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Abstract—We address the question of frequencies locking in of research to be highly interdisciplinary, from pure thetw
coupled differential systems, related to the existence ofugsi- concrete applications and experimentations.
periodic solutions of differential systems. Our tool is wha we The classical concept of synchronization is related to the

call “cellular systems”, quite general as it deals with coutable . . ? .
number of coupled systems in some general Banach Spaces!ocklng of the basic frequencies and instantaneous phdses o

Moreover, the inner dynamics of each subsystem does not haveregular oscillations. One of the most successful attempts t
to be specified. We reach some general results about how theexplore this emergent property is due to Kuramoto [14], [15]
frequencies locking phenomenon is related to the structuref Ag in Kuramoto’s work, those questions are usually adddesse
the coupling map, and therefore about the localization of gasi- by studying specific kinds of coupled systems (see for istan

periodic solutions of some differential systems that may bseen . . . .
as cellular systems. This paper gives some explanations atio [9): [22], [8]). Using all the classical methods available i

how and why synchronized behaviors naturally occur it a wide the field of dynamical systems, researchers study specific

variety of complex systems. trajectories of those systems in order to get information on
Index Terms—coupled differential systems, synchronization, POssible attracting synchronized state [28], [13], [2Z9][
frequencies locking. [8], [12].
The starting point of this work was the following question :
. INTRODUCTION “Why synchronization is such a widely present phenomena ?”

YNCHRONIZATION is an extremely important and in-In order to give some mathematical answer to this question,

eresting emergent property of complex systems. The fitg€ first step is to build a model of coupled systems that
example found in literature goes back to the 17th centurig wits biologically inspired. This is what is done in the second
Christiaan Huygens’ work [11], [2]. This kind of emergensection, after having described some basic material, weelefi
behavior can be found in artificial systems as well as ihat we call cellular systems and cellular coupler. If one
natural ones and at many scales (from cell to whole ecolbgi®¥ould summarize the specificities of cellular system, ondato
systems). Biology abounds with periodic and synchroniz&@y that each cell (subsystem) of a cellular system receives
phenomena and the work of Ilya Prigogine shows that suformation from the whole population (the coupled system)
behaviors arise within specific conditions: a dissipatiracs ~according to some constraints:
ture generally associated to a nonlinear dynamics [20]- Bio « a cell has access to linear transformations of all the others
logical systems are open, they evolve far from thermodynami  cell’s states
equilibrium and are subject to numerous regulating pr&sss .« the way this information is gathered depends (not lin-
leading to highly nonlinear dynamics. Therefore periodic  early) on the cell's state itself

behaviors appear (with or without synchronization) at any gher words, a cell interprets its own environment via the

scale [21]. More generally, life itself is governed by cii@  gia105 of the whole population and according to its own state
rhythms [9]. Those phenomena are as much attractive as theyt,s a bit surprising that despite this model arising very

are often spectacular: from ci_cada populations that app turally, it gives a good framework to address the main
spontaneously every ten or thirteen years [10] or networ Bestion. Indeed, in the third section we expose a locadizat
of heart cells that beat together [17] to huge swarms fsult concerning periodic trajectories of cellular sysde

. . L é’cording to some sub-periods dependencies. It exhihite so

- . inks between the coupler's properties and the structure of
position among emergent collective phenomena becauss of |

various applications in neuroscience, ecology, earthrgeie périodic trajectories.
for instance [27], [25], [16], as well as in the field of couple The fourth section gives some example of general results

q ical ¢ allv th h th " ¢ cla that may be proved using the localization lemma. Moreover,
ynamlc'a systems, especialy throug € hotion ot clao goes out of the scope of coupled systems as synchronizatio
systems’ synchronization [18], [7] and the study of couple

: o ~1s strongly related to the more abstract field of dynamical
oscillators [13]. This wide source of examples leads thel fie ystems. If one thinks about presence of regular attraéiors
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« limit cycle the classic PicardLindelof theorem to be valid.
o limit torus
Those attractors can be related to coupled systems in afsiven an interval) C R, atrajectory z of 7 is an element
obvious way: roughly speaking, a point attractor may bef C* (€2, S). Suchz is then described by a family af>
seen as a solution of coupled systems for which each applications(z;);cz such thatvi € Z:
the subsystems has a constant behavior. Similarly, a limit
cycle may be thought as the situation where every subsystem zi: Q@ — B
oscillate, all frequencies among the whole system being t— @)
locked. A limit torus is a similar situation Whiph differsdim  The space of trajectories ahis denoted? .
the previous one by the fact that the frequencies are noebbck
(non commensurable periods of a quasi-periodic solution ofA period on 7 is a mapr : T — R A trajectoryz € T

the whole coupled system). Hence, the three previous Cagesaid to ber-periodicif for any i € Z, z; is 7(i)-periodic

may be translated into the coupled dynamical systems CONEX 4 non constant:(i) is then said to be period of the cell

