cellular systems,
according to some sub-periods dependencies. It exhibits some
links between the coupler’s properties and the structure of
periodic trajectories.

The fourth section gives some example of general results
that may be proved using the localization lemma. Moreover,
it goes out of the scope of coupled systems as synchronization
is strongly related to the more abstract field of dynamical
systems. If one thinks about presence of regular attractors(in
opposition with strange attractors) in a differential system, one
may for example classify those as:

• point attractor



• limit cycle
• limit torus

Those attractors can be related to coupled systems in an
obvious way: roughly speaking, a point attractor may be
seen as a solution of coupled systems for which each of
the subsystems has a constant behavior. Similarly, a limit
cycle may be thought as the situation where every subsystem
oscillate, all frequencies among the whole system being
locked. A limit torus is a similar situation which differs from
the previous one by the fact that the frequencies are not locked
(non commensurable periods of a quasi-periodic solution of
the whole coupled system). Hence, the three previous cases
may be translated into the coupled dynamical systems context:

• point attractor↔ constant trajectories
• limit cycle ↔ periodic trajectories, locked frequencies
• limit torus ↔ periodic trajectories, unlocked frequencies

Therefore, we deduce some results about the localization of
solutions of the third type, quasi-periodic solutions, using the
point of view of coupled dynamical systems. The results of
this third section may help to understand why the second case
is the most observed in natural systems, which may be seen as
coupled dynamical systems, at many levels. Indeed, the section
ends with a sketch of how the cellular systems point of view
may be applied to a wide class of differential systems in order
to systematically address those questions with algebraic tools.

II. BASIC MATERIAL AND NOTATIONS

As our model is inspired by cellular tissues, some terms
clearly come from the vocabulary used to describe those kinds
of complex systems.

A. Model of population behavior

Here are the basic compounds and notations of our model:
A populationI is a countable set, so we may consider it

as a subsetI ⊂ N. Moreover, as it’s only the cardinality ofI
that’s important,I may be chosen as an interval of integer.
Elements ofI are calledcells.

We suppose that the systems we want to study are valued
in some Banach spaces. Thus, for anyi ∈ I, (Ei, ‖.‖i) is a
Banach space, and thestate spaceof I is the vector space
S =

∏

i∈I

Ei.

We will sometimes identifyEi with
∏

j<i

{0} × Ei ×
∏

j>i

{0} ⊂ S

and then consider it as a subspace ofS.

We denoteSb the space of uniformly bounded states:

Sb =

{
x ∈ S, sup

i∈I

‖xi‖i < ∞

}

This subspace will sometimes be useful as, embodied with the
norm ‖x‖∞ = supi∈I ‖xi‖i, it’s a Banach space, allowing

the classic PicardLindelöf theorem to be valid.

Given an intervalΩ ⊂ R, a trajectory x of I is an element
of C∞ (Ω,S). Suchx is then described by a family ofC∞

applications(xi)i∈I such that∀i ∈ I:

xi : Ω −→ Ei

t 7−→ xi(t)

The space of trajectories onI is denotedT .

A period on I is a mapτ : I → R
∗
+. A trajectoryx ∈ T

is said to beτ -periodic if for any i ∈ I, xi is τ(i)-periodic
and non constant.τ(i) is then said to bea period of the cell
i. The space of such trajectories is writtenTτ .

Each cell i is supposed to behave according to an au-
tonomous differential system given by a vector fieldFi : Ei →
Ei. Thus, given a family of functions{Fi}i∈I we define the
vector fieldFI on S:

FI : S −→ S
x 7−→ FI(x)

with, for any i ∈ I:

[FI(x)]i = Fi(xi)

Remark. The definition of periodic trajectory handle both
classical concepts of periodic and quasi-periodic solutions of a
differential system. From the point of view of coupled systems,
it describes the situation in which each subsystem of the
whole system oscillates. We stress the point that a period of
a periodic trajectory needs not to be a minimal period (τ(i)
isn’t necessarily a generator of the group of periods ofxi).
Nevertheless, our definition ofTτ avoid any trajectory which
contains some constant component (none of thexi can be a
constant map) as they may be seen as degenerate (localized
into an “hyperplane” ofS).

We recall that a (finite) subset{τ1, . . . , τk} of R is said to be
rationally dependent if there exists some integersl1, . . . , lk
non all zero and such that:

l1τ1 + . . . + lkτk = 0

Then there exists a unique lowest common multiple (lcm) τ0

for which there exitsn1, . . . , nk such that:

n1τ1 = . . . = nkτk = τ0

An infinite set of real numbers is said to be rationally depen-
dent if any finite subset is rationally dependent.

