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Abstract—This paper describes a new algorithm to learn Self-
Organizing map as Markov Mixture Models. Our model realizes
an unsupervised learning using unlabelled evolutionary da sets,
namely those that describe sequential data. The new formalin
that we present is valid for all structure of graphical model
We use E-M (Expectation-Maximisation) standard algorithm to
maximize the likelihood. The graph structure is integratedin the
parameter estimation of Markov model using a neighborhood
function to learn a topographic clustering of not i.i.d dataset. The
new approach provides a self-organizing Markov model usingin
original learning algorithm.

data set of sequences not only the probability distribstiout
also the topological structure of the model, i.e., the nunabe
states and the transitions interconnecting them. Unfatgip,

this task is very difficult and only partial solutions are agd
available [7], [8], [9]. In order to overcome the limitatiorof
HMMs, in [9] the author proposes a novel and an original
machine learning paradigm, which is titled topological HYIM
that embeds the nodes of an HMM state transition graph in
Euclidian space. This approach models the local structfire o

HMM and extract their shape by defining a unit of information
as a shape formed by a group of symbols of a sequence.
Others attempts have been made for combining HMMs
and SOMs (Sel-Organizing Map of Kohonen) to form hybrid
models that contain the clustering power of SOM with the
Ince many years, temporal and spatial sequences haeguential time series aspect of HMMs [6]. In many of
been the subject of investigation in many fields, such @sese hybrid architectures, SOM models are used as fraht-en
statistics, pattern recognition, web mining, and bioinfatic. processors for vector quantization, and HMMs are then used
The easiest way to treat sequential data would be simplyitphigher processing stages. In [10], [11], a vector seqgeienc
ignore the sequential aspects and treat the observationssasssociated with a node of SOM using DTW (dynamic time
independent and identically distribution (i.i.d) in thesfistage. warping) model. Others works exist and differ in the manner
For many applications, the i.i.d assumption will be a poae.onof combination [12], [13], [14]. In [14] the authors propose
Often in many application the treatment is decomposed in tweiginal combined model which is the offspring of a crossove
steps; the first one is the clustering task with i.i.d assionpt between the SOM algorithm and the HMM theory. The
In second stage the result of clustering is used to learnmidel's core consists of a novel unified/hybrid SOM-HMM
probabilistic model by relaxing the i.i.d. assumption, ame algorithm where each cell of SOM map presents an HMM. The
of the simplest ways to do this is to consider a Markov modehodel is coupled with a sequence data training method, that
Hidden Markov Models (HMMs) are the most well-knowrblends together the SOM unsupervised learning and the HMM
and practically used extension of Markov model. They offetynamic programming algorithms. Of course, there is a lot
a solution to this problem introducing, for each state, amore litterature on HMMs and their applications than can be
underlying stochastic process that is not known (hidder) bebvered here, but this survey wants to be representativeeof t
could be inferred through the observations it generates. ifsues addressed here. However, in the other the orgamizati
fact the probabilistic graphical modelling motivates eiint process are not integrated explicitly in HMM approach.
graphical structures based on the HMM [1], [2]. Another The aim of this paper is to built a new model for automating
variant of the HMM worthy of mention is the factorial hidderand self-organizing the construction of a statistical gatiee
Markov model [3], in which there are multiple independenhodel of a data set of spatial sequences. In our model 3M-
Markov chains of latent variables, and the distribution cOM (Self-Organizing Maps as a Mixture Markov Models),
the observed variable at a given time step is conditional eve consider that we have one Markov chain forming a grid.
the states of all of the corresponding latent variables at tiThe generation of the observed variable at a given time step i
same time step. Many related models, such as hybrids gainditional on the neighborhood states at that same tinpe ste
HMMs with artificial neural networks [4], [5], [6]. Clearly, Thus, a high proximity implies a high probability to contitie
there are many possible probabilistic structures that aan o generation. This proximity is quantified using neighlmmti
constructed according to the needs of particular apptinati function. The same principle is used by Kohonen algorithm fo
Graphical models provide a general formalism for motivgtini.i.d data set [15]. In our case we focus about not i.i.d obser
describing, and analysing such structures. Therefore,lit wations. We use Expectation-Maximization (EM) algorithon t
be very important to have algorithms able to infer from gaximize the likelihood. The formalism that we present is
valid for all structure of graph model. In our case we prefer
to define the HMM architecture as map (grid).
This paper is organized as follows. In section Il we preseat t