) ) ) i. The space of such trajectories is writt&n
+ point attractor— constant trajectories . Each celli is supposed to behave according to an au-
« limit cycle «— periodic trajectories, locked frequencies (5nomous differential system given by a vector figld: E; —
« limit torus < periodic trajectories, unlocked frequenmeE_ Thus, given a family of function§F;};c7 we define the

vector field Fr on S:
Therefore, we deduce some results about the localization of

solutions of the third type, quasi-periodic solutions ngsihe Fr: § — &
point of view of coupled dynamical systems. The results of z +— Fr(z)
this third section may help to understand why the second cas . :

. . . with, for anyi € Z:

is the most observed in natural systems, which may be seen as

coupled dynamical systems, at many levels. Indeed, thisect [Fr(2)], = Fj(a;)

ends with a sketch of how the cellular systems point of view
may be applied to a wide class of differential systems inordRemark. The definition of periodic trajectory handle both
to SyStematica”y address those questions with algemﬂis.t classical Concepts of periodic and quasi-periodic sahstiof a
differential system. From the point of view of coupled syste
[I. BASIC MATERIAL AND NOTATIONS it describes the situation in which each subsystem of the
As our model is inspired by cellular tissues, some termvghole system oscillates. We stress the point that a period of
clearly come from the vocabulary used to describe thoseskindl periodic trajectory needs not to be a minimal periogi X

of complex systems. isn't necessarily a generator of the group of periodscgt
Nevertheless, our definition of, avoid any trajectory which
A. Model of population behavior contains some constant component (none ofithean be a

. . nstant map) as they may be seen as degenerate (localized
Here are the basic compounds and notations of our modpe(t: P) y may 9 (

A populationZ is a countable set, so we may consider it o an hyperplane” ofs).

as a subsef C N. Moreover, as it's only the cardinality af ~ We recall that a (finite) subs¢t,, ..., 7.} of R is said to be
that's important,Z may be chosen as an interval of integefationally dependent if there exists some integets, . .., i
Elements off are calledcells non all zero and such that:

We suppose that the systems we want to study are valued hrmt...+ e =0

in some Banach spaces. Thus, for ang Z, (E,, |.]|:) is a

" Then there exists a unique lowest common multipden) =,
?analgfgpace, and thetate spaceof Z is the vector space for which there exitsi,., .. .. nx such that:
= 1:_

el nim =...=NkgTk = T0
We will sometimes identifyE; with
An infinite set of real numbers is said to be rationally depen-

H{O} x B x H{O} cs dent if any finite subset is rationally dependent.
J<t s Now, any periodr on Z (or, equivalently, any periodic
and then consider it as a subspaceSof trajectory) defines a equivalence relation Hras:
We denoteS, the space of uniformly bounded states: i~j < {7(@),7(y)} is a dependent set
Sy = {I €8, sup ||zl < OO} Hence we may consider the (countable) partitibfr) of Z
i€ into equivalence classe#(countable):

This subspace will sometimes be useful as, embodied with the
norm ||zl = sup;cz ||zil|;, it's @ Banach space, allowing I(r) = {Th tpex



B. Cellular coupler and cellular systems M € L(S) may then be written as an infinite @fisn't finite)

In this section we build what we catlellular systemdyy matrix:

way of cellular coupler Most of the works always deal with M = [mij) jere > mag € L(E;, Ei)

a specific way of coupling dynamical systems: one adds|@this context, here is the definition of a cellular coupler o
guantity (that models interactions between subsystemi)eto 7-

derivative of the systems. This leads to equations with the ) ,

following typical shape (here, there are only two couple@ennltlon 1. A cellular coupling mapon 7 is a mape:

systems): c: § — L(S)
x — c(x)
2\ (t) = F(21()) + Gi (21(1), 2(1)) such that the matrifc;;]; ;7. satisfies:
2y (t) = F(22(t)) + Go(a1(t), 22(1)) 1) ¥(i,j) € I% Yz € S, cij(x) depends only om;

(so that we may consider it as a map
The functionsG; and G, are the coupling functions. The ¢ij : By — L(E;, Ey));
problem is then restated in terms of phase-shift variabieks a
efforts are made to detect stable states and to prove thei2) Vi € Z, Vz; € E;, Z llcij(zi)]l; < +o0
stability. jeT

Our approach to coupling is different. We study exclusivelynen ¢ defines aellular couplers onZ in the following way:
a way of coupling where the exchanges are made on the

current state of the system. This means that the coupling . 8§ — S
quantity applies inside the map, which leads us to the r — c(x)x
following type of equation: In other words (for the sake of simplicity, we only take

examples with a finite population), for anye S, the matrix
¢(x) has the following shape:

) (t) = F(21(t) + Hi(z1(t), 22(t))) 1)

e4(t) = F(aa(t) + Ho(n (1), 22(1))) eule) oo ewlen)

clx) = : ; € L(S)