Now, any periodτ on I (or, equivalently, any periodic
trajectory) defines a equivalence relation onI as:

i ∼ j ⇔ {τ(i), τ(j)} is a dependent set

Hence we may consider the (countable) partitionI(τ) of I
into equivalence classes (K countable):

I(τ) = {Ik}k∈K



B. Cellular coupler and cellular systems

In this section we build what we callcellular systemsby
way of cellular coupler. Most of the works always deal with
a specific way of coupling dynamical systems: one adds a
quantity (that models interactions between subsystems) tothe
derivative of the systems. This leads to equations with the
following typical shape (here, there are only two coupled
systems):

x′
1(t) = F

(
x1(t)

)
+ G1

(
x1(t), x2(t)

)

x′
2(t) = F

(
x2(t)

)
+ G2

(
x1(t), x2(t)

)

The functionsG1 and G2 are the coupling functions. The
problem is then restated in terms of phase-shift variables and
efforts are made to detect stable states and to prove their
stability.

Our approach to coupling is different. We study exclusively
a way of coupling where the exchanges are made on the
current state of the system. This means that the coupling
quantity applies inside the mapF , which leads us to the
following type of equation:

x′
1(t) = F

(
x1(t) + H1(x1(t), x2(t))

)
(1)

x′
2(t) = F

(
x2(t) + H2(x1(t), x2(t))

)

Remark.We stress the point that those two different ways of
handling coupled systems are quite equivalent in most cases.
Indeed, starting with the first two equations, as soon asG1

andG2 stay in the range ofF (which is likely if the coupling
functions are small), we can rewrite them in the second shape
involving H1 andH2.

The last kind of coupled systems is sometimes studied (for
instance in [12]) but never broadly (indeed, if one wants some
quantitative results about convergence of trajectories, one must
work with specific equations and dynamical systems). Even in
a few papers that are quite general (as the very interesting [24])
some strong assumptions are made (in [24] authors deal with
symmetric periodic solutions). The kind of coupled systems
we handle are a generalization of the one describe in equation
(1). Its general shape is:

x′
i(t) = Fi




∑

j∈I

cij(xi(t))xj(t)





Each celli ∈ I holds it’s own differential system represented
by a mapFi (hence, all the dynamical systems are not forcibly
identical nor have the same shape, nor that they are weakly
coupled (as in the classical paper of Art Winfree [26]). A cell
i “interprets” it’s own environment by mean of the functions
cij .

Before giving the exact definition of a cellular coupler,
we recall that, asS may be seen as a module on the
ring

∏

i∈I

L(Ei), L(S) has to be understood as the space of

linear operators onS with coefficients in theL(Ei, Ej). Any

M ∈ L(S) may then be written as an infinite (ifI isn’t finite)
matrix:

M = [mij ](i,j)∈I2 , mij ∈ L(Ej , Ei)

In this context, here is the definition of a cellular coupler on
I:

Definition 1. A cellular coupling mapon I is a mapc:

c : S −→ L(S)
x 7−→ c(x)

such that the matrix[cij ](i,j)∈I2 satisfies:

1) ∀(i, j) ∈ I2, ∀x ∈ S, cij(x) depends only onxi

(so that we may consider it as a map
cij : Ei → L(Ej , Ei));

2) ∀i ∈ I, ∀xi ∈ Ei,
∑

j∈I

‖cij(xi)‖i < +∞

Then,c defines acellular couplerc̃ onI in the following way:

c̃ : S −→ S
x 7−→ c(x).x

In other words (for the sake of simplicity, we only take
examples with a finite population), for anyx ∈ S, the matrix
c(x) has the following shape:

c(x) =




c11(x1) · · · c1k(x1)
...

. . .
...

ck1(xk) · · · ckk(xk)


 ∈ L(S)

And then :

c̃(x) = c(x).x =




c11(x1).x1 + . . . + c1k(x1).xk

...
ck1(xk).x1 + . . . + ckk(xk).xk


 ∈ S

Now we can define a cellular system:

Definition 2. Let FI be a vector field onS given by a family
{Fi}i∈I of vector fields on theEi. Let c̃ a cellular coupler on
I. (I, FI , c̃) is called acellular system. A trajectory of this
system is a trajectoryx ∈ T that satisfies:

x′ = FI ◦ c̃(x) = FI

(
c(x).x

)

in other words:

∀i ∈ I, ∀t ∈ Ω, x′
i(t) = Fi




∑

j∈I

cij(xi(t)).xj(t)





This equation may be naturally interpreted in biological
terms: the celli behaves according to a mean of the states of
all other cellsxj , but only its state defines how this mean is
computed (the cell interprets its own environment), and this
link state↔ interpreting functionhas no reason to be linear
in xi.