Index Terms—Self-Organizing clustering, Markov Models, Se-
quential data, Expectation-Maximisation, graphical modé
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model we propose 3M-SOM. In section Il we discuss the sel#s in the book [19, chap. 13]. We denote the set of all latent
organizing process integrated in HMM. Finally, conclusionvariables byZ* andZ, with a corresponding row;, andz,,

and some future works are provided. associated to each sequence element Now assume that,
for each sequence observation i, corresponds the coupe
II. SELF-ORGANIZING MARKOV MODEL of latent variableZ and Z*. We denote by{X,Z,Z*} the
complete data set, and we refer to the observed %atas

We assume that the HMM architecture is a lattitevhich .
. . . incomplete.
has a discrete topology (discrete output space) defined by aq_he set of all model parameters is denoted mythe

undirect graph. Usually, this graph is a regular grid in one . o . . AT
two dimensions. We denote the number of cells (nodes,staﬁg lihood function is obtained from the joint distributicy

in C asK. For each pair of cells:(r) on the graph, the distance™ rginalizing over the latent variablés andZ

d(c,r) is defined as the length of the shortest chain linking p(X;0) = ZZP(X’Z’Z*59) (1)
cellsr andc. The architecture of 3M-SOM model is inspired Z- Z

from probabilistic topographic clustering of i.i.d obsations

using a self-organizing map model of Kohonen [16], [17],][18 Because the joint distribution(X, Z, Z"; ) does not fac-

torize overn, we cannot treat each of the summations a/er
andz,, independently.
A. Mixture model and Self-Organizing An important concept for probability distributions over
We assume that each element of sequence observationmultiple variables is that of conditional independence][20
X = {xi1,X2,...,Xn,..,Xn} iS generated by the following We assume that the conditional distribution Xf given Z*
process: We start by associating to each cell (state) C andZ, is such that it does not depend on the valueZof
a probability p(x,/c) where x,, is a vector in the data Often this assumtion is used for graphical model, so that
space. Next, we pick a celt* from C according to the prior p(X/Z,Z*) = p(X/Z). Thus the joint distribution of the
probability p(c¢*). For each cellc*, we select an associatedsequence observations is equal to:
cell ¢ € C following the conditional probability(c/c*). All . . .
cells ¢ € C contribute to the generation of ar(l /ele)meq{ p(X. 27, 2) = p(Z")p(Z/ 27 )p(X/Z)
with p(x,/c) according to the proximity te* described by thus we can rewrite the marginal distribution as
the probabilityp(c/c*). Thus, a high proximity ta* implies
a high probabili(tyéj(c/c*), and therefore the contribution of p(X;0) =Y p(Z*)>_ p(Z/Z")p(X/Z) (2
statec to the generation o%,, is high. z Z
Let us introduce &k -dimensional binary random variableWe note that
as latent variables,, andz;, having a 1-of¥ representation . .
in which a particular element,; andz*, is equal to 1 and P(X/Z") = Zp(Z/Z )p(X/Z) @)
all other elements are equal to 0. Each compongptand z
znk indicate a couple of state responsible for the generation ) o
of an element of the observation. Using this notation we c&h COSt function and optimization

rewrite: Considering a magl as Markov model, we allow the
probability distribution ofz’ to depend on the state of

p(xn/c) = p(xn/2ne = 1) = p(%n/2n) the previous latent variable” , through a conditional
and distribution p(z:|z*_,). Because the latent variables are

K-dimensional binary variables, this conditional disttiba
p(c/c”) = p(zne = 1/z50e = 1) = p(2ne/7pe) = (20 /2,)  corresponds to a table of probabilities that we denote by
iy The elements ofA are known as transition probabilities
%noted byAjr = p(zy, = 1/2;,_1 ; = 1), with >, Ajp = 1.
So the matrixA has maximum ofK (K — 1) independent
parameters. In our case the number of transitions are timite

is assumed to be known. To introduce the self-organiz
process in the mixture model learning, we assume t
P(zne/ 7k .«) €an be defined as:

(tne /2t ) = KT (8(c, ¢*)) by the grid (map). We can then write the conditional
PAEne/ Znes e KT(6(r, %))’ distribution explicitly in the form
where KT is a neighbourhood function depending on the K K §
parametefl” (called temperature)” (§) = K(5/T), wherek Pz )z 4 A) =D Y AT
is a particular kernel function which is positive and symricet k=1j=1
( ‘ml‘linoo’c(x) = 0). Thus K defines for each state;.. @  a|| of the conditional distributions governing the latent

neighbourhood region in the grapgh The parametef allows variables share the same parametrs

the control of the size of the neighbourhood influencing a The initial latent statez; is special in that it does not

given cell on the mag. As with the Kohonen algorithm for have a parent cell, and so it has a marginal distribution

i.i.d observations, we decrease the valuelbbetween two p(z}) represented by a vector of probabilitiewvith elements

valuesT,,q. andT},iy. mr, = p(z}, = 1), so thatp(zi|r) = Hszl 7*1ik, where
For the better understanding we have used similar notationg, =, = 1.



The model parameters are completed by defining the con-
ditional distributions of the observed variablg&x,, /z.,,; ¢), N K K
whereg is a set of parameters governing the distribution whic oldy _ N poldy s+
is known as emission probabilities in HMM model. Baa,0°%) = 2.2 Zzp(z 2K 07z

Becausex,, is observed, the distributiop(x,, /2., ¢) con-
sists, for a given value ofy, of a vector of K numbers
corresponding to thd{ possible states of the binary vector

"
zy In

(Ajk)

N K
z,. We can represent the emission probabilities in the formQs (¢, #°¢) = Z Z Z Zp(z*, Z/X;60°) 2,0 In (p(%n; d1))

Xn/z’n.7 Hp Xnaqsk an

— * . pold *
The joint probability dlstrlbut|0n over sequence observed @1 = ZZP(Z 2/ X;6%) Inp(Z/Z7)
variables and both later® and Z* is then given by z z

(X, Z*,Z:0) = p(Z*; A) x p(Z)Z*) x p(X/Z; ¢) At th!ks point, we introduce some notat|0_n. We ywll
use ~(z',z,) to denote the marginal posterior distribu-
r N tion of a latent variablez; and z,, and {(z)_,,z;) =
p(X,Z*,Z;0) = |p(z}|n) Hp(zjl/zjl_l;A)] p(z:_, 25 /X, 0°?) to denote the joint posterior distribution
L n=2 of successive latent variables, so that
N
X HP(Zi/ZZ‘)] V(2. 20) = p(2,, 2| X; 0°%)
;=1
[ N thus
< | T pGem/zm; 0) (4)
Lm=1

Y(zy) =Y p(zy, 2 |X;0°)
{m,A, ¢} denotes the set of parameters governing z
the model. Most of our discussion of the self organizing
Markov model will be independent of the particular choice B . old
of the emission probabilities. It's not obvious to maximthe V(= Zp % 20| X5 07)
likelihood function, because we obtain complex expression

with no closed-form solutions. Hence, we use the expectatio

maximization algorithm to find parameters for maximizing v(zi) = E[z5]

the likelihood function. EM algorithm starts with some ialit *

Z, . Zn)Z
selection for the model parameters, which we denoté4s{ ; ;7( noZn)
> e
-

In the E step, we take these parameter values and find the
posterior distribution of the latent variablgéZ*, Z /X, §°?).
We then use this posterior distribution to evaluate the etgpe

tion of the logarithm of the complete-sequence data likelth e observe that the objective function (3}6, #°/¢) is defined
function (4), as a function of the parametetsto give the as a sum of four terms. The first ter@y (7, #°/4) depends on

function Q(0,6°'%) defined by: initial probabilities; the second ter®,(A, #°'¢) depends on
oldy _ x . pold P transition probabilitiesA ; the third teer3(¢,9"ld) depends
Q0 07) = ;zz:p(z 2/X;677) lnp(X, 27, Z; ) on ¢, and the forth term is constant. Maximizir@(6, °'¢)
with respect tod = {7, A, ¢} can be performed separately.
Q.6 = 35 p(2*,Z/X; 6" np(Z*; 7, A) 1) Maximization of@Q: (, 6°'4): Initial probabilities:

K
+ > > p(ZF,2/X;0°) Inp(X/Z; ¢) Qu(m, 07 = SN p(z, 2/X; 695
zZx Z

Z+ 7 k=1

+ 3> p(2Z7,2/X;60°) Inp(Z/Z7) K
= = Z Zp(Z*/X; 0°'%) 25, Inmy,

Z* k=1
Q0,67 = Qu(m,6°%) + Qz(A,6°) -
old Z ¥(27) Inmg
+ Q3(¢,607¢) + Q4 ®) =
where The update parameter is computed as follows:
old = * old\ * T = %
(m, 0 :ZZZp(Z 2/ X;0%) 27 Inmy, Zf:lV(Zikj)

Zx Z k=1

(6)



2) Maximization ofQz (A, #°'¢): Probability transitions :  algorithm [21], or the Baum-Welch algorithm [22], [23]. In
our case it can be renamed topological forward-backward

old
Q2(A, 07%) = algorithm, because we use the graph structure to organéze th
N EE 7+ 7/ goldy ,* (A sequential data. Some formula are similar if we don’t use the
ZZ Z_: ZZP( VZ/X; 0% )20y 2 n(Agn) graph structure. We will use the notationé:*, ) anda(z,)
"’2;:1;_1K to denote the value af(z*) anda(z) whenz*, = 1, z,;, = 1
_ Z Z ZZP Z° /X 9"“ e n(Ag) with an analogous notations qz?(tX' .
Z* n=2k=1j=1 * _ * _ p Z;; p Z;;
ZZZ& Zn— 1] n AJ/C) o p(x1,.. Xnvzn)p(anrla"axN/Zrz)
neRkELIE B p(X)
The update parameter is computed as follows: (2%) a(z;,)B(z;,)
12z,) = — v
» DNIT{CIRIE - R §’<X> ) .
J
OPARD DI CAE Using the similar decomposition we obtain
where ~(z) (2n)05(2n)
. . . p(X)
-1 zn) = Blen-i%0] Z'Y Vo157 The values ofa(z’) and a(z,,) are calculated by forward
recursion as follows:
3) Maximization ofQ3(¢, #°'?): Emission probabilities:
Q3 ((b7 HOld) = a(z;kz) = [Z p(xn/zn)p(zn/Z;;)‘|
N K z
YD p(Z 2K 07z Inp(xa; ) x Y alzy1)p(lz, ) (10)
Z* Z n=1k=1 %1
L& and
= Z Z ZP(Z/X 90ld)znk hlp(Xn, (bk)
Z n=lk=1 N o(zn) = p(Xn|za) Zp(zn/z;i) (11)
= Z Z ’7(271/@) 1np(xn; (bk)
n=1 k=1 * * |k *
O‘(an )p(Zn|Zn7 ) p(Zn,1|Zn7 )
In the case of spherical Gaussian emission densities we have Lz% ' ' z; '

p(x/dr) = N(x;wy,0r), defined by its "mean’wy,, which .
have the same dimension as input data, and its covariandeerep(z,/z’) = p(zne = 1/25,. = 1) = %

matrix, defined bya I where oy, is the standard deviation To start this recursion, we need an initial E(:condition that is
andlI is the identity matrix. The maximization of the function

iven b
Q3(,0°'%) provides: L y i
we — >n1 Yok Xn ®) a(z1) = p(x1,27) = p(z1) [ZP (x1/21)p(21/27)
N
> n=17(2nk) )
o2 = Yoy Yzl [%n = w2 ©) o(z1) = p(x1,21) = p(x1/21) [ZP z1)p(21/27)
d 301 V(znk) 1
whered is the dimension of the elemest The value of3(z}), are calculated by backward recursion
as follows:
The EM algorithm requires initial values for the parameters Y * * * ) (12
of the emission distribution. One way to set these is first to D Bl )Pl /21 )p(en 41 /2,) (12)
n+41

treat the data initially as i.i.d. and fit the emission densit
by maximum likelihood, and then use the resulting values to

initialize the parameters for EM. B(zn) = Zp p(zn/z) Y > (13)
Zpy1 ZF il
C. The forward-backward algorithm: E-step P(Zn+1/zn+1)ﬁ( )P (Xnt1/2Z5,41)P(Zr 41 /2,)