Remgrk.We stress the point that t_hose two diﬁgrent ways of ca(zr) - crelar)
handling coupled systems are quite equivalent in most cases
Indeed, starting with the first two equations, as sooras ~\nd then:
and G, stay in the range of" (which is likely if the coupling ci1(z1).x1 + ...+ cp(zr).o
functions are small), we can rewrite them in the second shapg ;) = ¢(z).2 = : cS

involving H; and Hs. a '
g 1_ 2 ) ) ) ckl(xk).xl -l—...—i—ckk(xk).xk
The last kind of coupled systems is sometimes studied (for

instance in [12]) but never broadly (indeed, if one wants sonNoW we can define a cellular system:

quantitative results about convergence of trajectories,roust Definition 2. Let F; be a vector field o given by a family
work with specific equations and dynamical systems). Even {iF;},.7 of vector fields on the;. Let ¢ a cellular coupler on
a few papers that are quite general (as the very intere#y [ 7. (Z, Fr,¢) is called acellular systemA trajectory of this

some strong assumptions are made (in [24] authors deal wdifstem is a trajectory € 7 that satisfies:
symmetric periodic solutions). The kind of coupled systems

we handle are a generalization of the one describe in eguatio o' = Frod(z) = Fr(c(v).x)
(2). Its general shape is: in other words:

()= Fi [ Y eqjai(t)z; (1) Vie L, VteQ, aj(t) =Fi | Y cij(wi(t).a;(t)
jeT jeT
d This equation may be naturally interpreted in biological

by a mapF; (hence, all the dynamical systems are not forcibl rms: the cell behaves according to a mean of the states of

identical nor have the same shape, nor that they are wea || other cellsz;, but only its state defines how this mean is

coupled (as in the classical paper of Art Winfree [26]). Alcel mputed (t_he cell |_nterprets_ its own environment), a_nd thi
ink state— interpreting functionhas no reason to be linear

1 “interprets” it's own environment by mean of the function
Cij. nx;.
Before giving the exact definition of a cellular coupler, _ _
we recall that, asS may be seen as a module on th&emark.In order to avoid any confusion, we stress the

ring Hqu)’ £(S) has to be understood as the space gifferences between trajectory and solution regardingppéer
e behaviors. In this paper, periodic trajectory has a specific

linear operators o with coefficients in theC(E;, E;). Any meaning related to the cells. A periodic trajectory of awda

Each celli € 7 holds it's own differential system represente



system is a trajectory for which each cell has a periodicbbeha We can then go further and begin to work on the heart of

ior. From the classic point of view of differential equation our matter. The forthcoming result that can be used in many
periodic and quasi-periodic solutions of the cellular eyst ways and generalized as, for the sake of simplicity, we did

are periodic trajectories. In the case of a periodic sahjtionot use the weakest assumptions under which it holds (for
7(Z) admit alcm, which false in the case of a quasi-periodiexample, the series convergence in the proof can be insured
solution. in many other contexts).

In the next section we start of by exposing algebraic Iinli_se
between a cellular coupler and a periodic trajectory, am th
we turn to our localization lemma.

mma 1. Let (Z, Fr,¢) be a cellular system and a period
onZ. LetU C S on which Fr is injective. Ifx € 77 is a
periodic trajectory of cellular system that satisfies:

IIl. L OCALISATION LEMMA 1) 2(Q) C S ;

If M is a matrix indexed orZ?, and if J C Z, we write 2) e(x)(Q) cU
J =7 - J and we define// as the matrix: _
then there existd € S, such that for anyt € Q:
M = (mij)(z‘,j)eij
Forz € S (resp.z € 7) we denoter”’ the vector (resp. the

map) [z;]ics (see figure 1). x(t) — b € ker (c(x(t))ff(f))

~l

Remark. Note that the first condition om is useless ifZ is
finite.

The previous result is not very practical as it involves the
trajectoryz itself, which is unknown. As there is no ambiguity,
we define the kernel of*(") as:

ker (CI(T)) = U ker (c(x)f(f))

_ zeS

Hence we may give a weaker version of the previous lemma

M X Corollary 1. Under the conditions of lemma 1 there exists
b € S such that:
Fig. 1. Matrix and vectors associated to a subbetf 7.

If Z(r) = {I,...,Ix} is a partition ofZ, we define the z (§2) — b € ker (CI(T))

matrix MZ(7) as (see figure 2):

min(T) = { (T)nij :; rgi)’tj) ot Ul Proof: (of lemma 1) First of all, let's check thaix) is
T-periodic.

For anyi € Z, «} is 7(i)-periodic and non constant far; is
so. Let'sU; = U N E;, F; has to be injective of/;. Hence,
M?" asz is a trajectory of the cellular syster; (¢(x);) must be
I 0 periodic and thert(x); is 7(i)-periodic. Therefore¢(z) is
T-periodic.

