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Learning Self-Organizing Maps as a Mixture
Markov Models

Mustapha Lebbah, Younès Bennani and Nicoleta Rogovschi

Abstract—This paper describes a new algorithm to learn Self-
Organizing map as Markov Mixture Models. Our model realizes
an unsupervised learning using unlabelled evolutionary data sets,
namely those that describe sequential data. The new formalism
that we present is valid for all structure of graphical model.
We use E-M (Expectation-Maximisation) standard algorithm to
maximize the likelihood. The graph structure is integratedin the
parameter estimation of Markov model using a neighborhood
function to learn a topographic clustering of not i.i.d dataset. The
new approach provides a self-organizing Markov model usingan
original learning algorithm.

Index Terms—Self-Organizing clustering, Markov Models, Se-
quential data, Expectation-Maximisation, graphical model

I. I NTRODUCTION

SInce many years, temporal and spatial sequences have
been the subject of investigation in many fields, such as

statistics, pattern recognition, web mining, and bioinformatic.
The easiest way to treat sequential data would be simply to
ignore the sequential aspects and treat the observations as
independent and identically distribution (i.i.d) in the first stage.
For many applications, the i.i.d assumption will be a poor one.
Often in many application the treatment is decomposed in two
steps; the first one is the clustering task with i.i.d assumption.
In second stage the result of clustering is used to learn a
probabilistic model by relaxing the i.i.d. assumption, andone
of the simplest ways to do this is to consider a Markov model.

Hidden Markov Models (HMMs) are the most well-known
and practically used extension of Markov model. They offer
a solution to this problem introducing, for each state, an
underlying stochastic process that is not known (hidden) but
could be inferred through the observations it generates. In
fact the probabilistic graphical modelling motivates different
graphical structures based on the HMM [1], [2]. Another
variant of the HMM worthy of mention is the factorial hidden
Markov model [3], in which there are multiple independent
Markov chains of latent variables, and the distribution of
the observed variable at a given time step is conditional on
the states of all of the corresponding latent variables at that
same time step. Many related models, such as hybrids of
HMMs with artificial neural networks [4], [5], [6]. Clearly,
there are many possible probabilistic structures that can be
constructed according to the needs of particular applications.
Graphical models provide a general formalism for motivating,
describing, and analysing such structures. Therefore, it will
be very important to have algorithms able to infer from a
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data set of sequences not only the probability distributions but
also the topological structure of the model, i.e., the number of
states and the transitions interconnecting them. Unfortunately,
this task is very difficult and only partial solutions are today
available [7], [8], [9]. In order to overcome the limitations of
HMMs, in [9] the author proposes a novel and an original
machine learning paradigm, which is titled topological HMM,
that embeds the nodes of an HMM state transition graph in
Euclidian space. This approach models the local structure of
HMM and extract their shape by defining a unit of information
as a shape formed by a group of symbols of a sequence.

Others attempts have been made for combining HMMs
and SOMs (Sel-Organizing Map of Kohonen) to form hybrid
models that contain the clustering power of SOM with the
sequential time series aspect of HMMs [6]. In many of
these hybrid architectures, SOM models are used as front-end
processors for vector quantization, and HMMs are then used
in higher processing stages. In [10], [11], a vector sequence
is associated with a node of SOM using DTW (dynamic time
warping) model. Others works exist and differ in the manner
of combination [12], [13], [14]. In [14] the authors proposean
original combined model which is the offspring of a crossover
between the SOM algorithm and the HMM theory. The
model’s core consists of a novel unified/hybrid SOM-HMM
algorithm where each cell of SOM map presents an HMM. The
model is coupled with a sequence data training method, that
blends together the SOM unsupervised learning and the HMM
dynamic programming algorithms. Of course, there is a lot
more litterature on HMMs and their applications than can be
covered here, but this survey wants to be representative of the
issues addressed here. However, in the other the organization
process are not integrated explicitly in HMM approach.