Next we seek an efficient procedure for evaluating the nhere
quantitiesy(z? ), v(z,) and&(z;_,, z}), corresponding to the
E step of the EM algorithm. In the particular context of the z (x z z z*
hidden Markov model, this is known as the forward-backward P+ /1) Zp /ot )P(Ene1 [24)



p(zn) =Y p(z})p(20/2},)

and be

= plznt1e= 1/Z:7.+1,c* =1)
K" (3(c,¢"))

2ree KT (6(r,¢*))

P(Znt1/Zp11)

IV. CONCLUSION

In this paper, we presented an original model that could

applied to more advanced/complex data set (not i.i.d

observations, time series). We provides here the matheahati
formulation of our model. We present one way to estimate
the parameter using EM algorithm with Baum-Welch algo-
rithm. Visualization techniques and refined graphic digpla

Again we need a starting condition for the recursion, a val§&n be developed to illustrate the power of 3M-SOM to to
for 3(z%) = 1 and B(zy) = 1. This can be obtained by explore the not i.i.d data. As has been stressed, the 3M-SOM

settingn = N in (expression 10).

unsupervised topographic learning algorithm is purelychat

Next we consider the evaluation of the quantitiekeaming- An extension to an on-line mode version is quite

f(zfﬁp

z*) which correspond to the values of the conditionaitraightforward. Finally, providing an equivalent to thi#-3

probabilitiesp(z*_,,z* /X) for each of theK x K settings SOM for applications requiring Bernoulli emission prodapi
for (z*_,,z"). Using the applying Bayes theorem, we obtaif€NSity functions should be interesting task.

§(ZZ—17Z2) P(ZZ—laZZ/X)
p(X/Z;szlv Z;)p(z:zfl’ z;)
p(X)
a(zy, 1) [32,P(Xn/2n)p(20/2;,)]
p(X)
p(zy /25, 1)B(zy,)
p(X)
If we sum both sides of(z*) over zy, we obtainp(X) =
> 2y @(zn). Then we compute the forward recursion and
the backwards recursion and use the results to evaluatnd
&(zk_q,2%). We use these results to compute a new parametgsr]
model § using the M-step equations (6, 7, 8, 9). These both
steps are repeated until some convergence criterion giedti

[1

—

2

—

(3]
(4]

X

[5

—

[7]
IIl. DISCUSSION ABOUT TOPOLOGICALMARKOV MODEL

ORGANIZATION
8]

The 3M-SOM model allows us to estimate the parameters
maximizing the log-likelihood function for a fixed'. As in ]
the topological clustering algorithm, we have to decrease t
value ofT between two value$,,,,, andT;,;,, to control the
size of the neighbourhood influencing a given state of HMNA0!
on the graph (grid) and at same time. For edckalue, we get

a likelihood function@™, and therefore the expression variegl]
with 7. When decreasind’, the model of 3M-SOM will be
defined in the following way:

« The first step corresponds to highvalues. In this case,
the influencing neighbourhood of each stateon the
HMM graph (grid) is important and corresponds to highgt 3
values of KT (§(c,r)). Formulas use a high number of
state and hence high number of observations to estimate
model parameters. This step provides the topologigak;
order of Markov model.

o The second step corresponds to sniBllvalues. The
number of observations in formulas is limited. Thereforg;s)
the adaptation is very local. The parameters are accuratéhj
computed from the local density of the data. In this
case we can consider that we converge to traditionaf
HMM (without using neighborhood). Recall that cluster-
ing based on mixture model for i.i.d. observations is gel
special case of the HMM [19, chap 9].

[12]
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