L L
L M> 0 M> Now, according to the partitiof () = {Z.},., defined

by 7 (see section II-A), let € K andi € Z;.. For anyM € N
we define the following set:

L M" 0 | M"

M =17, n [0, M]
L M* 0

The setr (Z}) is now a finite dependent set, so that we can
Fig. 2. Matrix associated to a partition @i consider itsicm 7. Now, for any;j € ZM, z; and¢(x); are



7 -periodic, so that, for any intege¥:

1 N

&(x)i(t) = ] Z &x); (t+1mT)

:—ZZCU IZ t—i—lTk ))x7 (t—i—lT,iw)

= OJGI
= ZZC” x;(t x7 t—f—lTk )
= OJGI
= Z Z cw x;(t)).x;(¢)
= OJGIAI
+—Z Z cij (zi(t w‘(t—l—lTéw)
N“Lllogezk -~ ’ ’
1 N
+—N+1Z cij (zi(t)) .y (t+ 1)
1=0 jez,
= > ciyl@(t) ;)
jeTM
1 N
+ N——|—1 Z Z CU (l’l(t)) (EJ (t+ lTéw)
1=0 jeT,—TM

theorem (see for instance [23], [4]) and write:

1 7@
§ (t+1rM) = = (5)d
N—»+ooN z (t+ 7—’/0 zj(s)ds

I
‘:
Ry

ﬁ
S
8
<
—~
Va)
S~—
Q
Va)

so that:

yim z; cij (wi(t))
JE€Lk

=3 ciy(wilt)d

€Tk

hence, we have shown that:
A@)ilt) = > cij(@i(t).2;(t) + > cij(wi(t)) b
7€k J€Tk
But, obviously, from the beginning we had:
Aa)i(t) =Y eij (i) (t) + Y cij(wi(t)).a;(t)
JE€T JETK
So that:

Z Cij (xz(t))xj(t) = Z Cij (.Iz(t))bj

JETK JE€Tk

As z is uniformly bounded, using the second property of &he previous work can be done for anwhich belongs tdy,
coupling map (def. 1), we may invert the summation orders fRUs we can summarize in the following way (see previously

the previous equation and compute the limits wién— +oo

and N — 4o in any order. Thus we have:

c(x)i(t) = Z cij (i (1)) (t)

jeM
+ Z C'LJ ZCZ N+1Z.§Cj t—'—lTk )]
JETL—
1 N
S et [ )
€Tk =0

for the same reasons, it's easy to show that: and

M,J%/ingoo Z iy (#i(1)

JETL) —I}y

Now, as for allj € I, 7 andr(j) are non commensurable,

N
1
—Zx»(t—i—lnﬁw)} =0
N+1&™

defined notations):
c(x(t))zk. (x(t) — b)ﬂ =0

Again, the previous conclusion still holds for aty e K,
hence we may conclude using our notations:

c(z®) " (@) - b) =
]

In the next section we give some examples of results based
upon this lemma. We will mainly show how lemma 1 may
be applied to turn synchronization issues (and existence of
guasi-periodic solutions to a differential system) intgeddraic
problems. One of the main argument is that one wants to avoid
periodic trajectories for which one cell is inert (a constan
map), as it may be discarded from the population (in the
case of an infinite population, this may lead to recurrence
reasoning).

IV. APPLICATIONS

if we denoter; the generator of:c7 group of period, as A, \Weakly injective coupler

() = nyT; ’ for | a certain integen;, 7\ andr/ as well are non

t+1imM
commensurable. Therefore, the seque ce+—

In this example we just write down an elementary property
of ¢ which ensures that a periodic trajectory must have an
inert cell.

equidistributed mod, and we may apply some classm ergodic



Definition 3. Let ¢ be a cellular coupler off. ¢ is said to c(:c(t))z(f) contains only one non zero element ;1 ;1.
be weakly injective if for any non trivial partitiof () of Z As this linear map is injective for anye 2, we know that:

there exist; € 7 such that:
ker(c(x(t))*) () Eio1 = {0}

Vo e S, ker (c(:v)I(T)) NnE;, ={0} ) .
Applying lemma 1 we know that there exists ; € E;

Now we can state a simple result: such that for any € Q:
Proposition 1. Under the conditions of lemma 1 dfs weakly zi_1(t) — bi_1 € ker (C(x(t))z(r)) m E;i
injective and ifz is a 7-periodic trajectory of the cellular
system, therr(Z) is a dependent set. i.e.z;_1(t) = b;_1 is a constant map, which contradicts the
. - _ definition of a periodic trajectory. So we can conclude that
Proof: Let suppose thatZ(r) is not trivial, applying -7 -
lemma 1 we know that: If we assume that is bounded, this result may be restated
C(I(t))z(f), (x(t) —b) =0 as: “as soon a& consecutive cells are synchronized (locked

. S ) frequencies), then all the population is syncrohnized”.
As ¢ is weakly injective, there existse Z such that:
VteQ, z(t); = b Moreover, we may drop some assumptions made on the
’ indentical dimension of thé’; and reach an interesting con-
which contradicts the definition of a periodic trajectory.®m necting result concerning the case wher: 1.