The aim of this paper is to built a new model for automating
and self-organizing the construction of a statistical generative
model of a data set of spatial sequences. In our model 3M-
SOM (Self-Organizing Maps as a Mixture Markov Models),
we consider that we have one Markov chain forming a grid.
The generation of the observed variable at a given time step is
conditional on the neighborhood states at that same time step.
Thus, a high proximity implies a high probability to contribute
to generation. This proximity is quantified using neighborhood
function. The same principle is used by Kohonen algorithm for
i.i.d data set [15]. In our case we focus about not i.i.d obser-
vations. We use Expectation-Maximization (EM) algorithm to
maximize the likelihood. The formalism that we present is
valid for all structure of graph model. In our case we prefer
to define the HMM architecture as map (grid).
This paper is organized as follows. In section II we present the



model we propose 3M-SOM. In section III we discuss the self-
organizing process integrated in HMM. Finally, conclusions
and some future works are provided.

II. SELF-ORGANIZING MARKOV MODEL

We assume that the HMM architecture is a latticeC, which
has a discrete topology (discrete output space) defined by an
undirect graph. Usually, this graph is a regular grid in one or
two dimensions. We denote the number of cells (nodes,state)
in C asK. For each pair of cells (c,r) on the graph, the distance
δ(c, r) is defined as the length of the shortest chain linking
cells r andc. The architecture of 3M-SOM model is inspired
from probabilistic topographic clustering of i.i.d observations
using a self-organizing map model of Kohonen [16], [17], [18].

A. Mixture model and Self-Organizing

We assume that each elementxn of sequence observation
X = {x1,x2, ...,xn, ...,xN} is generated by the following
process: We start by associating to each cell (state)c ∈ C
a probability p(xn/c) where xn is a vector in the data
space. Next, we pick a cellc∗ from C according to the prior
probability p(c∗). For each cellc∗, we select an associated
cell c ∈ C following the conditional probabilityp(c/c∗). All
cells c ∈ C contribute to the generation of an elementxn

with p(xn/c) according to the proximity toc∗ described by
the probabilityp(c/c∗). Thus, a high proximity toc∗ implies
a high probabilityp(c/c∗), and therefore the contribution of
statec to the generation ofxn is high.

Let us introduce aK-dimensional binary random variable
as latent variablezn and z

∗
n having a 1-of-K representation

in which a particular elementznk and z∗nk is equal to 1 and
all other elements are equal to 0. Each componentz∗nk and
znk indicate a couple of state responsible for the generation
of an element of the observation. Using this notation we can
rewrite:

p(xn/c) ≡ p(xn/znc = 1) ≡ p(xn/zn)

and

p(c/c∗) = p(znc = 1/z∗nc∗ = 1) ≡ p(znc/z∗nc∗) ≡ p(zn/z∗n)

is assumed to be known. To introduce the self-organizing
process in the mixture model learning, we assume that
p(znc/z∗nc∗) can be defined as:

p(znc/z∗nc∗) =
KT (δ(c, c∗))

∑

r∈C K
T (δ(r, c∗))

,

where KT is a neighbourhood function depending on the
parameterT (called temperature):KT (δ) = K(δ/T ), whereK
is a particular kernel function which is positive and symmetric
( lim

|x|→∞
K(x) = 0). Thus K defines for each statez∗nc∗ a

neighbourhood region in the graphC. The parameterT allows
the control of the size of the neighbourhood influencing a
given cell on the mapC. As with the Kohonen algorithm for
i.i.d observations, we decrease the value ofT between two
valuesTmax andTmin.

For the better understanding we have used similar notations

as in the book [19, chap. 13]. We denote the set of all latent
variables byZ∗ andZ, with a corresponding rowz∗n andzn

associated to each sequence elementxn. Now assume that,
for each sequence observation inX , corresponds the coupe
of latent variableZ and Z

∗. We denote by{X,Z,Z∗} the
complete data set, and we refer to the observed dataX as
incomplete.

