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Drawing solution curve of differential equation
Farida Benmakrouha, Christiane Hespel, and Edouard Monnier

Abstract—We develop a method for drawing approximated
solution curves of differential equations. This method is based
on the juxtaposition of local approximating curves on successive
intervals [ti, ti+1]0≤i≤n−1.
The differential equation, considered as a dynamical system, is
described by its state equations and its initial value at t = t0.
A generic expression of its generating series Gt truncated at any
order k, of the output and its derivatives y(j)(t) expanded at any
order k, can be calculated. These expressions are obtained from
the vector fields, from the observation of the state at time t, in
the state equations [3], [7].
We get an expansion of y(j)(t) as a linear combination of
differential monomials indexed by some colored partitions.
At every initial point of the present interval, we specify the
previous expressions of Gt and y(j)(t) for t = ti. Then we
obtain an approximated output y(t) at order k in every interval
[ti, ti+1]0≤i≤n−1. We present an example from physics: the
Duffing equation.
By using Maple system, we have developed a package corre-
sponding to the creation of the generic expression of Gt and
y(j)(t) at order k and to the drawing of the local curves on
every interval [ti, ti+1]0≤i≤n−1, by iterations on the initial points
t = (ti)0≤i≤n−1.

Index Terms—analysis of dynamical systems, symbolic algo-
rithm, generating series, colored partitions, rational approxima-
tion

I. INTRODUCTION

The usual methods for drawing curves of differential equa-
tions consist in an iterative construction of isolated points,
connected by straight lines (Runge-Kutta). Rather than calcu-
late numerous successive approximate points y(ti)i∈I , it can
be interesting to provide some few successive local curves
{y(t)}t∈[ti,ti+1]0≤1≤n−1 .
Moreover, the computing of these local curves can be kept
partly generic since a generic expression of the generating
series Gti of the system can be provided in terms of ti.
The expression of the local curves {y(t)}t∈[ti,ti+1] is only a
specification for t = ti at order k of the formula given in the
proposition of section 3.
We consider a differential equation

y(N)(t) = φ(t, y(t), · · · , y(N−1)(t), u(t)) (1)

with initial conditions

y(0) = y0,0, · · · , y(N)(0) = y0,N

We assume that φ(t, y(t), · · · , y(N−1)(t), u(t)) is polynomial
in y, · · · , y(N−1).
Then this differential equation can be viewed as an affine input
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(u(t) = (uj(t))1≤j≤m) dynamical system.
By derivating, in the Fliess’s formula, the expression of y(t)
in a neighborhood of t = t0, we get an expansion of y(n)(t0).
This expression can be written as a linear combination of
differential monomials ⊗1≤j≤m(u(i1)

j )e1 · · · (u(iq)
j )eq indexed

by some colored partitions µ = ⊗µj , for uµ = uµ1
1 · · ·uµm

m .
And then there exist some polynomials gµ in noncommutaive
variables such that

y(n)(t0) =
∑

µ

〈Gt0 |gµ〉 (2)

For the partition (µj) = (u(i1)
j )e1 · · · (u(iq)

j )eq , the weight
wgt(µj) and the length lg(µj) are

wgt(µj) =
∑

1≤k≤m ekik
lg(µj) =

∑
1≤k≤m ek

(3)

II. PRELIMINARIES

A. Affine system, Generating series

We consider the nonlinear analytical system affine in the
input:

(Σ)
{

q̇ = f0(q) +
∑m

j=1 fj(q)uj(t)
y(t) = g(q(t))

(4)

• (fj)0≤j≤m being some analytical vector fields in a neigh-
borhood of q(0)

• g being the observation function analytical in a neighbor-
hood of q(0)

Its initial state is q(0) at t = 0. The generating series G0 is
built on the alphabet Z = {z0, z1, · · · , zm}, z0 coding the drift
and zj coding the input uj(t). Generally G0 is expressed as a
formal sum G0 =

∑
w∈Z∗ 〈G0|w〉w where 〈G0|zj0 · · · zjl

〉 =
fj0 · · · fjl

g(q)|q(0) depends on q(0).

B. Fliess’s formula and iterated integrals

The output y(t) is given by the Fliess’s equation ([3]):

y(t) =
∑

w∈Z∗

〈G0|w〉
∫ t

0

δ(w) (5)

where G0 is the generating series of (Σ) at t = 0:

G0 =
∑

w∈Z∗ 〈G0|w〉w
= g(q)|q(0)+∑

l≥0

∑m
ji=0 fj0 · · · fjl

g(q)|q(0)zj0 · · · zjl

(6)

and
∫ t

0
δ(w) is the iterated integral associated with the word

w ∈ Z∗ = {z0, z1, · · · , zm}∗.