Remark. In order to avoid any confusion, we stress the
differences between trajectory and solution regarding periodic
behaviors. In this paper, periodic trajectory has a specific
meaning related to the cells. A periodic trajectory of a cellular



system is a trajectory for which each cell has a periodic behav-
ior. From the classic point of view of differential equations,
periodic and quasi-periodic solutions of the cellular system
are periodic trajectories. In the case of a periodic solution,
τ(I) admit a lcm, which false in the case of a quasi-periodic
solution.

In the next section we start of by exposing algebraic links
between a cellular coupler and a periodic trajectory, and then
we turn to our localization lemma.

III. L OCALISATION LEMMA

If M is a matrix indexed onI2, and if J ⊂ I, we write
J = I − J and we defineMJ as the matrix:

M = (mij)(i,j)∈J×J

For x ∈ S (resp.x ∈ T ) we denotexJ the vector (resp. the
map) [xi]i∈J (see figure 1).

J

J

J
M

M

x

x

x

J

J

Fig. 1. Matrix and vectors associated to a subsetJ of I.

If I(τ) = {I1, ..., IK} is a partition ofI, we define the
matrix MI(τ) as (see figure 2):

m
I(τ)
ij =

{
0 if (i, j) ∈ I1 × I1 ∪ . . . ∪ IK × IK

mij if not

I1

I2

I3

I4

I
M 1

I
M 2I

M 2

I
M 3 I

M 3

I
M 4

0

0

0

0

Fig. 2. Matrix associated to a partition ofI.

We can then go further and begin to work on the heart of
our matter. The forthcoming result that can be used in many
ways and generalized as, for the sake of simplicity, we did
not use the weakest assumptions under which it holds (for
example, the series convergence in the proof can be insured
in many other contexts).

Lemma 1. Let (I, FI , c̃) be a cellular system andτ a period
on I. Let U ⊂ S on whichFI is injective. If x ∈ T τ is a
periodic trajectory of cellular system that satisfies:

1) x(Ω) ⊂ Sb ;
2) c̃(x)(Ω) ⊂ U

then there existsb ∈ Sb such that for anyt ∈ Ω:

x (t) − b ∈ ker
(
c(x(t))I(τ)

)

Remark.Note that the first condition onx is useless ifI is
finite.

The previous result is not very practical as it involves the
trajectoryx itself, which is unknown. As there is no ambiguity,
we define the kernel ofcI(τ) as:

ker
(
cI(τ)

)
=
⋃

x∈S

ker
(
c(x)I(τ)

)

Hence we may give a weaker version of the previous lemma

Corollary 1. Under the conditions of lemma 1 there exists
b ∈ S such that:

x (Ω) − b ∈ ker
(
cI(τ)

)

Proof: (of lemma 1) First of all, let’s check that̃c(x) is
τ -periodic.
For anyi ∈ I, x′

i is τ(i)-periodic and non constant forxi is
so. Let’sUi = U ∩ Ei, Fi has to be injective onUi. Hence,
asx is a trajectory of the cellular system,Fi (c̃(x)i) must be
periodic and theñc(x)i is τ(i)-periodic. Therefore,c(x) is
τ -periodic.

Now, according to the partitionI(τ) = {Ik}k∈K defined
by τ (see section II-A), letk ∈ K andi ∈ Ik. For anyM ∈ N

we define the following set:

IM
k = Ik ∩ J0, MK

The setτ
(
IM

k

)
is now a finite dependent set, so that we can

consider itslcm τM
k . Now, for anyj ∈ IM

k , xj and c̃(x)j are



τM
j -periodic, so that, for any integerN :

c̃(x)i(t) =
1

N + 1

N∑

l=0

c̃(x)i

(
t + lτM

k

)

=
1

N + 1

N∑

l=0

∑

j∈I

cij

(
xi

(
t + lτM

k

) )
.xj

(
t + lτM

k

)

=
1

N + 1

N∑

l=0

∑

j∈I

cij

(
xi(t)

)
.xj

(
t + lτM

k

)

=
1

N + 1

N∑

l=0

∑

j∈IM
k

cij

(
xi(t)

)
.xj(t)

+
1

N + 1

N∑

l=0

∑

j∈Ik−IM
k

cij

(
xi(t)

)
.xj

(
t + lτM

k

)

+
1

N + 1

N∑

l=0

∑

j∈Ik

cij

(
xi(t)

)
.xj

(
t + lτM

k

)