This result may be restated in terms of quasi-periodic . )
solution of the cellular system: Proposition 4. Let (Z, Fz,¢) be a chained cellular system

N N N coupled withl-nearest neighbor. Lef’; be injective orV C S
Proposition 2. Under the conditions of lemma 1,dis weakly andx a 7-periodic trajectory that stays ity. If ¢ has maximal
injective and ifr is bounded, the cellular system has no quastank and if there exists two sefs and I in Z(7) such that:
periodic solution.

_ _ . [i,i+1]ch [i+2i+3]Cl
The next example deals with some topological properties of

a coupler (how it connects cells together). Thenl, = I,.
Proof: Let suppose that the celis+ 1 have non com-
B. Chained cellular system mensurable periods with those of the celis2 (i.e. I; # I5).
In this section, for the sake of simplicity, all the vectof©!lowing the previous proof, we know that the lines- 1
spacesF; have finite dimension. andi -+ 2 of the matrixc(z(¢))%(") contains only one non zero

element, respectively; 1 ;2 andc; 2 ;4+1. But, we recall that

We first study the case of differential systems for which thi@" anyt € €
spaces; have same dimension and are coupled withearest
neighbors (the finite dimension condition isn’t necessauy,it
makes the exposure simpler). This case is formally destriband
by a cellular system(Z, Fr,¢) where Z is countable, all Cir2,it1(Tit2(l)) : Eip1 — Eiga
dim(E;) = n andc¢ satisfies:

Cirtit2(®it1(t)) : Bipe — Eipy

As the coupler has maximal rank, one of the previous map
Vi,j €T, |j—i|>k=c;=0 must be injective for alt € Q. Using the same argument we

o ) ) may conclude that eithet;;, is a constant map, either it's
This is what we call echained cellular systemAdding the ;. |eading to a contradiction. -

following condition on the coupler, we may reach a general poreover, one could restate those results in terms of quasi
result: periodic solutions of differential systems, but it may sdun

Definition 4. A cellular coupler? is said to havdull rank if ~l€ss intuitive. We will do it in the next sections.

for anyi,j € 7 andz € S the mapc;;(z) has full rank . -
For the next example, we add some regularity conditions on

Proposition 3. Let (Z, Fz,¢) be a chained cellular systemne cellular system which lead to a interesting descriptibn
coupled withk-nearest neighbors (alE; having same finite g

dimension). Lef#r be injective on/ C S andx a 7-periodic
trajectory that stays irV. If ¢ has maximal rank and if there

existsI € Z(r) which contain22k consecutive cells, i.e. therec' Localization results with bounded states

existsi € Z such that: As (S, ||-ls) is @ Banach space, the classic PicardLindelof
o theorem is valid and we can give a version adapted to cellular
[i,i+2k—-1]c1 systems (we stress the point that in this section, any vector

ThenZ(r) = {T} (equivalently,r(Z) is a dependent set). field Iz has tg be_ a vgctor field oy, as well for any
o cellular coupleg, which brings some constraint on the families
Proof: Let suppose thaf # Z. There must exisfi, i + (Fy)icz and (cij) (i, j)ez2)-

2k] c I, such that —1 ¢ I. Then, linei+ k& —1 of the matrix



Proposition 5. If Fr : S, — S, and ¢ are locally lipshcitz, D. Exact frequencies locking with homogeneous cellular cou
which is the case if for any € S, there exists a neighborhoodpler

V = I Vi, a positive numbet: and a sequencék;)jez of |t ; ¢ 72, for anyi € T the mapa; equals its Fourier's
i€T . o
positive numbers such that: series. We write:
. 2imkt
1) Vy,z € V\Vi € T, ||Fi(y:) — Fi(zi)lls < Kllyi — zills ek () = exp (L)
2) Vy,z € V,Vi € T, |leiy () = cis ()l (m,,m0) < Killys — (@)
Zills and we define :
3) Y ki< +o0 ) .
JjET Ezk :—/ IiteTitdt
(k) A (t)ez ()

then, given any initial conditioft®, 2°) in R x Sy, the cellular
coupling admits a unique maximal solutian that satisfies So that we have :
2(t%) = a°. z=Y z(k)e"

Before stating our localization result, we need to define
the sets that any non synchronized periodic trajectory ef th€- Viel
cellular system must avoid (or, with the classical point ity vi(t) = > Fi(k)el (1)
any quasi periodic solution). keZ

Definition 5. Let & be a cellular coupler off. The set of With normal convergence (note thai(k) is E;-valued).

regular points forc is defined as:
Theorem 1. Under the conditions of lemma 1, let be
R(c) = {50 € 8, VI(r) partition of Z, c(x)*) is injective} homogeneous and regular.fis a bounded period off andz
a r-periodic trajectory of the cellular system therns constant