Remember that the iterated integral
∫ t

0
δ(w) of the word w for

the input u is defined by
∫ t

0
δ(ε) = 1∫ t

0
δ(vzi) =

∫ t

0

(∫ τ

0
δ(v)

)
ui(τ)dτ

∀zi ∈ Z ∀v ∈ Z∗.
(7)

where ε is the empty word, u0 ≡ 1 is the drift
and ui, 1 ≤ i ≤ m is the ith input.
We define the Chen’s series as follows ([2])

Cu(t) =
∑

w∈Z∗

∫ t

0

δ(w) (8)

From the previous definitions, we obtain the following expres-
sion of y(t)

y(t) =
∑

w∈Z∗

〈G0|w〉〈Cu(t)|w〉 (9)

C. Iterated derivatives y(n)(0) of the output
G0 being the generating series of the system, the ith

derivative of y(t) is

y(i)(t) = 〈G0|C(i)
u (t)〉 (10)

We prove the following lemma ([6]) based on the Picart-
Vessiot theory ([4])

Lemma :
Let be

∑
0≤j≤m uj .zj = A. Then the derivative of the

Chen’s series is d
dtCu = Cu.A

From it, results the following recurrence relation:

C(i)
u = CuAi, A1 = A, Ai+1 = AAi +DtAi (11)

Dt being the operator of time derivation.
Since Cu(0) = 1 and C(i)

u (0) = Ai(0) then

y(i)(0) =
∑

w∈Z∗

〈G0|w〉〈C(i)
u (0)|w〉 = 〈G0|Ai(0)〉 (12)

Let us remark that the successive derivatives
y(0), y(1)(0), · · · , y(k)(0) are obtained from the coefficients
〈G0|w〉 associated with the words whose length is ≤ k.
It results that the Taylor expansion of y(t) up to order k only
depends on the coefficients of G0 truncated at order k.
For instance, for a single input u(t) with drift u0(t) ≡ 1, the
derivatives are the following

y(0) = 〈G0|ε〉
y(1)(0) = 〈G0|z0〉+ 〈G0|z1〉u(0)
y(2)(0) = 〈G0|z2

0〉+ (〈G0|z0z1〉+ 〈G0|z1z0〉)u(0)+
〈G0|z2

1〉u(0)2 + 〈G0|z1〉u(1)(0)
· · · = · · ·

(13)
This method allows us to compute recursively the successive
derivatives of y(t) at t = 0.
The derivation law D of the partitions, producing the effect of
the time derivation Dt of the differential monomials satisfies

D(ik) = ik+1

D(ie1
1 · · · ieq

q ) =
∑q

k=1 ek × (ie1
1 · · · iek−1

k i
ek+1+1
k+1 · · · ieq

q
(14)

For a single input u(t) with drift u0(t) ≡ 1, the bicolored
multiplicity is µ = µ0 ⊗ ν with

µ0 = 1p

wgt(µ) = p+ wgt(ν)
D(1p ⊗ ν) = 1p ⊗D(ν)

(15)

III. APPROXIMATE VALUE OF y(n)(t)

The Fliess’s formula can be written

y(t) = 〈G0|ε〉+
∑

w∈Z∗−{ε}

〈G0|w〉〈Cu(t)|w〉 (16)

An approximate function yk(t) de y(t) up to order k in
a neighborhood of t = 0 is obtained by expanding this
expression up to the same order k. Then we have

|y(t)− yk(t)| = O(tk+1) (17)

For instance, at order k = 1, y(t) has the following approxi-
mate expression for a single input with drift

y1(t) = 〈G0|ε〉+ 〈G0|z0〉t+ 〈G0|z1〉ξ1(t) (18)

where ξk(t) denotes the kth primitive of u(t).
This computing can be generalized to the successive
derivatives of y(t).