The set of all model parameters is denoted byθ, the
likelihood function is obtained from the joint distribution by
marginalizing over the latent variablesZ∗ andZ

p(X; θ) =
∑

Z∗

∑

Z

p(X,Z,Z∗; θ) (1)

Because the joint distributionp(X,Z,Z∗; θ) does not fac-
torize overn, we cannot treat each of the summations overz

∗
n

andzn independently.
An important concept for probability distributions over

multiple variables is that of conditional independence [20].
We assume that the conditional distribution ofX, given Z

∗

and Z, is such that it does not depend on the value ofZ
∗.

Often this assumtion is used for graphical model, so that
p(X/Z,Z∗) = p(X/Z). Thus the joint distribution of the
sequence observations is equal to:

p(X,Z∗,Z) = p(Z∗)p(Z/Z∗)p(X/Z)

thus we can rewrite the marginal distribution as

p(X; θ) =
∑

Z∗

p(Z∗)
∑

Z

p(Z/Z∗)p(X/Z) (2)

We note that

p(X/Z∗) =
∑

Z

p(Z/Z∗)p(X/Z) (3)

B. Cost function and optimization

Considering a mapC as Markov model, we allow the
probability distribution of z∗n to depend on the state of
the previous latent variablez∗n−1 through a conditional
distribution p(z∗n|z

∗
n−1). Because the latent variables are

K-dimensional binary variables, this conditional distribution
corresponds to a table of probabilities that we denote by
A. The elements ofA are known as transition probabilities
denoted byAjk = p(z∗nk = 1/z∗n−1,j = 1), with

∑

k Ajk = 1.
So the matrixA has maximum ofK(K − 1) independent
parameters. In our case the number of transitions are limited
by the grid (map). We can then write the conditional
distribution explicitly in the form

p(z∗n/z∗n−1,A) =

K
∑

k=1

K
∑

j=1

A
z∗

n−1,jz∗

nk

jk

All of the conditional distributions governing the latent
variables share the same parametersA.

The initial latent statez∗1 is special in that it does not
have a parent cell, and so it has a marginal distribution
p(z∗1) represented by a vector of probabilitiesπ with elements
πk = p(z∗1k = 1), so that p(z∗1|π) =

∏K
k=1 πz∗

1k , where
∑

k πk = 1.



The model parameters are completed by defining the con-
ditional distributions of the observed variablesp(xn/zn; φ),
whereφ is a set of parameters governing the distribution which
is known as emission probabilities in HMM model.

Becausexn is observed, the distributionp(xn/zn, φ) con-
sists, for a given value ofφ, of a vector of K numbers
corresponding to theK possible states of the binary vector
zn. We can represent the emission probabilities in the form

p(xn/zn; φ) =

K
∏

k=1

p(xn; φk)znk

The joint probability distribution over sequence observed
variables and both latentZ andZ

∗ is then given by

p(X,Z∗,Z; θ) = p(Z∗;A) × p(Z/Z∗) × p(X/Z; φ)

p(X,Z∗,Z; θ) =

[

p(z∗1|π)
N
∏

n=2

p(z∗n/z∗n−1;A)

]

×

[

N
∏

i=1

p(zi/z
∗
i )

]

×

[

N
∏

m=1

p(xm/zm; φ)

]

(4)

θ = {π,A, φ} denotes the set of parameters governing
the model. Most of our discussion of the self organizing
Markov model will be independent of the particular choice
of the emission probabilities. It’s not obvious to maximizethe
likelihood function, because we obtain complex expressions
with no closed-form solutions. Hence, we use the expectation
maximization algorithm to find parameters for maximizing
the likelihood function. EM algorithm starts with some initial
selection for the model parameters, which we denote byθold.
In the E step, we take these parameter values and find the
posterior distribution of the latent variablesp(Z∗,Z/X, θold).
We then use this posterior distribution to evaluate the expecta-
tion of the logarithm of the complete-sequence data likelihood
function (4), as a function of the parametersθ, to give the
function Q(θ, θold) defined by:

Q(θ, θold) =
∑

Z∗

∑

Z

p(Z∗,Z/X; θold) ln p(X,Z∗,Z; θ)

Q(θ, θold) =
∑

Z∗

∑

Z

p(Z∗,Z/X; θold) ln p(Z∗; π,A)

+
∑

Z∗

∑

Z

p(Z∗,Z/X; θold) ln p(X/Z; φ)

+
∑

Z∗

∑

Z

p(Z∗,Z/X; θold) ln p(Z/Z∗)

Q(θ, θold) = Q1(π, θold) + Q2(A, θold)

+ Q3(φ, θold) + Q4 (5)

where

Q1(π, θold) =
∑

Z∗

∑

Z

K
∑

k=1

p(Z∗,Z/X; θold)z∗1k lnπk

Q2(A, θold) =
∑

Z∗

∑

Z

N
∑

n=2

K
∑

k=1

K
∑

j=1

p(Z∗,Z/X; θold)z∗n−1,jz
∗
n ln(Ajk)

Q3(φ, θold) =
∑

Z∗

∑

Z

N
∑

n=1

K
∑

k=1

p(Z∗,Z/X; θold)znk ln (p(xn; φk))

Q4 =
∑

Z∗

∑

Z

p(Z∗,Z/X; θold) ln p(Z/Z∗)

At this point, we introduce some notation. We will
use γ(z∗n, zn) to denote the marginal posterior distribu-
tion of a latent variablez∗n and zn, and ξ(z∗n−1, z

∗
n) =

p(z∗n−1, z
∗
n/X, θold) to denote the joint posterior distribution

of successive latent variables, so that

γ(z∗n, zn) = p(z∗n, zn|X; θold)

thus

γ(z∗n) =
∑

z

p(z∗n, zn|X; θold)

γ(zn) =
∑

z∗

p(z∗n, zn|X; θold)

γ(z∗nk) = E[z∗nk]

=
∑

z∗

∑

z

γ(z∗n, zn)z∗nk

=
∑

z∗

γ(z∗n)z∗nk

We observe that the objective function (5)Q(θ, θold) is defined
as a sum of four terms. The first termQ1(π, θold) depends on
initial probabilities; the second termQ2(A, θold) depends on
transition probabilitiesA; the third termQ3(φ, θold) depends
on φ, and the forth term is constant. MaximizingQ(θ, θold)
with respect toθ = {π,A, φ} can be performed separately.

1) Maximization ofQ1(π, θold): Initial probabilities:

Q1(π, θold) =
∑

Z∗

∑

Z

K
∑

k=1

p(Z∗,Z/X; θold)z∗1k lnπk

=
∑

Z∗

K
∑

k=1

p(Z∗/X; θold)z∗1k lnπk

=

K
∑

k=1

γ(z∗1k) lnπk

The update parameter is computed as follows:

πk =
γ(z∗1k)

∑K

j=1 γ(z∗1j)
(6)



2) Maximization ofQ2(A, θold): Probability transitions :

Q2(A, θold) =

∑

Z∗

∑

Z

N
∑

n=2

K
∑

k=1

K
∑

j=1

p(Z∗,Z/X; θold)z∗n−1,jz
∗
n ln(Ajk)

=
∑

Z∗

N
∑

n=2

K
∑

k=1

K
∑

j=1

p(Z∗/X; θold)z∗n−1,jz
∗
n ln(Ajk)

=

N
∑

n=2

K
∑

k=1

K
∑

j=1

ξ(z∗n−1,jz
∗
n) ln(Ajk)

The update parameter is computed as follows:

Ajk =

∑N

n=2 ξ(z∗n−1,j , z
∗
nk)