We say that® is regular if R(¢) = S. onT.
Now we can state a localization result: Remark. As this result is true as soon asis a period of

Proposition 6. Under the conditions of lemma 1 and propo#: it may be applied to the minimal periods of each then
sition 5, if there exists a infinite compact sub$et- Q such its conclusion is that all cells have exactly the same mihima

that: period.
Vt eV, 2(t) € R(©) Proof: As ¢ is_ homogeneous, we may identify it yvith
Moreover, applying lemma 1 we know that(Z) is a
thenr(7) is a dependent set. dependent set (unless at least one of thewould be a

. . . ) ) constant map). We now have to prove thas constant orf.
One can rewrite this result in terms of differential systems

Proposition 7. Under the conditions of lemma 1 and propo- Let's write a partition ofZ according tor’s values onZ
sition 5, and ifr is bounded, a quasi-periodic trajectory musfwe must recall that is supposed bounded):

“avoid” R(¢) (it can’t cross this set on an infinite compact

subset of). {71, 25, ..., Ik}

such that

Proof: (of proposition 6) Let suppose th&k(r) is not
trivial, applying lemma 1 we know that: VI<k <K, 7(Ix) = 7

(1) andTl 7é Tk if 1 7& k.
c(z(t)"" . (z(t) —=b) =0
the assumptions made @nensure that: We now suppose tha > 1.
VteV, z(t) =b As 7(Z) is a finite dependent set, there exists, . .., nk
integers andy, (thelcm) such that:
As V has an accumulation point, we may conclude that there
existsty, € V such that: To =T =N2T2 = ... = NKTK

The trajectoryx is mp-periodic. We may therefore write its

/
2'(to) =0 Fourier's series:
Proposition 5 may be applied, hence we know that x(t) is (t) = Z F()e (1)
a constant map, which contradicts the definition of a peciodi ez o
trajectory. [ ] _
The next example gives a more precise result in the ca%'()-zd as well fore.z :
where the maps;; don’'t depend on the state of the system (c.z)(t) = Z@(l)elm (t)

(homogeneous coupler). =



uniqueness of Fourier coefficients forces them to satisfy:
cx(l) = cz(l)

So that, for anyi € 7:

k
cail) =Y ciy(l)
j=1

Now, let i € I, the properties of Fourier decompositio

ensure that; (1) andc.z;(l) are zero as soon as, does not
divide ! (as(c.x); andx; are 1,-periodic andry = ny7y).
So, if | € Z, let's definel(l) as:

I(l):{ke{lvaK}a Nk /i/l}
For any integerl, if £ € I(l) andi € Iy, thenZ;(l) =

not divide! andns divides!. As ¢ is regular,cZ®) is thereby
injective. We deduce that:

()W =0

This proves that for any divisible by np and not byn,,

Z(1)'™ is zero. Thus, for any coefficient 6(1)’() to be non
zero,n; must dividel, and consequently (as none of theis

R constant map) for all € Z,, z;(¢) is n17 periodic. This is

Incompatible with the partition of. Thus,K = 1 and thereby
7 is a constant map (in other words,is synchronized). ®

E. Perspectives of application to classical differentigétems

In this last section, we show how the cellular systems point
of view may be applied to classic differential systems and

c.z;(1) = 0, so that (with similar convergence arguments th@fow dealing with different Banach spac&s may be useful.

in the proof of lemma 1):

k
0= i@ (1) + Y eiEi(l)
JEI(l) JEI(l)
k
0= Z Cijfj(l)
J¢I(l)

This last property, (observable on figure 3), can be writen as

vieZ JdOz0)0O =0

10

ol

i) % (l)m

‘ooooo‘
‘ooooo‘

2"

() c 20

Fig. 3. Constraints on the Fourier's coefficierit§).

This property holds for any integér and is empty when
is a multiple of all then,. So that, ifZ(l) is the partition of

7 defined as: L
() = {10), 70}
we can re-write it as:
viez JUE1) =0

Let's now considefZ; # 7, (this is possible a€l > 1). As
those two classes are distinct, there existsch thatn; does

This discussion will be enlightened with a really simple
example (finite population).

Let ¥ be a Banach space ard a vector field onE. We
want to see how this differential equation may be seen as
a cellular system. For instance, one could consider a simple
conservative system o = R* with an Hamilton's equation
given by (see [1])

Ty = 0N

Yy, = am — [} +exy
! —

Ty = Y2
!