Proposition
Given the expression of y(n)(0) in terms of the coefficients
of G0 and of the derivatives of order ≤ n− 1 of the input
u(t)t=0 obtained recursively according to the previous
section, we can deduce the expression of y(n)(t) by
executing in y(n)(0) the following transformations

1) We substitute u(i)(t) to u(i)(0) for 0 ≤ i ≤ n− 1
2) For every occurrence of a coefficient 〈G0|v〉 where

v ∈ Z∗, we add the following corrective term∑
w 6=ε

〈G0|wv〉〈Cu(t)|w〉

The proof is based on the following properties{
d
dt 〈Cu(t)|vzi〉 = 〈Cu(t)|v〉ui(t)

〈Cu(t)|ε〉 = 1
(19)

For instance, for a single input with drift, we compute from

y(1)(0) = 〈G0|z0〉+ 〈G0|z1〉u(0)

the expression of y(1)(t) :

y(1)(t) = 〈G0|z0〉+
∑

w 6=ε 〈G0|wz0〉〈Cu(t)|w〉+
(〈G0|z1〉+

∑
w 6=ε 〈G0|wz1〉〈Cu(t)|w〉)u(t)

(20)

By restricting the sums to the words w whose length |w| satis-
fies 1 ≤ |w| ≤ k, we obtain a function y(n)

k (t) approximating
y(n)(t) up to order k. And then

|y(n)
k (t)− y(n)(t)| = O(tk+1) (21)



A. Generalization at time t = ti

For a single input with drift, the system (Σ) can be written
at t = ti:{

q̇(ti + h) = f0(q(ti + h)) + f1(q(ti + h))u(ti + h)
y(ti + h) = g(q(ti + h))

(22)
By setting  Ui(h) = u(ti + h)

Yi(h) = y(ti + h)
Qi(h) = q(ti + h)

(23)

we obtain the following system

(Σi)
{
Q̇i(h) = f0(Qi(h)) + f1(Qi(h)Ui(h)
Yi(h) = g(Qi(h))

(24)
And Gi is the generating series of (Σi).
By setting ψi,k(h) = ξk(ti + h), then ψi,k(h) is the kth
primitive of u(ti + h) or the kth primitive of Ui(h).

We have the equalities

ξ1(ti + h) =
∫ ti+h

ti

u(τ)dτ =
∫ h

0

Ui(t)dt = ψi,1(h) (25)

And then, we can prove recursively that the Chen’s integral∫ ti+h

ti
δ(w) can be computed as an integral

∫ t

0
δ(W ) by

considering Ui(t) instead of u(ti + t).

IV. APPLICATION TO CURVES DRAWING

We present an application to the curve drawing of the
solution of differential equations. We consider a differential
equation

y(N)(t) = φ(t, y(t), · · · , y(N−1)(t), u(t)) (26)

with initial conditions

y(0) = y0,0, · · · , y(N)(0) = y0,N

It can be written for y = q1:
q
(1)
1 = q2

q
(1)
2 = q3
· · · = · · ·
q
(1)
N = φ(t, q1, · · · , qN )

(27)

We assume that

φ(t, q1, · · · , qN ) = P0(q1, · · · , qN ) +
m∑

j=1

Pj(q1, · · · , qN )uj(t)

for P0, P1, · · · , Pm polynomials in commutative variables
q1, · · · , qN .

For an analytical affine single input system (Σ) then
m = 1 and the vector fields are f0, f1, corresponding to
P0, P1.

We propose a curve drawing of the output y(t) of this
system in [0, T ] =

⋃
[ti, ti+1]0≤i≤n−1 according to the

following algorithm:
Firstly, we compute a generic expression of the generating
series Gt.

• Initial point t0 = 0:
y(0) = q1(0), · · · , y(N−1)(0) = qN (0) are given.
The vector fields f0, f1 applied to g(q) evaluated in t0
provide 〈G0|w〉 for |w| ≤ k

• Step i:
Knowing y(ti−1) = q1(ti−1), · · · , y(N−1)(ti−1) =
qN (ti−1) and 〈Gi−1|w〉 (for |w| ≤ k), we compute
y(ti), · · · , y(N−1)(ti) according to section 3 and 〈Gi|w〉
(for |w| ≤ k) by applying the vector fields f0, f1 to g(q)
at q(ti).
We draw the local curve of the function ti−1 + dt →
y(ti−1 + dt) on the interval [ti−1, ti].

• Final point t = T = tn:
stop at i = n.