∑K

l=1

∑N

n=2 ξ(z∗n−1,j , z
∗
nl)

(7)

where

ξ(z∗n−1,j , z
∗
n,k) = E[z∗n−1,jz

∗
nk] =

∑

z∗

γ(z∗)z∗n−1,jz
∗
n,k

3) Maximization ofQ3(φ, θold): Emission probabilities:

Q3(φ, θold) =

∑

Z∗

∑

Z

N
∑

n=1

K
∑

k=1

p(Z∗,Z/X; θold)znk ln p(xn; φk)

=
∑

Z

N
∑

n=1

K
∑

k=1

p(Z/X; θold)znk ln p(xn; φk)

=

N
∑

n=1

K
∑

k=1

γ(znk) ln p(xn; φk)

In the case of spherical Gaussian emission densities we have
p(x/φk) = N (x;wk, σk), defined by its ”mean”wk, which
have the same dimension as input data, and its covariance
matrix, defined byσ2

kI where σk is the standard deviation
andI is the identity matrix. The maximization of the function
Q3(φ, θold) provides:

wk =

∑N
n=1 γ(znk)xn

∑N

n=1 γ(znk)
(8)

σ2
k =

∑N

n=1 γ(znk)||xn − wk||2

d
∑N

n=1 γ(znk)
(9)

whered is the dimension of the elementx.

The EM algorithm requires initial values for the parameters
of the emission distribution. One way to set these is first to
treat the data initially as i.i.d. and fit the emission density
by maximum likelihood, and then use the resulting values to
initialize the parameters for EM.

C. The forward-backward algorithm: E-step

Next we seek an efficient procedure for evaluating the
quantitiesγ(z∗n), γ(zn) andξ(z∗n−1, z

∗
n), corresponding to the

E step of the EM algorithm. In the particular context of the
hidden Markov model, this is known as the forward-backward

algorithm [21], or the Baum-Welch algorithm [22], [23]. In
our case it can be renamed topological forward-backward
algorithm, because we use the graph structure to organize the
sequential data. Some formula are similar if we don’t use the
graph structure. We will use the notationsα(z∗nk) andα(znk)
to denote the value ofα(z∗) andα(z) whenz∗nk = 1, znk = 1
with an analogous notations ofβ.

γ(z∗n) = p(z∗n/X) =
p(X|z∗n)p(z∗n)

p(X)

=
p(x1, ...,xn, z∗n)p(xn+1, ...,xN/z∗n)

p(X)

γ(z∗n) =
α(z∗n)β(z∗n)

p(X)

Using the similar decomposition we obtain

γ(zn) =
α(zn)β(zn)

p(X)

The values ofα(z∗n) and α(zn) are calculated by forward
recursion as follows:

α(z∗n) =

[

∑

z

p(xn/zn)p(zn/z∗n)

]

×
∑

z
∗
n−1

α(z∗n−1)p(z∗n|z
∗
n−1) (10)

and

α(zn) = p(xn|zn)
∑

z∗
n

p(zn/z∗n) (11)





∑

z
∗
n−1

α(z∗n−1)p(z∗n|z
∗
n−1)

∑

zn−1

p(zn−1|z
∗
n−1)





wherep(zn/z∗n) = p(znc = 1/z∗nc∗ = 1) = KT (δ(c,c∗))
∑

r∈C
KT (δ(r,c∗))

.