=
∑

j∈IM
k

cij

(
xi(t)

)
.xj(t)

+
1

N + 1

N∑

l=0

∑

j∈Ik−IM
k

cij

(
xi(t)

)
.xj

(
t + lτM

k

)

+
1

N + 1

N∑

l=0

∑

j∈Ik

cij

(
xi(t)

)
.xj

(
t + lτM

k

)

As x is uniformly bounded, using the second property of a
coupling map (def. 1), we may invert the summation orders in
the previous equation and compute the limits whenM → +∞
andN → +∞ in any order. Thus we have:

c̃(x)i(t) =
∑

j∈IM
k

cij

(
xi(t)

)
.xj(t)

+
∑

j∈Ik−IM
k

cij

(
xi(t)

)
[

1

N + 1

N∑

l=0

xj

(
t + lτM

k

)
]

+
∑

j∈Ik

cij

(
xi(t)

)
[

1

N + 1

N∑

l=0

xj

(
t + lτM

k

)
]

for the same reasons, it’s easy to show that: and

lim
M,N→+∞

∑

j∈Ik−IM
k

cij

(
xi(t)

)
[

1

N + 1

N∑

l=0

xj

(
t + lτM

k

)
]

= 0

Now, as for allj ∈ Ik, τM
k andτ(j) are non commensurable,

if we denote τ ′
j the generator ofxj group of period, as

τ(j) = njτ
′
j for a certain integernj , τM

k andτ ′
j as well are non

commensurable. Therefore, the sequence

(
t + lτM

k

τ ′
j

)

l∈N

is

equidistributed mod1, and we may apply some classic ergodic

theorem (see for instance [23], [4]) and write:

lim
N→+∞

1

N + 1

N∑

l=0

xj

(
t + lτM

k

)
=

1

τ ′
j

∫ τ(j)

0

xj(s)ds

=
nj

τ(j)

∫ τ(j)

0

xj(s)ds

We can now define the stateb as:

b = [bj ]j∈I , bj =
nj

τ(j)

∫ τ(j)

0

xj(s)ds

so that:

lim
N→+∞

∑

j∈Ik

cij

(
xi(t)

)
[

1

N + 1

N∑

l=0

xj

(
t + lτM

k

)
]

=
∑

j∈Ik

cij

(
xi(t)

)
bj

hence, we have shown that:

c̃(x)i(t) =
∑

j∈Ik

cij

(
xi(t)

)
.xj(t) +

∑

j∈Ik

cij

(
xi(t)

)
.bj

But, obviously, from the beginning we had:

c̃(x)i(t) =
∑

j∈Ik

cij

(
xi(t)

)
.xj(t) +

∑

j∈Ik

cij

(
xi(t)

)
.xj(t)

So that:
∑

j∈Ik

cij

(
xi(t)

)
.xj(t) =

∑

j∈Ik

cij

(
xi(t)

)
.bj

The previous work can be done for anyi which belongs toIk,
thus we can summarize in the following way (see previously
defined notations):

c
(
x(t)

)Ik . (x(t) − b)
Ik = 0

Again, the previous conclusion still holds for anyk ∈ K,
hence we may conclude using our notations:

c
(
x(t)

)I(τ)
. (x(t) − b) = 0

In the next section we give some examples of results based
upon this lemma. We will mainly show how lemma 1 may
be applied to turn synchronization issues (and existence of
quasi-periodic solutions to a differential system) into algebraic
problems. One of the main argument is that one wants to avoid
periodic trajectories for which one cell is inert (a constant
map), as it may be discarded from the population (in the
case of an infinite population, this may lead to recurrence
reasoning).

IV. A PPLICATIONS

A. Weakly injective coupler

In this example we just write down an elementary property
of c̃ which ensures that a periodic trajectory must have an
inert cell.



Definition 3. Let c̃ be a cellular coupler onI. c̃ is said to
be weakly injective if for any non trivial partitionI(τ) of I
there existi ∈ I such that:

∀x ∈ S, ker
(
c(x)I(τ)

)
∩ Ei = {0}

Now we can state a simple result:

Proposition 1. Under the conditions of lemma 1, ifc̃ is weakly
injective and ifx is a τ -periodic trajectory of the cellular
system, thenτ(I) is a dependent set.

Proof: Let suppose thatI(τ) is not trivial, applying
lemma 1 we know that:

c
(
x(t)

)I(τ)
. (x(t) − b) = 0

As c̃ is weakly injective, there existsi ∈ I such that:

∀t ∈ Ω, x(t)i = bi

which contradicts the definition of a periodic trajectory.
This result may be restated in terms of quasi-periodic

solution of the cellular system:

Proposition 2. Under the conditions of lemma 1, ifc̃ is weakly
injective and ifτ is bounded, the cellular system has no quasi-
periodic solution.