Yo = —yr2+teEx

The first step is to identify the different cells @ The first
step is to factorize each term in the equations accordingeo t
different variables. For example, the second equation neay b
seen as:

Yy = (@ — pad)a + ey

So that the ternfa — 32%) has to be a part of the coupler we
are building. Moreover, as it's the equation givipgy and as

the way a cell computes how it interprets the populatiorsigest
depends only on its own state; andy; have to belong to
the same cell. In this simple example it's the only case where
to variables have to be gathered in the same cell. In the end,
this leads to the following structure of cellular system:

7=1{1,2,3}
with the Banach spaces:
Ey=R?2.FEy,=FE;=R

As it should often be the case, the associated vector fiets ar
just identity maps or¥;, and the coupler is then:

C13
C23
C33

C12
C22
C32

C11
C21

with

Q
|
QO
8
=N
o =
[



C12 E2

T2

C13 - E3

Y2

Ey
(5817 yl)

E,

T2
Es
Y2
Ey
(Ila yl)

Ey
]

Co1 -

Co9

Co3

C31

C32

Es
Y2

C33

Now, before applying some of the previous techniques, we x?
may compute the different decompositionofipon different

e £(E2,E1)
0
3
— 7]
— L(FEs3,Eq)
0
0
— [0}
— E(El,EQ)
— [O O}
— L(Ep)
— [0]
I £(E3,E2)
— [1]
—  L(E4, E3)
— [e 0]
—  L(Ey, Es)
— [-7]
—  L(E3)
— [0]

non trivial partitions ofZ. Those patrtitions are:

Pr={{1},{2},{3}}, P = {{1,2}, {3}}

Py = {{1,3},{2}

which gives:
0 ci2 s
CP1 = C21 0 Ca23
| cs1 cz2 0|
0 C12 0
=1 cu 0 e
0 C32 0 i

}, Py = {{1}5 {273}}

Now, in order to simplify, we replace thg; that are identically

0 0 C13

CP2 = 0 0 Co3
| ¢s1 c32 0]

0 ci2 cas

CP4 = C21 0 0
L C31 0 0 1

zero by0, we obtain the following different matrices:

0 C12 0

CP1 = 0 0 Co3
c31 ez 0|

0 C12 0

CP3 = 0 0 C23

0 C32 0

In the end, writing the co

0 0 0

CP2 = 0 0 Ca23
| cs1 c32 O
0 C12 0
=10 0 0
L C31 0 0

upler as an application frémto

L(S), one finds those four matrices:

00 0 0]
00 ¢ 0
00 0 1
e 0 —y 0|
00 0 0
00 ¢ 0
00 0 1
00 — 0

00 0 O
00 0 O
0 0 0 1
e 0 — O
0 00O
0 0 O
0 00O
e 00 0

At this point, we just have to check that the coupler is
weakly injective:

ker (cPl) N Ey = ker (cP4) N E; = {0}
ker (¢") N B3 = ker (¢™) N B3 = {0}

So, we may apply the proposition 1 and without any analytic
calculus, state that this differential system may not admit
quasi-periodic solution. In other words, in case theretsxis
periodic trajectories (which is well known to be true) they
must be synchronized.

Moreover, those conclusions may hold in a more general
case were the;; are less simple, and we can easily produce
a result without any effort:

Proposition 8 (Generalized coupled pendulum)et's con-
sider a differential system which is driven by the following
equations:

ry = a(x,y)r + az(z, y1)y + as(xn, yi)ee
+as(21,Y1)y2
yﬂ = a5(x1,y1)171 + aﬁ(Ilayl)yl

/ —

ar(x2)re + u(T2)yo
e(y2)r1 + ag(y2)y1 — v(y2)z2 + ag(y2)y2

If the mapsu and € never vanish, then the systems has no
guasi-periodic solution.

This result doesn’t have to be deep in itself, neither has it
to be the most general one we could have deduced from the
previous discussion. It's just a sketch of how one can handle
some structure properties of a differential system, apglyi,
without going into deep and specific calculus.

V. CONCLUSION

In this work we have built a general framework of cel-
lular systems in order to handle a wide variety of coupled
systems, and therefore a wide class of complex systems. We
focused on an emergent property of those dynamical systems:
the frequencies locking phenomenon. Usually one observes
solutions of particular coupled systems and shows thatinvith
suitable conditions synchronization must occur. Thosaltgs
are qualitatively dependent on the systems of interest and
do not stand in the general cases. We tried to change our
point of view and to bring out completing results. As we
choose not to address the problem of the convergence to a
periodic solution, we don’t prove that synchronizationi-ult
mately happens. Instead, we consider the problem at its end:
if one supposes that some coupled systems “truly” oscdljate
then they must be synchronized, regardless to the indiVidua
dynamical systems as soon as the maps which define each
of them are injective nearby the trajectories. The lossrireti
evolution information is compensated by very general tesul
almost independent from the individual differential sysse
to be coupled. For example, we proved results concerning
countable coupled systems, each of them needing not to be
finite dimensional. In most papers (see for instance [13])
this population of coupled systems is implicitly defined and
has only two cells (sometimes a finite numk¥ér and more



rarely an infinity). Moreover, on the contrary of what mosfi1] C. Huygens, Christiani Hugenii Zulichemii, Const. Fordlogium oscil-
studies about synchronization issues state, we do not assum latorium sive De motu pendulorum ad horologia aptato dernatisnes