To start this recursion, we need an initial condition that is
given by

α(z∗1) = p(x1, z
∗
1) = p(z∗1)

[

∑

z1

p(x1/z1)p(z1/z
∗
1)

]

α(z1) = p(x1, z1) = p(x1/z1)





∑

z
∗
1

p(z∗1)p(z1/z
∗
1)





The value ofβ(z∗n), are calculated by backward recursion
as follows:

β(z∗n) =
∑

z
∗
n+1

β(z∗n+1)p(xn+1/z
∗
n+1)p(z∗n+1/z

∗
n) (12)

β(zn) =
1

p(zn)

∑

z∗
n

p(z∗n)p(zn/z∗n)
∑

zn+1

∑

z
∗
n+1

(13)

p(zn+1/z
∗
n+1)β(z∗n+1)p(xn+1/z

∗
n+1)p(z∗n+1/z

∗
n)

where

p(xn+1/z
∗
n+1) =

[

∑

z

p(xn+1/zn+1)p(zn+1/z
∗
n+1)

]



p(zn) =
∑

z∗
n

p(z∗n)p(zn/z∗n)

and

p(zn+1/z
∗
n+1) = p(zn+1,c = 1/z∗n+1,c∗ = 1)

=
KT (δ(c, c∗))

∑

r∈C KT (δ(r, c∗))

Again we need a starting condition for the recursion, a value
for β(z∗N ) = 1 and β(zN ) = 1. This can be obtained by
settingn = N in (expression 10).

Next we consider the evaluation of the quantities
ξ(z∗n−1, z

∗
n) which correspond to the values of the conditional

probabilitiesp(z∗n−1, z
∗
n/X) for each of theK × K settings

for (z∗n−1, z
∗
n). Using the applying Bayes theorem, we obtain

ξ(z∗n−1, z
∗
n) = p(z∗n−1, z

∗
n/X)

=
p(X/z∗n−1, z

∗
n)p(z∗n−1, z

∗
n)

p(X)

ξ(z∗n−1, z
∗
n) =

α(z∗n−1) [
∑

z
p(xn/zn)p(zn/z∗n)]

p(X)

×
p(z∗n/z∗n−1)β(z∗n)

p(X)

If we sum both sides ofα(z∗) over zN , we obtainp(X) =
∑

zN
α(zN ). Then we compute the forwardα recursion and

the backwardβ recursion and use the results to evaluateγ and
ξ(z∗n−1, z

∗
n). We use these results to compute a new parameter

model θ using the M-step equations (6, 7, 8, 9). These both
steps are repeated until some convergence criterion is satisfied.

III. D ISCUSSION ABOUT TOPOLOGICALMARKOV MODEL

ORGANIZATION

The 3M-SOM model allows us to estimate the parameters
maximizing the log-likelihood function for a fixedT . As in
the topological clustering algorithm, we have to decrease the
value ofT between two valuesTmax andTmin, to control the
size of the neighbourhood influencing a given state of HMM
on the graph (grid) and at same time. For eachT value, we get
a likelihood functionQT , and therefore the expression varies
with T . When decreasingT , the model of 3M-SOM will be
defined in the following way:

• The first step corresponds to highT values. In this case,
the influencing neighbourhood of each statez

∗ on the
HMM graph (grid) is important and corresponds to higher
values ofKT (δ(c, r)). Formulas use a high number of
state and hence high number of observations to estimate
model parameters. This step provides the topological
order of Markov model.

• The second step corresponds to smallT values. The
number of observations in formulas is limited. Therefore,
the adaptation is very local. The parameters are accurately
computed from the local density of the data. In this
case we can consider that we converge to traditional
HMM (without using neighborhood). Recall that cluster-
ing based on mixture model for i.i.d. observations is a
special case of the HMM [19, chap 9].

IV. CONCLUSION

In this paper, we presented an original model that could
be applied to more advanced/complex data set (not i.i.d
observations, time series). We provides here the mathematical
formulation of our model. We present one way to estimate
the parameter using EM algorithm with Baum-Welch algo-
rithm. Visualization techniques and refined graphic displays
can be developed to illustrate the power of 3M-SOM to to
explore the not i.i.d data. As has been stressed, the 3M-SOM
unsupervised topographic learning algorithm is purely batch
learning. An extension to an on-line mode version is quite
straightforward. Finally, providing an equivalent to the 3M-
SOM for applications requiring Bernoulli emission probability
density functions should be interesting task.
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