The next example deals with some topological properties of
a coupler (how it connects cells together).

B. Chained cellular system

In this section, for the sake of simplicity, all the vector
spacesEi have finite dimension.

We first study the case of differential systems for which the
spacesEi have same dimension and are coupled withk-nearest
neighbors (the finite dimension condition isn’t necessary,but it
makes the exposure simpler). This case is formally described
by a cellular system(I, FI , c̃) where I is countable, all
dim(Ei) = n and c̃ satisfies:

∀i, j ∈ I, |j − i| > k ⇒ cij = 0

This is what we call achained cellular system. Adding the
following condition on the coupler, we may reach a general
result:

Definition 4. A cellular coupler̃c is said to havefull rank if
for any i, j ∈ I andx ∈ S the mapcij(x) has full rank

Proposition 3. Let (I, FI , c̃) be a chained cellular system
coupled withk-nearest neighbors (allEi having same finite
dimension). LetFI be injective onU ⊂ S andx a τ -periodic
trajectory that stays inU . If c̃ has maximal rank and if there
existsI ∈ I(τ) which contains2k consecutive cells, i.e. there
existsi ∈ I such that:

Ji, i + 2k − 1K ⊂ I

ThenI(τ) = {I} (equivalently,τ(I) is a dependent set).

Proof: Let suppose thatI 6= I. There must existJi, i +
2kK ⊂ I, such thati−1 /∈ I. Then, linei+k−1 of the matrix

c(x(t))I(τ) contains only one non zero elementci+k−1,i−1.
As this linear map is injective for anyt ∈ Ω, we know that:

ker(c(x(t))I(τ))
⋂

Ei−1 = {0}

Applying lemma 1 we know that there existsbi−1 ∈ Ei−1

such that for anyt ∈ Ω:

xi−1(t) − bi−1 ∈ ker
(
c(x(t))I(τ)

)⋂
Ei−1

i.e. xi−1(t) = bi−1 is a constant map, which contradicts the
definition of a periodic trajectory. So we can conclude that
I = I.

If we assume thatτ is bounded, this result may be restated
as: “as soon ask consecutive cells are synchronized (locked
frequencies), then all the population is syncrohnized”.

Moreover, we may drop some assumptions made on the
indentical dimension of theEi and reach an interesting con-
necting result concerning the case whenk = 1.

Proposition 4. Let (I, FI , c̃) be a chained cellular system
coupled with1-nearest neighbor. LetFI be injective onU ⊂ S
andx a τ -periodic trajectory that stays inU . If c̃ has maximal
rank and if there exists two setsI1 and I2 in I(τ) such that:

Ji, i + 1K ⊂ I1 Ji + 2, i + 3K ⊂ I2

ThenI1 = I2.

Proof: Let suppose that the cellsi + 1 have non com-
mensurable periods with those of the cellsi+2 (i.e. I1 6= I2).
Following the previous proof, we know that the linesi + 1
andi+2 of the matrixc(x(t))I(τ) contains only one non zero
element, respectivelyci+1,i+2 andci+2,i+1. But, we recall that
for any t ∈ Ω:

ci+1,i+2(xi+1(t)) : Ei+2 → Ei+1

and
ci+2,i+1(xi+2(t)) : Ei+1 → Ei+2

As the coupler has maximal rank, one of the previous map
must be injective for allt ∈ Ω. Using the same argument we
may conclude that eitherxi+1 is a constant map, either it’s
xi+2, leading to a contradiction.

Moreover, one could restate those results in terms of quasi
periodic solutions of differential systems, but it may sound
less intuitive. We will do it in the next sections.

For the next example, we add some regularity conditions on
the cellular system which lead to a interesting descriptionof
S.

C. Localization results with bounded states

As (Sb, ‖.‖∞) is a Banach space, the classic PicardLindelöf
theorem is valid and we can give a version adapted to cellular
systems (we stress the point that in this section, any vector
field FI has to be a vector field onSb, as well for any
cellular coupler̃c, which brings some constraint on the families
(Fi)i∈I and (cij)(i,j)∈I2 ).