thi . th s d . iall td geometricae, Parisiis : Apud F. Muguet, Paris, France, 1673
anytning concerning the cells dynamics (espeC|a y, W€ OrP12] E. M. Izhikevich, F. C. Hoppensteadt, Slowly coupleditiators: Phase

assume that they are oscillators). We only assume that theydynamics and synchronization, SIAM J. APPL. MATH. 63 (6) @3

exhibit periodic behaviors under the coupling effects (st 1935-1953. .
}3] N. Kopell, G. B. Ermentrout, Handbook of Dynamical Systs Il

assumption |mpI|es the second, but the opposite Is Cleapy Toward Applications, chap. Mechanisms of phase-locking faequency
false). control in pairs of coupled neural oscillators, Elseviemgterdam, 2002,

We believe that this way of reaching general results about PP. 3-54. _ _ ,
lul . | . b hy th fPA] Y. Kuramoto, Self-entrainment of a population of coegblnon-linear
cellular systems gives some explanations about why the fre- oscillators, in: International Symposium on Mathemati®abblems in

guencies locking phenomenon emerges naturally in a large Theoretical Physics, vol. 39, Springer Berlin / Heidelher§75, pp. 420

variety of coupled dynamical systems. Our results show that 422. , - _
. L . Lo [15] Y. Kuramoto, Chemical oscillations, waves, and tuemde, Springer-
the following alternative is natural in many cases: either t Verlag, New York, 1984.
whole population is synchronized, or its cells can't all éav{16] S. C. Manrubia, A. S. Mikhailov, D. H. Zanette, Emergencf Dy-
periodic behaviors. namicz_:l! Ord_er. Synchronization Phenomena in Complex Bysst&Vorld
. . . . . Scientific, Singapore, 2004.
_AnOth_er Interesting perspectlye IS _tO apply this strategy El?] D. C. Michaels, E. P. Matyas, J. Jalife, Mechanisms afoatrial
differential systems, as we outlined in the end of the fourth pacemaker synchronization: A new hypothesis, Circ. Re¢1887) 704—

section. We think that it could prove useful to understand 714

- . " . [18] L. M. Pecora, T. L. Carroll, G. A. Johnson, D. J. Mar, J.Heagy,
the stability or instability of limit torus when one adds sem™ " |, jamentals of synchronization in chaotic systems, qusc@nd ap-

perturbations to a differential system. For example, if one plications, Chaos 7 (4) (1997) 520-543.
already knows that there’s no periodic solution, even wit®l A. Pikovsky, M. Rosenblumand, J. Kurths, Synchroricat A Universal

turbati d if . ble t . trat Concept in Nonlinear Sciences, Cambridge University Pr2881.
perturbations, and Ir on Is able to prove, using our strategy) | prigogine, Introduction to Thermodynamics of Ireesible Processes,

that a quasi-periodic solutions disappears under thetsffec Wiley, New York, 1967.
those perturbation, some conclusions about strange taitrad21l 1. Prigogine, Theoretical Physics and Biology, M MardNorth-Holland:

b habl Amesterdam, 1969.
emergence may be reachanle. [22] L. Ren, B. G. Ermentrout, Phase locking in chains of ipldtcoupled

Moreover, we have achieved some similar work on a natural oscillators, PHYSICA D 143 (1-4) (2000) 56—73.
generalization of this strategy to non countable popula¢i0 [23] Y. G. Sinai, Introduction to ergodic theory, Princetbimiversity Press,

order to model natural systems, it's often necessary tolean 1976. ; illation i
Y ’ y f£4] |. Stewart, M. Golubitsky, Patterns of oscillation iaupled cell systems,

continuous populations). We truly think that all those Hssu  in: P. P.Holmes, A.Weinstein (eds.), Geometry, Dynamia$ Michanics:
are Only a part of what can be done us|ng cellular Systems 60th Birthday Volume for J.E. Marsden, Springer-Verlag,wN¥ork,

. _—— . 2002, pp. 243-286.
and that this work enlarges the possibilities of study|n@5] S. Strogatz, Sync: The Emergeing Science of Spontan€bder, New

synchronization issues. But the scope of those kind of kegllu York: Hyperion, 2003.
systems may be beyond synchronization questions, as (8l A. Winfree, Biological rhythms and the behavior of pdgtions of

it | d all th tical studi It cbald coupled oscillators, Journal of Theoretical Biology 16 (1967) 15-42.
quite general and allows some theoreucal stuaies. It coa [27] A. Winfree, The geometry of biological time, Springererlag, New

a promising theoretical tool to model complex systems by the York, 1990.

way of coupled differential systems. [28] C.Wu, L. O. Chua, A unified framework for synchronizatiand control
of dynamical systems, Tech. Rep. UCB/ERL M94/28, EECS Diepant,
University of California, Berkeley (1994).
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