A. Genericity of the method

The computing of the coefficients

〈Gi|zj0 · · · zjl
〉 = fj0 · · · fjl

g(q)|q(ti)

is generic.
The computing of the expressions of

Yi(h) = y(ti + h) = y(ti) +
∑
|w|≤k

〈Gi|w〉〈CUi(h)|w〉

and of

Y
(1)
i (h) = 〈Gi|z0〉+

∑
1≤|w|≤k 〈Gi|wz0〉〈CUi(h)|w〉+

(〈Gi|z1〉+
∑

1≤|w|≤k 〈Gi|wz1〉〈CUi(h)|w〉)Ui(h)
(28)

are generic too.
We use the previous algorithm by specifying ti at every step
in the previous expressions.

B. Example: Duffing equation

Its equation is the following:

y(2)(t) + ay(1)(t) + by(t) + cy3(t) = u(t)
y(0) = y0,
y(1)(0) = y1,0

(29)

It can be written as a first order differential system
q
(1)
1 (t) = q2(t)
q
(1)
2 (t) = −aq2(t)− bq1(t)− cq31(t) + u(t)

= F (q(t)) + u(t)
y(t) = q1(t) = g(q)
q1(0) = y0, q2,0 = y1,0

(30)
The vector fields are

f0(q1, q2) = q2
∂

∂q1
− (aq2 + bq1 + cq31) ∂

∂q2

= q2
∂

∂q1
+ F (q) ∂

∂q2

f1(q1, q2) =
∂

∂q2



1) We write generic equations describing the generating
series Gi at t = ti :

∀ti 〈Gi|zj1 · · · zjl
〉 = (fj1 · · · fjl

g(q))|q(ti)

Let us remark that

〈Gi|wz1〉 = 0 ∀w ∈ Z∗, 〈Gi|wz1z0〉 = 0 ∀w ∈ Z+

For instance, for order k = 3, we have only to compute
6 coefficients of Gi instead of 15 coefficients.

〈Gi|ε〉 = q1(ti)
〈Gi|z0〉 = q2(ti)
〈Gi|z2

0〉 = F (q(ti))
〈Gi|z1z0〉 = 1
〈Gi|z3

0〉 = (q2 ∂
∂q1

F (q) + F (q) ∂
∂q2

F (q))q(ti)

〈Gi|z1z2
0〉 = −a

(31)
2) We write generic approximate expression of the output

y(ti+1) and its derivative y(1)(ti+1) for every t =
ti+1 = ti + h at order k:

y(ti+1) = 〈Gi|ε〉+
∑

1≤|w|≤k 〈Gi|w〉〈CUi
(h)|w〉

y(1)(ti+1) = 〈Gi|z0〉+∑
1≤|w|≤k 〈Gi|wz0〉〈CUi(h)|w〉+

(〈Gi|z1〉+
∑

1≤|w|≤k 〈Gi|wz1〉〈CUi(h)|w〉)Ui(h)
(32)

For instance, for order k = 3

Yi(h) = y(ti + h)
= y(ti) + 〈Gi|z0〉h+ 〈Gi|z2

0〉h2/2+
〈Gi|z1z0〉ψi,2(h) + 〈Gi|z3

0〉h3/(3!)+
〈Gi|z1z2

0〉ψi,3(h)
(33)

and

Y
(1)
i (h) = y(1)(ti + h)

= 〈Gi|z0〉+ 〈Gi|z2
0〉h+

〈Gi|z1z0〉ψi,1(h) + 〈Gi|z3
0〉h2/2+

〈Gi|z1z2
0〉ψi,2(h)

(34)
3) And we use the algorithm of section 4 by specifying ti

at every step. So we obtain the drawing of y(t).

C. Contribution of symbolic computing

The symbolic computing allows us to profit from the
genericity and from the precision.

1) Genericity : We propose that one uses the formal expres-
sion of the generating series Gi and of the output y(ti)
and its derivative y(1)(ti). Then we replace successively
the expressions by their values at every step.

2) Precision : We can choose any order k for approximating
the output and its derivative. The error is on the order
of k + 1.

D. Comparison with other methods

The main interest of this method consists in choosing the
precision, not only by the size of the time interval h but by
the order of the approximation.
The quality of any approximation depends on the order, the

size of the interval but also depends on the roughness of the
curve and the stability of the system [1]. When the system
is stable, the drawing of the curve is suitable, by using our
method, for a large period of time and a small order. In this
case, our method is favourable. Otherwise we have to reduce
the period of time in order to follow the true curve.
In comparison with Runge-Kutta methods, this method con-
sists in selecting a much smaller number of steps, the local
curve being acquired on every interval.
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d’état, Université de Lille 1, 1998.