Proposition 5. If FI : Sb → Sb and c̃ are locally lipshcitz,
which is the case if for anyx ∈ Sb there exists a neighborhood
V =

∏

i∈I

Vi, a positive numberk and a sequence(kj)j∈I of

positive numbers such that:

1) ∀y, z ∈ V, ∀i ∈ I, ‖Fi(yi) − Fi(zi)‖i ≤ k‖yi − zi‖i

2) ∀y, z ∈ V, ∀i ∈ I, ‖cij(yi)− cij(zi)‖(Ej ,Ei) ≤ kj‖yi −
zi‖i

3)
∑

j∈I

kj < +∞

then, given any initial condition(t0, x0) in R×Sb, the cellular
coupling admits a unique maximal solutionx that satisfies
x(t0) = x0.

Before stating our localization result, we need to define
the sets that any non synchronized periodic trajectory of the
cellular system must avoid (or, with the classical point of view,
any quasi periodic solution).

Definition 5. Let c̃ be a cellular coupler onI. The set of
regular points for̃c is defined as:

R(c̃) =
{
x ∈ S, ∀I(τ) partition of I, c(x)I(τ) is injective

}

We say that̃c is regular ifR(c̃) = S.

Now we can state a localization result:

Proposition 6. Under the conditions of lemma 1 and propo-
sition 5, if there exists a infinite compact subsetV ⊂ Ω such
that:

∀t ∈ V, x(t) ∈ R(c̃)

thenτ(I) is a dependent set.

One can rewrite this result in terms of differential systems:

Proposition 7. Under the conditions of lemma 1 and propo-
sition 5, and ifτ is bounded, a quasi-periodic trajectory must
“avoid” R(c̃) (it can’t cross this set on an infinite compact
subset ofΩ).

Proof: (of proposition 6) Let suppose thatI(τ) is not
trivial, applying lemma 1 we know that:

c
(
x(t)

)I(τ)
. (x(t) − b) = 0

the assumptions made oñc ensure that:

∀t ∈ V, x(t) = b

As V has an accumulation point, we may conclude that there
existst0 ∈ V such that:

x′(t0) = 0

Proposition 5 may be applied, hence we know thatt 7→ x(t) is
a constant map, which contradicts the definition of a periodic
trajectory.

The next example gives a more precise result in the case
where the mapscij don’t depend on the state of the system
(homogeneous coupler).

D. Exact frequencies locking with homogeneous cellular cou-
pler

If x ∈ Tτ , for any i ∈ I the mapxi equals its Fourier’s
series. We write:

ek
τ(i)(t) = exp

(
2iπkt

τ(i)

)

and we define :

x̂i(k) =
1

τ(p)

∫ τ(p)

0

xi(t)e
k
τ(i)(t)dt

so that we have :
x =

∑

k∈Z

x̂(k)ek

i.e. ∀i ∈ I:
xi(t) =

∑

k∈Z

x̂i(k)ek
τ(i)(t)

with normal convergence (note thatx̂i(k) is Ei-valued).

Theorem 1. Under the conditions of lemma 1, let̃c be
homogeneous and regular. Ifτ is a bounded period onI andx
a τ -periodic trajectory of the cellular system thenτ is constant
on I.

Remark. As this result is true as soon asτ is a period of
x, it may be applied to the minimal periods of eachxi, then
its conclusion is that all cells have exactly the same minimal
period.

Proof: As c̃ is homogeneous, we may identify it withc.
Moreover, applying lemma 1 we know thatτ(I) is a
dependent set (unless at least one of thexi would be a
constant map). We now have to prove thatτ is constant onI.

Let’s write a partition ofI according toτ ’s values onI
(we must recall thatτ is supposed bounded):

{I1, I2, . . . , IK}

such that
∀1 ≤ k ≤ K, τ(Ik) = τk

andτl 6= τk if l 6= k.

We now suppose thatK > 1.

As τ(I) is a finite dependent set, there existsn1, . . . , nK

integers andτ0 (the lcm) such that:

τ0 = n1τ1 = n2τ2 = . . . = nKτK

The trajectoryx is τ0-periodic. We may therefore write its
Fourier’s series:

x(t) =
∑

l∈Z

x̂(l)el
τ0

(t)

and as well forc.x :

(c.x)(t) =
∑

l∈Z

ĉ.x(l)el
τ0

(t)



uniqueness of Fourier coefficients forces them to satisfy:

ĉ.x(l) = c x̂(l)

So that, for anyi ∈ I:

ĉ.xi(l) =

k∑

j=1

cij x̂j(l)

Now, let i ∈ Ik, the properties of Fourier decomposition
ensure that̂xi(l) andc.x̂i(l) are zero as soon asnk does not
divide l (as (c.x)i andxi areτk-periodic andτ0 = nkτk).
So, if l ∈ Z, let’s defineI(l) as:

I(l) = {k ∈ {1, . . . , K}, nk 6 | l}

For any integerl, if k ∈ I(l) and i ∈ Ik, then x̂i(l) =
c.x̂i(l) = 0, so that (with similar convergence arguments that
in the proof of lemma 1):

c.x̂i(l) =

k∑

j=1

cij x̂j(l)

0 =

k∑

j∈I(l)

cij x̂j(l) +

k∑

j /∈I(l)

cij x̂j(l)

0 =

k∑

j /∈I(l)

cij x̂j(l)

This last property, (observable on figure 3), can be writen as:

∀l ∈ Z cI(l) x̂(l)I(l) = 0

Fig. 3. Constraints on the Fourier’s coefficientsx̂(l).

This property holds for any integerl, and is empty whenl
is a multiple of all theni. So that, ifI(l) is the partition of
I defined as:

I(l) =
{
I(l), I(l)

}

we can re-write it as:

∀l ∈ Z cI(l) x̂(l) = 0

Let’s now considerI1 6= I2 (this is possible asK > 1). As
those two classes are distinct, there existsl such thatn1 does

not divide l andn2 divides l. As c is regular,cI(l) is thereby
injective. We deduce that:

x̂(l)I(l) = 0

This proves that for anyl divisible by n2 and not byn1,
x̂(l)I(l) is zero. Thus, for any coefficient of̂x(l)I(l) to be non
zero,n1 must dividel, and consequently (as none of thexi is
a constant map) for alli ∈ I2, xi(t) is n1τ0 periodic. This is
incompatible with the partition ofI. Thus,K = 1 and thereby
τ is a constant map (in other words,I is synchronized).

E. Perspectives of application to classical differential systems

In this last section, we show how the cellular systems point
of view may be applied to classic differential systems and
how dealing with different Banach spacesEi may be useful.
This discussion will be enlightened with a really simple
example (finite population).

Let E be a Banach space andF a vector field onE. We
want to see how this differential equation may be seen as
a cellular system. For instance, one could consider a simple
conservative system onE = R

4 with an Hamilton’s equation
given by (see [1])

x′
1 = y1

y′
1 = αx1 − βx3

1 + εx2

x′
2 = y2

y′
2 = −γx2 + εx1

The first step is to identify the different cells ofI. The first
step is to factorize each term in the equations according to the
different variables. For example, the second equation may be
seen as:

y′
1 = (α − βx2

1)x1 + εx2

So that the term(α− βx2
1) has to be a part of the coupler we

are building. Moreover, as it’s the equation givingy′
1, and as

the way a cell computes how it interprets the population’s state
depends only on its own state,x1 and y1 have to belong to
the same cell. In this simple example it’s the only case where
to variables have to be gathered in the same cell. In the end,
this leads to the following structure of cellular system:

I = {1, 2, 3}

with the Banach spaces:

E1 = R
2, E2 = E3 = R

As it should often be the case, the associated vector fields are
just identity maps onEi, and the coupler is then:

c =




c11 c12 c13

c21 c22 c23

c31 c32 c33




with

c11 : E1 −→ L(E1)

(x1, y1) 7−→

[
0 1

α − βx2
1 0

]



c12 : E2 −→ L(E2, E1)

x2 7−→

[
0
ε

]

c13 : E3 −→ L(E3, E1)

y2 7−→

[
0
0

]

c21 : E1 −→ L(E1, E2)
(x1, y1) 7−→

[
0 0

]

c22 : E2 −→ L(E2)
x2 7−→

[
0
]

c23 : E3 −→ L(E3, E2)
y2 7−→

[
1
]

c31 : E1 −→ L(E1, E3)
(x1, y1) 7−→

[
ε 0

]

c32 : E2 −→ L(E2, E3)
x2 7−→

[
−γ

]

c33 : E3 −→ L(E3)
y2 7−→

[
0
]

Now, before applying some of the previous techniques, we
may compute the different decomposition ofc upon different
non trivial partitions ofI. Those partitions are:

P1 =
{
{1}, {2}, {3

}
}, P2 =

{
{1, 2}, {3}

}

P3 =
{
{1, 3}, {2}

}
, P4 =

{
{1}, {2, 3}

}

which gives:

cP1 =




0 c12 c13

c21 0 c23

c31 c32 0


 cP2 =




0 0 c13

0 0 c23

c31 c32 0




cP3 =




0 c12 0
c21 0 c23

0 c32 0


 cP4 =




0 c12 c13

c21 0 0
c31 0 0




Now, in order to simplify, we replace thecij that are identically
zero by0, we obtain the following different matrices:

cP1 =




0 c12 0
0 0 c23

c31 c32 0



 cP2 =




0 0 0
0 0 c23

c31 c32 0





cP3 =




0 c12 0
0 0 c23

0 c32 0



 cP4 =




0 c12 0
0 0 0

c31 0 0





In the end, writing the coupler as an application fromS to
L(S), one finds those four matrices:




0 0 0 0
0 0 ε 0
0 0 0 1
ε 0 −γ 0







0 0 0 0
0 0 0 0
0 0 0 1
ε 0 −γ 0







0 0 0 0
0 0 ε 0
0 0 0 1
0 0 −γ 0







0 0 0 0
0 0 ε 0
0 0 0 0
ε 0 0 0




At this point, we just have to check that the coupler is
weakly injective:

ker
(
cP1

)
∩ E2 = ker

(
cP4

)
∩ E2 = {0}

ker
(
cP2

)
∩ E3 = ker

(
cP3

)
∩ E3 = {0}

So, we may apply the proposition 1 and without any analytic
calculus, state that this differential system may not admitany
quasi-periodic solution. In other words, in case there exists
periodic trajectories (which is well known to be true) they
must be synchronized.

Moreover, those conclusions may hold in a more general
case were thecij are less simple, and we can easily produce
a result without any effort:

Proposition 8 (Generalized coupled pendulum). Let’s con-
sider a differential system which is driven by the following
equations:

x′
1 = a1(x1, y1)x1 + a2(x1, y1)y1 + a3(x1, y1)x2

+a4(x1, y1)y2

y′
1 = a5(x1, y1)x1 + a6(x1, y1)y1

x′
2 = a7(x2)x2 + u(x2)y2

y′
2 = ε(y2)x1 + a8(y2)y1 − γ(y2)x2 + a9(y2)y2

If the mapsu and ε never vanish, then the systems has no
quasi-periodic solution.

This result doesn’t have to be deep in itself, neither has it
to be the most general one we could have deduced from the
previous discussion. It’s just a sketch of how one can handle
some structure properties of a differential system, applying 1,
without going into deep and specific calculus.

V. CONCLUSION

In this work we have built a general framework of cel-
lular systems in order to handle a wide variety of coupled
systems, and therefore a wide class of complex systems. We
focused on an emergent property of those dynamical systems:
the frequencies locking phenomenon. Usually one observes
solutions of particular coupled systems and shows that within
suitable conditions synchronization must occur. Those results
are qualitatively dependent on the systems of interest and
do not stand in the general cases. We tried to change our
point of view and to bring out completing results. As we
choose not to address the problem of the convergence to a
periodic solution, we don’t prove that synchronization ulti-
mately happens. Instead, we consider the problem at its end:
if one supposes that some coupled systems “truly” oscillates,
then they must be synchronized, regardless to the individual
dynamical systems as soon as the maps which define each
of them are injective nearby the trajectories. The loss in time
evolution information is compensated by very general results,
almost independent from the individual differential systems
to be coupled. For example, we proved results concerning
countable coupled systems, each of them needing not to be
finite dimensional. In most papers (see for instance [13])
this population of coupled systems is implicitly defined and
has only two cells (sometimes a finite numberN , and more



rarely an infinity). Moreover, on the contrary of what most
studies about synchronization issues state, we do not assume
anything concerning the cells dynamics (especially, we don’t
assume that they are oscillators). We only assume that they
exhibit periodic behaviors under the coupling effects (thefirst
assumption implies the second, but the opposite is clearly
false).

We believe that this way of reaching general results about
cellular systems gives some explanations about why the fre-
quencies locking phenomenon emerges naturally in a large
variety of coupled dynamical systems. Our results show that
the following alternative is natural in many cases: either the
whole population is synchronized, or its cells can’t all have
periodic behaviors.

Another interesting perspective is to apply this strategy to
differential systems, as we outlined in the end of the fourth
section. We think that it could prove useful to understand
the stability or instability of limit torus when one adds some
perturbations to a differential system. For example, if one
already knows that there’s no periodic solution, even with
perturbations, and if on is able to prove, using our strategy,
that a quasi-periodic solutions disappears under the effects of
those perturbation, some conclusions about strange attractor
emergence may be reachable.

Moreover, we have achieved some similar work on a natural
generalization of this strategy to non countable population (in
order to model natural systems, it’s often necessary to handle
continuous populations). We truly think that all those results
are only a part of what can be done using cellular systems
and that this work enlarges the possibilities of studying
synchronization issues. But the scope of those kind of cellular
systems may be beyond synchronization questions, as it’s
quite general and allows some theoretical studies. It couldbe
a promising theoretical tool to model complex systems by the
way of coupled differential systems.
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